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Abstract: In the analysis of functions and multi-valued map­
pings of Lipschitzian type, there are many different notions of Lip­
schitz behavior , regularity and generalized derivatives. We collect 
relevant examples illustrating the interrelations between various con­
cepts, the differences with the smooth case, and the importance of 
certain assumptions and special classes of Lipschitz mappings in ap­
plications. 
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1. Introduction 

This paper is concerned with typical examples aud couuterexamples in the aual­
ysis of Lipschitz functions and rnultifunctions. Our purpose is to coutrilmte to 
a better understanding of inten elations between difFerent concepts of Lipschitz 
behavior , regularity and derivatives , and of their role in selected applications. 

First we recall some notations and the classical definition of a locally Lip­
schitz (single-valued ) function. To do this , let (X, dx) ami (Y, dy) be metric 
spaces. Given X° C X , the usual point-to-set distance of x E X to X 0 is 
defined by dist (x, X 0 ) = infx'EXU dx (:I: , :1:

1
) , where dist (x, 0) = +oo . We write 

X 0 + cBx :={x I dist (:r, X_0 ):::; c}, i. e., the specializatiou to X 0 = {:r0 } meaus 
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for y0 E Y, Y 0 c Y are deflll ed. G ive n :tl E Y, a functio n <; : Y--+ X is said to 
be 

(LO) Lipsch·iiz nea·r y0 if there are positive L and E such that 

dx(s(y), s(y')) ::; Ldy(y, y') 'iy, y' E y0 + EBy. (1.1) 

The function s is called locally Lipschilz on Y if s is Lipschitz near y for each 
y E Y. We will abo use t he (standard) notation .-; E C 0•1 , in this situation. 

2. Lipschitzian concepts for multifunctions 

Given again metric spaces (X, dx) a mi (Y, ely), let now S : Y ::::::t X be a multi­
valued mapping (briefly called ·rnv.ll'ifu.nct·ion). Let gp hS := {(y ,:c) E Y x X I 

x E S(y)} denote the ymph of S, let dom S = {y E Y I S(y)-:/:- 0} denote the 
dmrwin of S, ami let S(A) = UaEAS(a) be the 'imaye of A C Y. If gph S is 
closed iu the product space Y x X, theu S is said to be clo<;ed. Further, denote 
by s- 1 the inverse of s' the multifunction defined by s- 1 (:c) : = {y E y I 
(y,:E) E gphS} . 

Let (y 0
, :c 0 ) be a n elerneut of gph S , and let 0 -:/:- X° C S(y0 ). The InuHi­

fuuction S is said to be 

(Ll) locally ·uppe·r Lipschd z at (y 0 , X 0 ) if there are positive LandE such that 

(L2) p<;e·ado-Dipschilz al (y 0 ,:c0 ) if there are positive L ami E such that 

S (y) n (:c 0 + EBx) c S (y') + Ld1/ (y , y')Bx Vy,y' E y0 + t::By; (2 .2 ) 

(L3) cai-rn at (y0 , x 0 ) if there are positive L a mi c such that 

(L4) Lipschdz l.s.c. at (y 0 ,:c0 ) if there are positive Lami E such that 

(2.4) 

Here "l.s.c." means "lower semicontinuous", while "u.s. c. " will refer to "upper 
semicontinuous". Sometimes we usc "L ." and "u.L." to abbreviate "Lipschitz" 
and "upper Lipschitz", respectively. T he mul t ifunct ion S is said to be 

(L5) Lipschdz l.s.c. al y0 if there arc posit ive Land E such that 

(2 .5 ) 

(L6) Dipschdz ·u.s. c. al y0 if there a re positive L ami c such that 
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If (L4) is weakeuecl by oHiy requiring that dist (:c 0
, S(y)) ___, 0 hold for each 

sequence y----> y0 , then S is call ed l.s.c . at (y 0 ,:c0 ) . If (15) ic; replaced by 
the weaker condition dist (:c 0 , S(y)) ----> 0 for eac!J sequence y ___, y0 and each 
:z:0 E S(y0 ), one says that Sis (Hausdorff-) l.s.c. at y0 , while dis t (:z:, S(y0 )) ----> 0 
for each sequence y ___, y0 and each :~; E S(y) leads to the notio11 of S being 
(HausdorfF-) u.s. c. at y0 . lf 5' is a function , the pseudo-Lipschitz property (L2) 
is nothing else than (LO), and pro perty (16) is also called poinlw'ise Lipschitz 
conl'in'U,ity at :rl . T n a ll cases considered above, one says t hat L is a nwclulus of 
the related Lipschitz property. 

The iHtrod uced names of Lipschitz properties are used in conform ity with the 
book ofJ\latte am!Eurnmer (2002). T he notion of (16) was defin ed by Robinsoll 
(1981) ill the context of polyhedral 1nultifunctions. (11) was in trod uc:ed for 
X 0 = { :c0 } and called locally 'uppe,,. DlyJsch'itz al (y 0 , :c0 ) in Dontchev ( 1995) , 
our form of (Ll) is an extension of thi s notion. T!Je inclusion (2.1) particul arly 
yields tha t S(y 0 ) n (X 0 +c:Bs) = X 0 , i. e., the set X 0 is necessarily an isolat ed 
componeut of the se t S(y 0 ). The property (12)- which is also called Aubi'n 
pmperly in the literature (see Rockafe llar aud Wets, 1998)- is a basic: stability 
comlition in Aubin am! Ekelaud (1984), and calrnuess (L3) has beeu applied and 
investigated e.g. in Cla rke (1983), fm deriviug optimality conditious. With this 
respect, calrnuess cau be u::;ed iu a s i11ril ar way as the upper Lipschit z property 
(Ll), see ](latte aml I\ummer (2002). Au iutcrestiug suffi cient condition for 
calmness of mult if unctions can be found iu Hemion aml 0 u trata ( 200 1) . lt uses 
so-call ed se1nisnwot!Juess, Miffliu (1977), and may be applied to the models i11 
Outrata (2000) and many lllodels in Luo, Pang aml R alph (1996) . T he concepts 
(L5) and (L6) a re maiuly studied iu the context of polyhedral multifunctions 
and co11vex-::;et-valued waps. 

In t lte follow iHg proposit ion, we CO IIlpile several elernenta ry interrelations 
betweeu these Lipschitzian concepts. 

PROPOS ITIO N 2. 1 Let X und Y be ·rnel'l·ic space8, S : Y =t X unci z0 

(y 0 , :~: 0 ) E gph S. Then lhe following p1ope'f"ti e::; hold: 
u.. S is locally 'UfJpe! Lipl)chilz ul z0 =?S is c:u.lw u.l z0 . 

b. S is pse'Cl.clo- Lipschitz ai z 0 =? S is Lipschitz l. s. c. and calTn ut z 0 

c. h1. the cuse S(y0) = {:r:0 } , S is locally 'UPJJer Lipschitz ul z0 ¢:?5' 'is cul-nt 
a.l z0 . 

d. S is Lipschitz 'u.s. c. ut y0 =?S 'is cairn ai (y 0 , x 0 ) Vx 0 E S(y 0
). 

e. 8 1s Liym:h'ilz l.s. c. ut y0 =?S i::; Lipschitz l. s.c. ut (y 0 ,x0 ) V:c 0 E S'(y0 ). 

Pmof. llllmcdia te by t he definitions. • 
T he definitions (L2) , (L4) and (L5) imply tlu.tt for y near y 0 , the sets S'(:y) 

or S'(y) n (:c0 + c: Bx) arc uouempty, while (L1). (13) ami (16) do not imply 
this. For this reason, HOlle of the properties (L1) , (L3) aud (L6) implies aay 
of the remaining oues, consider the trivia.l exalllple S'(~;) = {:r: E lR I l:1:l = y}. 
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missing directions of the implications a, h, d all(! e fail to hold. The following 
counterexamples refer to this situation. 

ExAMPLE 2.2 (pseudo-L. , calm, L.l.s.c . and L.u. s .c., but not locally u.L.). 
Consider S(y) = JR, y E JR, and let B = [-1, 1] . Trivially, Sis constaat, hence 
it is Lipschitz l.s.c. and Lipschitz u.s.c. at each y0 , and for any (y0 , x 0 ) E JR2 , 

Sis pseudo-Lipschitz and calm at (y0 ,x0 ). However, for each c > 0 and each 
L > 0, the pointy= y(c, L) := y0 + c/(2L) satisfies 

S(y) n (x0 + cB) = [x0
- c, x0 + c] cf_ [x0

- c/2, x0 + c/2] 

= xo + Lly- YO IB, 

i. e ., for each (y0 , x 0 ) E JR2
, S is uot locally upper Lipschitz a t (y 0 , x 0 ). 

EXAMPLE 2.3 (pseudo-L. , calm and L.l.s.c ., Lut aot locally u.L. and uot 
L.u .s.c.) . Let s(y) = 1 + JiYj a nd S(y ) be the interval [- s(y),s(y) ] for real y. 

Then, if :c0 E S(O), the mapping Sis not locally upper Lipschitz a t (0, :c0 ) , 

since for each c > 0 and each L > 0, oae finds poiats x(y) E S(y) n (x 0 + cB) 

such that lx(y)- x 01 > Llyl and IYI < 1/ L . Further, dist (s(y), S(O)) = JiYj 
for y -=J. 0, i.e. , S is not Lipschitz u.s.c . at y0 = 0. 

On the other hand, S is pseudo-Lipschitz (!teuce also calm) at each point 
(0, :c0

), :c0 E int S(O) . Note that Sis not calm at (0, 1). Further, S(O) C S(y) 
for y -=J. 0 implies that S is Lipschitz l.s. c. at y0 = 0. 

ExAMPLE 2.4 (L. u.s.c. at y0 a nd L .l.s.c . at (y 0 , :c0 ), but not l.s.c. at y0 and not 
pseudo-L. at (y0 ,x0 )). Assigu to each x E JR" the line segment F(:c) = [O, :c] 
(i.e. , the convex hull of 0 and :c), thea the iuversc S(y) := p- 1(y) becomes 

p- 1(0) = 1R11 and p- 1(y) = {A y I.\ 2: 1} for y -=J. 0. 

Obviously, p - 1 is Lipschitz u.s. c. with each L at :tl = 0 as well as Lipschitz 
l. s.c. with L = 1 at the origin (y 0 , :c0 ) = (0, 0). 

However , p- 1 is not pseudo-Lipschitz a t (y 0 , :c0 ) = (0 , 0) and aot l.s. c. at 
y0 = 0. This can be seen as follows. Given c > 0, let ll :cll = c. Then :c E 
S(O) n (0 + cBx ), aad for a ll y of the form y = -.\:c, .\ 2: 0, it follows that 
dist (:c, S(y)) = c+Ac 2: c. Hence. neither (L2) nor the l.s.c. conclitiou a t y0 = 0 
can be satisfied. 

Note that a slight modifi c:at ioa of the lllapping F leads to a regular situation. 
Now assign to each x E lR" , the liue scgmeat F(x) = [~:c , :c] C lR". The inverse 
rnultifunctiou is now 

S(y) := p- 1(y) = [y , 2y], 

and S : JR"' ::::t JR" is pseudo-Lipschitz a t (0, 0) as well as Lipschitz l.s .c. and 
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The same situation as in Example 2.4 cau be found iu the coutex t of the 
coustra int se t mapping of a st.audard noulinear optimiz;ation problem. see the 
next example, where the so-called Munyasa'l"ian- Fmtnov'itz cond-ition (MFCQ) , 
Mangasarian and Fromovitz; (1967), is viola ted. R ecall that a finit e-dimeusional 
constraint map 

S(y, z) ={xI y(:c) 2 y, h(x) = z }, 

for (y,h) E C1(1R",JRm+k), is pseudo-Lipschitz; at (y 0 , .; 0 ,x0 ) if a nd only if 

(MFC Q ) 
Dh(:t0

) has full rank , and there is some ·u such that 
Dh(:c0 )u = 0 and y(x0 ) + Dy(x0 )·u > y0 

is satisfied, which was shown for the first time in Rohiuson (1976). 

(2. 7) 

EXAMPLE 2.5 cL.u.s.c. at y0 and L .l. s .c. a t (y0 ,:~; 0 ), hut MFCQ viola ted). Con­
sider the map 

S(y) := {:r E IR2 I :r2(x2- xi) 2 0, x2 = y}, y E JR. 

Obviously, 

S(y) = {(x1 , y) I -/Y S XJ S /Y} \:fy > 0 

a nd 

S(y) = {(:!:1,:r2) I :c2 = y} \:fy S 0, 

in pa rti cula r , dist (:r, S'(O)) = IY I for a ll y =/: 0 a nd all x E S(y). So, S is 
Lipschi tz; u.s .c. at y0 = 0 a ud hence calm at each (0, :~; 0 ), x 0 E S'(O). Further , 
Jist (0, S(y)) = IYI for a lly=/: 0, hence , Sis also Lipschit z; l.s.c. at (0, 0). 

On Lite other hand, for any y > 0, one has ( JY, y) E S(y) and 

dist (( .JY, y) , S(y/4)) =II( /Y, y)- ( /Y/2, y/4)11 = Jy/4 + 9y 2 / 16, 

heuce, (L2 ) is violated in (0, 0). It is easy to sec that MFCQ does not hold at 
this point. 

It is known that for a calru equa lity constra int h(:t) = 0 of a Honliuear pro­
gram (this means that S = h- 1 is cairn a t (:r0 ,0)) , a local rninin1i zer :~;0 of 
f with respect to this constraiut is necessarily a loca l minimiz;er of an uncoH­
straiued penalty-type function F(x) = f( x ) + aiih(:r)ll for suitable ct, see, e.g., 
Clarke (1983) . Similar results a re true if the coustraiuts sat isfy a local upper 
Lipschit z; or a pseudo-Lipschitz; condition , see J\latte and J(urnmer (2002). The 
nexl example indicates tha t this (staHdard) peualiz;ation w ay y ield a terrible 
uuconstrained auxili ary function F, though the giveu cqua tiou satisfies "nice" 
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EXAMPLE 2.6 (the inverse of Dirichlet 's function) . . F'or t he real fuuctiou 

h(:r;) = 0 if :c is ra tional; h(:r) = 1 otherwise , 

the inverse h- 1 is cairn a t (!l, :c0 ) = (0, 0) am! locally upper Lipschitz at 
(0, h- 1(0)) siuce h- 1(y) = 0 for '!J f. 0, y nca.r 0. These usefu l properties do 
uot prcvcut tha t the terri ble behavior of tliC constraiut fuuctiou h being carried 
over to the a uxiliary fuuction F(-) = .f(-) + ctjh(·) l. 

Note that the Inappiug S(v) = { :1: I h(:r) 2: y} is even pseudo-Lipschi tz at 
(0 , 0) since h(:r) 2: y holds for all irrational :c and all y uear 0. 

3. Characterizations of regularity 

Throughout this section, let X a nd Y be uonued spaces (if not specified ot her­
wise), though the regularity concepts make sense also fo r more general spaces. 
Let S = p-l be the iuverse of a given multifuuction F : X =l Y. I11 the follow­
ing , we recall several regularity notions for F , where in general we will speak 
of n~g'Ularitv (of F) whenever F- 1(y) satisfies a certain Lipschitz property. The 
tvpe of regula rity ( slruny, pse'udu, 'ttlJlJe1) differs by the related Lipscbi tz prop­
Cities of F- 1, where iu t he case of upper regula rity we addi t ionally suppose tbat 
F- 1(y) is non-empty for !J ncar y0 E F(:c0 ) . 

Regularity Notions 

(R1) If S is pseudo-Lipscbi tz at (y 0 , :c0 ) , then F is called yJse v.rlu-n~yula'r aL 
(:ro, yo). 

(R2) If, adclitioually, ueighborhoods U aud V of :c0 a11d y0 , respectively, exist 
iu such a way that U n p - 1(y) is siugle-valucd for y E V , the11 we call F 
slmnyly 'reyula'f' at (:r0 , y0 ). 

(R3 ) If Sis locally upper Lipscbi tz at (y0 , x 0 ) und S(y') n U is non-empty for 
all y' E V (for certa in neighborhoods U am! V of :r0 aud y0

, respecti vely) , 
then F is said to be 'IL]JJWI' 'regnlm· a t (:r0 , y0

). 

First we uteutiou some ty pica.l cxalllples for the defiued regularity notious. 

EXAMPLE 3 .1 (regularity for C1 functious). IfF : X = ~n --+ Y = ~n is a 

coutiuuously differenti able ftmct iou, Lh en all these regularity definitious coincide 
-due to usual implicit fu nction t!teorern- with the requirellleut det DF (:1: 0

) f. 0. 

ExAMPLE 3 .2 Kummer (1997) (pseudo-regular , but uoL s trongly regular). T !te 
complex function F( z ) = z 2 / lz i for z f. 0, F(O) = 0, is a Lipsc!ti tz function 
which is pseudo-regular a nd upper regular without beiug stroHgly regular a.t the 
origin. 

EXAMPLE 3.3 (strong regula rity for coutiuuous functions). For a c:unt'in'tW'Wj 
funct ion F : ~" --+ Rm, st rong regula rity a t (:~: 0 , ¥0 ) iuduces ~h at F is a homeo-
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neces:,;arily true due to Brouwer 's fan10us invariancc of dolllain theoreiii. This 
is an essential fact being valid for functions, but not for (Lipschi tz) continuous 
multifunctions (t ake F: IR" :::::t JR"+ 1 as F(:r) = {(:r , y) I y E IR} ). 

EXAMPLE 3.4 (pseudo-regularity for linear operators). Let F : X _, Y be a 
lin eu:r OJH:.rato1· onto Y , where X and Y a rc nonned spaces . Pseudo-regularity 
now requires that , given y' , :randy = F( x ), there is Sollle :r' such thaL F(x') = y' 
am! llx'- :rll :::; Lllv'- Yll- Iu other words, F - 1 is bounded as a mawin g in the 
factor space X/ p-l (0). Conversely, one may say that pseudo-regu larity is just 
a nonlinear , local version of this property. 

EXAMPLE 3 .5 (subdifTcrential of the Euclidean nonn ). Au iuteresting ami rele­
vant exan1ple of a ·tnultifu:nclion F : IR" :::::t IR" lJeing s trongly regular a t (0, 0) is 
the followin g one. Consider the subdiffcreutial (in the sense of convex analysis) 
F(:r) = iJf(:r) of the Euclideau nonn f( :~:) = ll:cl l: Then, 

p - J (y) = {:r I x llliniinizes .{(0- (y, 0} = {0} Vy. llvll < 1. 

Some generalized derivatives of multifunctions 

F'or non ned spaces X and Y ami (:r, y) E gph F, tl1 e a bove regula ri ty concep ts 
are related to certain concepts of ge·ne·t·nlized (cli1·ect·ionu.l) derivat-ives. We asso­
cia te with F the following lllultifunct.ions: 
(D l ) CF(:c, y) : X :::::t Y , defin ed by v E CF(:r,y)(u) if t here a. rc ce rt ain 

(discrete) t = [k 1 0 ami assigned clements (u 1, vt) _, ('U., v) such tha t 
y + tut E F(:r + tv,t) . 

(D2) TF(:r, y) :X :::::t Y , defined by ·u E TF(x , y)(v,) if tiiere a re certa in (dis­
crete) t =I,., l 0. assigned points (:r1, y1) E gph F with (x1 , yt) _, (:~: , y) 

a nd clements ('ll1 , v1) _, ('u. v) such that y1 + tv1 E F(:ct + t'll 1 ). 

(D3) D*F(:t ,y): Y * :::::t X *, defined by 'll * E D*F(:c,y)(v*) if there a re cert ain 
(discrete) I.= t~,: J. 0, ·r1• > 0, ass igned points (:c 1, , yt) _, ( :~:, y) in gph F and 
dual clernents ('U7. , v;) _, * ('ll* , v* ) in X* x Y* suc!I t!Iat ('ti~. 0 + (v~ , TJ ) S 
/, ll~ l l x + tll·t!I IY if l l~ llx + llr!IIY < .,., ami (:ct + ~, Yt + TJ) E gph F, . 

where _, • is t!Ie weak* convergence. Not ice tlmt 0 ~ D*P(:r,y) (v*) is au ex is­
tence condition: For a.ll sequences t = /; ~,; J 0, r 1. J 0, (:rt, yt) _, (:t, y) in gplt P 
a ud ('u~,v;) _,• (O,v*) there are~~ , 'lit with ll~tll+llritl l <.,., and (:c,+~t,Yt+'~itl 
in gph F such that , for suffi ciently large k, ('ti; , ~~) + (v~, 'fit ) > t l l ~tl l + Lllr1tll· 

The ma pping C F(x , y) is the contingent de·rivul.ive, Aubiu and Ekeland 
(1984), also called gmplricu.l de·rivut.·ive or Boul-igu.ncl J.e·r-ivutive, wl1 il e D* F(:t, y) 
is (up to a sign) the code1"ivative in the sense ofMordukl10vich (1993). TF(:c, y) 
was defined in Rockafella r ami Wets (1998) and was called :;tricl gmph·icu.l 
de1"ivu.t·ive there . To be consistent with the terminology of the book by Klatte 
a nd Kumrner (2002) , we use the name Tlt.ibu.·u.lt 's limd set (or Th'ibu.·ull de·r-ivu.­
tive) for T F(:r, y). Note tha t t l1is deriva tive has been first considered (however, 
" , . . . 
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For each of these generalized derivat ives, the symmetric definitions induce 
that the inverse of the derivative is just t he derivative of the inverse at cor­
responding points. As usually, we will say that a derivative is ·inject·ive if the 
origin belongs only to the image of ·u = 0 or v* = 0, respectively. 

For functions F, we have y = F(:c) and may write CF(x), TF(x) and 
D* F(x ). Nevertheless, the images of the derivatives as well as the pre-images 
p- 1(y) may be multi-valued or empty. If the (one-sided) limit lirnqo C 1(F(:c + 
t-u) - F( x)) exists uniquely for a function F and all sequences t 1 0, then 
it is called the diTect·ional derivative of F at :c in direction 'lL, and denoted 
by F'(x;-u). Further, for F: X-+ JR, Clarke's (1-i-rect-ional deTivative ofF 
at :~: 0 in direction ·u E X is defined by the usual limes superior Fc(x0 ; -u) = 
lirnsuptlO,x->xO C 1(F(:r + t·u)- F(x)) which is obviously fiuite for locally Lip­
schitz functions. 

If f is a locally Lipschitz function from JR" to JRm, then, by Rademacher's 
theorem, the set 

8 = {:c E JR" I the Frechet derivative off exists at X} 

has full Lebesgue measure, i.e., J.L(lR" \ 8) = 0. Moreover, for x' E 8 and x' near 
x, the norm of D f(x') is bounded by a local Lipschitz modulus L of f. These 
facts ensure that the mapping 8of : JR" =4 JR"w defined by 

8of(x) ={A I A= limDf(x') for certain x' -+ x, x' E 8}, 

has non-empty images. In addition, one easily sees that 00 j is closed and locally 
bounded. The same properties are induced for the map a f, defined by 
(D4) Clarke's (1983) generalized Jacobian 8f(x) = conv8of(x) off at x, where 

conv Z means the convex hull of a set Z. 
Note that 

Tf(:c)('u) C 8f(:z:)·u (3.1) 

and 

8J(x)-u = conv (T J(:c)(n)) (3.2) 

hold, see Kummer (1991). The inclusion (3.1) may be strict even for piecewise 
linear functions f : JR2 -+ JR2 , see Example 3.9 below. 

Regularity characterizations 

For the purposes of the present paper, we essentially restrict the following sum­
mary of interrelations between regularity notions and suitable properties of gen­
eralized derivatives to the case X = JRn and Y = JRm. 
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PROP OSITION 3.6 (regula rity of rnultifunctions, summary) . Let F : ~~~ ::::t lR"' 
be closed and z0 = ( x0 , ·Jl) E gph F. Th en: 

F is ·uppe·r ·regular at z0 

<:? CF(z 0
) is injective and p - 1 ·is Lipsch·itz l.s .c. at (y 0 ,x0 ). 

F is stmngly r·eg·ular at z0 

<:? T F(z 0 ) is injective and p- 1 is Lipschitz l.s. c. at (y 0 , :r0 ). 

F ·is pswdo-·regula·r at z0 

<:? 3c: > 0: c: B c CF(z)(B) fo1· all z E gph F n (z 0 + c: B) 
<:? D* F(z 0 ) is injective. 

If p - 1 is Lipschitz l.s. c. at (y 0 , x0 ) 

then there exists T > 0 s·uch that B C CF( z0 )(TB). 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

rr X is a TWT"rned space, the conddions (3.3) and (3.4) are still necessa·ry for the 
n::: lated reg·ulaTity . 

The preceding proposition can be found as Theorem 5.1 in Klatte and Kurn­
Tner (2002) and summarizes several resul ts proved in Chapter 3 of that book. 
The characterization (3.3) was given iu King and Rockafell a.r (1992). 0llf~ of the 
referees pointed out tha t a prototype of condition (3.3) appeared first (withou t 
Harning the property in question) in Rockafellar (1989). Condition (3.4) ap­
pears iu Rockafellar and Wets (1998), Chapter 9 (iu a different tenninology). 
The "if'-direct ion of the first characterization iu (.3.5) goes back to Aubin am! 
Ekelaml (1984 ), for the "only iP' -direction and for the implication (3 .6) see, 
e.g., Kummer (2000), while the second characterization of (3 .5) was shown in 
Monlukhovich (1993). 

In the following , we give some examples which illustrate that crucial assurnp­
Lious of the previous propositiou may not be omitted. 

The first exa1uple is taken from K umrner (2000) and shows tha t the con­
ditious (given in (3.5) ) for pseudo-regula rity of F iu terms of the contingent 
deriva tive CF and coderivative D* F, respec ti vely, a re not necessary if X is a 
Hilbert space, see Example 3.7. 

The second example shows that the l. s.c. condition under (3 .3) and (3.4) 
is , in general, not ensured by the already imposed inj ec tivity of CF and TF , 
respectively, see Example 3.8. 

Further , Example 3.9 (given in Kummer, 1991) concerns stroug regularity 
of a locally Lipschitzian function F from lR11 to lE.n: For such fu HctioHs, without 
supposing l.s.c . in (3.4), the injectivity of TF is a suffi cient aml necessary 
condition for strong regularity while the inj ectivity of the map 'LL --+ DF(:c0 )(u) 
(i. e., a ll ma trices in DF(:c0 ) are regula r) is on ly a suffi cieHt oue , see Clarke 
(1976), I<umlller (1991). 

Fi nally, Example 3.10 will de111onstrate tltat the (poiHtwise) condi tion (3.6) 
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EXAMPLE 3. 7 (pseudo-regular , but the conditions (3 .5) fai l to hold). We give 
a function f which is one of the simplest Housuwoth, nonconvex funct ions on a 
Hilbert space such that the following is true : 

Let 

Pseudo-regularity of t he map F(:r) = {y E IE. I .f (:r) ::; y} holds. However, 
the conditions (3.5) iu tenns of coutingent derivatives aud coderivatives 
will not be satisfied. 

Now F- 1 (y) = {x E X I f(x) ::; y} is the level set map of a globally Lip­
schit~ functional. Since f is concave the directional derivatives .f' (:c; u) exist 
everywhere and are the only elements of C.f(x, u). Further, f is mouotone with 
respect to the natural vector orderiug, and .f is nowhere positive. 

The mapping F is (globall y) pseudo-regular , e.g., with modulus L = 2. 
Indeed , if f (x)::; y ancl y' < y, there is some k such that :ck < y + ~ ly'- Yl· 

Next, put x' = x - 2ly' - ylek where ek is the k:-th unit vector in 12. Then. 
pseudo-regularity follows from ll:c' -:el l ::; 2ly' - Yl and :c' E F- 1(y') siuce 
.f(:c') ::; x~ ::; y- ~ l y'- Yl ::; y' . 

In order to see that 0 E D*F(0, 0)(- 1), we refer to Kummer (2000) or 
Klatte and Kummer (20 2), Example BE.2, for details. Here, we ouly note 
t hat the consideration of t he points ('U*, v*) = (em, -1) ~ * (0, -1 ) and the 
assigned elements (x"", ym) = ( - e'n, - 1) f'm. E gph F leads to the desired result 
as Tn-.. oo. 

T he sufficient comlitiou in ter111s of C F does not hold because of t he property 
f'( :c. ·u) 2::0 'itt E 12

, which is valid a t all :c satisfying 

f (x) < x~.; Vk. (3.7) 

Tn fact , having such x, it follows .f(x) = 0 immediately. Now assume that some 
of these directional derivatives are negative, i.e., let the inequality .f (:c + tu) < 
f( x) - t8 = -t8 hold for some fixed 8 > 0 and sufficiently small t > 0. Then, 
t he infimum f( :c + t'U) must be at tained a t some component k = k(t): 

f(x + t'U) = xk(r) + t'Uk(t) < -t8. (3.8) 

lf k(t) < I<o remains bounded (as t __, 0), t hen we have :ck( t ) 2:: J.L with some 
positive p., , and (3.8) implies the contrad iction ·uqr) -> - oo. Otherwise, the 
inequali ty 'Uk(t) < - 8 follows fo r au iufiuite number of components of ·u where­
after ·u cannot belong to 12 . Since points :c lt aving property (3. 7) exist witlt 
arbitrarily small norm, the condition 

r::B c CF(z)(B) for all z E gphF n (z0 + r::B) 
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EXAMPLE 3.8 (TF or CF injective, but F - 1 not l.s .c.). First consider the real 
function f(x) = l:rl . One has Cf(O)(·u) = l·ul 'V'U, i.e., Cf(O) is injective. On the 
other hand, f - 1(y) := {:r llxl = y} = 0 ify < 0, i.e., f- 1 is not l.s .c. at (0,0). 

Next consider F: lR-+ IR2 defined by F(:c) := (:c,x) for all x E R Thus 

TF(O)(u) = CF(O)('U) = {DF(O)'U} = { (:~)}. 

Hence, TF(O) and CF(O) are injective, but 

F-1(y1, yz) := {x E 1RI(Y1, Yz) = (x, :c)}= 0 if Y1 "I yz, 

i. e., p-l is not l.s.c. at ((0, 0) , 0). 

EXAMPLE 3. 9 (piecewise linear bijection of IR2 with 0 E 8 f ( 0)). On the sphere 
of IR2 , let vectors ak and uk (k = 1, 2, ... , 6) be arranged as follows (we put 
a 7 = u 1 ' b 7 = u1 in order to simplify the notation): 

(i) al = ul ,a2 = u2;a4 = -u4,a5 = -u5. 
(ii) The vectors ak and uk turn around the sphere in the same order. 

(iii) The cones K; generated by ai and ai+ 1, and P; generated by bi and ui+l , 
are pointed (the angle between the vectors is srnaller than 1r). 

Let L; : IR2 -+ IR2 be the unique linear function satisfying L;(ai) = ui and 
L;(ai+l) = ui+1. By setting f( :c ) = L;(:z:) if x E K; we define a piecewise linear 
function which maps K; onto P;. By the constructiou, f is surjective and has a 
well-defined inverse; hence it is a (piecewise linear) Lipschitziau homeomorphism 
of IR2

. Moreover , f = ·id (:= identity) on iut K 1 aHd .f = -·id on int K 4 . 

Thus, o.f(O) contains the uuit-matrix E as well as -E and , by convexity, 
the zero-matrix, too. 

EXAMPLE 3.10 (counterexample (n = Tn = 2) showing that the pointwise con­
dition (3.6) is not sufficieut for the Lipschitz l.s.c. of p- l ). We construct 
.f : JR2 -+ IR2 continuous with 

t(O; ·u)= ·u 'V'UEIR2 and O~intj(JR2 ). 

Let 

M = {(x,y) E IR2 IIYI :2': :r 2 if:r :2': 0, x 2 +y2 ~ 1, :r ~ 1} 
and G = conv M. For (x , y) EM , let f( :z:, y) = (:r , y). For (:r, y) E G\M and 
y :2': 0 put f(x, y) = (x, x 2

). 

In order to define fat (x,y) E G\M with 0 > y > - :r 2 , let D be the 
triangle given by the points 

nl -y 
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Then t E (0, 1). We shift the point (x , t( - x2
) + (1- t)x2

) to the left boundary 
of D and define f to be the related point: 

,. , _ { (2t- 1)(:r , - :c2
) 

f(x, y)- (1 - 2t)(x, x2 ) 
for t~ I' 
fo r t ~ 2. 

So f becomes a continuous function of the type JR2 _...., M. By setting g(z) = 
j(1r(z)) where 1r(z) is the projection of z onto G, we obtain that f can be contin­
uously extended to the whole space. We identify f and g. Clearly, f' (0; u) = 'U 

holds for a ll u , and 0 r:j int f(JR2 ). 

Pseudo- and strong regularity of stationary points 

Given a stationary point x0 of a function f E C2 (!R11
, JR), the above characteriza­

tions for different types of regularity inunediately imply t ha t pseudo-regularity 
and strong regularity of the function D fat (x0 , 0) coincide, i. e. , if the stationary 
point ma p S = [D f]- 1 is pseudo-Lipschitz at (0, x0 ), then it is locally single­
valued. The following example shows that this property does not carry over to 
C1 functions , which are piecewise C2 . 

It is worth noting tha t the equivalence of strong regularity and pseudo­
regularity still holds in the context of the constrained C2 optimization problems; 
for results of this type see, e.g., Dontchev and Rockafellar (1996), Kla tte and 
Kurnmer (2002) , Kummer (1997). 

EXAMPLE 3.11 (a piecewise quadratic function f : JR2 _...., IR having pseudo­
Lipschitzian stationary points being not unique). We put z = (x, y) E JR2 in 
polar-coordinates, 

z = T(cos ¢ + 'isin ¢ ), 

and describe f as well as the partial derivatives Dxf, Dy/ over eight cones 

by 

cone f Dxf Dy/ 
C(1) y(y- x) -y 2y- X 

C(2) x (y- x) -2x + y X 

C(3) x (y + x) +2x +y X 

C(4) - y(y + x) -y -2y - x 

and on the remaining cones C(k + 4) , (1 ~ k ~ 4) , f being defined as in C(k). 
Upon studying the D f-irnage of the sphere, it is not difficult to see (but 

needs some effort) that D f is continuous and [ D Jl - 1 is pseudo-Lipschitz at the 
..--. ,., . .,.J) 1 r ..... .., • • • 
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REMARK 3.12 (pseudo-regularity and isolated ;ceros ofF E C 0,1 (IR.n, JR.'')). The 
function F = D f : IR.2 -> IR.2 of Example 3.11 had the same topological proper­
t ies as Fin Example 3.2 (pseudo-regula r , upper regular, but not strongly regular 
at (0, 0) ). It is remarkable that, under pseudo-regularity at (0, 0), the related 
upper regularity of a directionally differentiable function F E C0,1 (IR.n, IR.n) is an 
immediate consequence, because the origin is necessarily isolated in p - l ( 0) , see 
Fusek (2001). However, for F E C0 ,1 (IR.n, IR.n) without directional derivatives at 
the origin, nothing can be said up to now concerning this implication. 

4. Generalized derivatives of Lipschitz functions 

In this section, we consider locally Lipschit;c functions from lR.11 to IR.m . If f is 
such a function with modulus L uear some :c, then the Thibault derivative T.f 
aud the contingent derivative C .f take on the particular forms 

T f(x)('U) = {vI 
Cf(x)('U) ={vI 

v = lim t; 1 [f(xk + tk'u)- f(xk)J 
for certain tk 1 0 aud xk -> :c 

v =lim tk" 1 [f(x + tk 'u) - .f(x)] 
for certain tk 1 0 

( 4.1) 

(4.2) 

These sets are non-empty, closed ami bounded (c LII'UI IB). Tf(x)('U) and 
Cf(:t)('U) are connected sets, and both mappings are Lipschitz in 'U. For .f E 

C 1 (IR.11 , lR.111
) , t here is C.f = Tf = {Df}. For Lite absolu te value .f(x) = l:cl 

we observe tha t C f(O)('U) = {.f'(O; 'U)} (the usual directional derivative), and 
Tf(O)('U) = [- lui, lui] (a closed interval). So C.f and T .fare different even for 
elementary functions. 

The following example gives a Lipschitz function .f having images in au 
infinite-dimensional space with empty contingent derivatives for nontrivial di­
rections (and without directional derivatives). 

EXAMPLE 4.1 (a Lipschitz function f : [0 , ~) -> C[O, 1] such that directioual 
derivatives f' nowhere exist, neither as strong nor weak (pointwise) limits ; and 
coutingent derivatives are empty). For x E [0, ~) define a continuous fu nction 
h,: [0, 1]-> JR. by 

{ 

0 fo r 0 < t < x 
hx ( t) = t - :c for :c :S t < 2x 

:c for 2x :::; t :::; 1 

The rnapping .f(x) := hx is a Lipschitz function from the interval [0, ~) into 
C[O, 1]. For small IAI > 0, consider the function 

g(x, A)= (.f(:c +A)- f(x))/ A. 

If A > 0, then 
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Hence, the limit limg(x , .A) (as A 1 0) cannot exist in C[O , 1] (neither in a strong 
nor in a weak sense). If A < 0, then we obtain for x > 0 that 

g(x, .A)(2x) 2': 0 and g(:z:, .A)(2x + 2.A) = -1. 

Thus limg(x,.A) (as .A I 0) cannot exist, too. 

Chain rules and "simple" Lipschitz functions 

The following chain rules are the key for many applications of Lipschitz ana lysis , 
for example, in the study of regula rity of the Karush- Kuhn- Tucker system of a 
nonlinear program. We consider 

J( x, y) = h(x, g(y)); h : ]Rn+q ---> JRP' g: ]Rm---> ]Rq' j : ]Rn+m ---> ]RP. 

Here, h and g are supposed to be locally Lipschitz. We are interested in the 
formula 

T f (:r:, y)(u. v) = Txh(x, g(y))(u) + T9 h(x,g(y))(Tg(y)(v)), (4.3) 

where 1'.1: h and T9 h denote the par·t·ial T -deTivatives, defined - as usually - by 
fixing the remaining a rguments. In genera l, ( 4.3) is not true, we need a special 
property of y. According to K ummer (1991), we say that a locally Lipschitz 
function y: !Rm ---> IRq is s·imple a t y if, for a ll v E IR111

, wE Tg(y)(v) a nd each 
sequence tk ! 0, there is a sequence yk ---> y such that 

w =lim tk" 1 [y(yk + tkv)- g(yk)] holds 
at leas t for some subsequence of k ---> oo. 

A similar requirement for double limits (but in the context of contingent deriva­
tives for rnultifunctions) is involved in the definition of proto-derivatives, see 
Levy a nd Rockafell ar (1996). 

Note that all g E C 0,1(1R"', IR) a re simple , further simple functions a re y......, 
y+ andy ......, (y+,y-) (which are of particular interest for the Kojima's form 
of the Karush-Kuhn- Tucker conditions, Klatte a nd I\ummer , 1999, Kojima , 
1980) , for the proofs see Klatte and K ummer (2002) , Kummer (1991). The 
following proposition shows the importance of simple functions in the chain rule 
under consideration. 

PROPOSITION 4. 2 (partial derivatives for Tf). Let y and h be locally L·ipsch'itz, 
f = h(:r , y(y)), and let D9 h(- , ·) exist and be locally Lipschitz, too. Then 

T f( :z:, y)(u, v) C T.1: h(x ,g(y))(u) + T9 h(x,g(y))(Tg(y)(v)). 

Let, addit·ionally, g be simple at y. Then the equation (4 .3) holds t·rue. 

NOTE. Clearly, Tgh = {Dr1h}. 

For the proof, we refer to Kummer (1991) or Klatte and Kummer (2002), 
Theorem 6.8. It is remarkab le that neither all functio ns in C 0 .1 (IR, IR2 ) nor a ll 
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EXAMPLE 4.3 (.f E C 0·1(IR.,IR.2 ) not simple) . Put a0 = 1 and consider fork EN 
the points 

k bk--~2-k, 1( ) 17 -k Uk = 2- . ' Ck = - Uk + Vk = - 2 , 
8 2 16 

d - 15 2-k 1 31 - k 
k-

8 
, ek = 2(dk + Uk-d = 

16 
2 . 

Let the function f : JR. --+ IR.2 be given by f = (h, h f, 

and 

{ 

:1:- ak 

h (:t) = ~k-X 
if :c E [ak , Ck j, 
if X E [ck , Vkj, 

else 

where k E N. T he fuHction f is locally LipschitL~ everywhere with the Itt udu lu:; 
L = 1. Considering the direction ·u = 1 a nd the sequences xk = c,, i,. = e,, - ch 
we obtain 

1 . h . k 16 k [( 0 ) ( ~ 2-k ) ] - [.f (:r · + tku) - j(:c )] = -; 2 J_ ?-k - Hi 
0 1~: 11 1G -

= ( -/1 ) E T .f (O)(u). 
14 

Now let the sequence Tk J 0 be given. O ur goal is to find points yk, yk --+ 0 such 
tha t vk = rJ: 1 [f(yk + Tk) - f( yk)] --+ ( - 1

1
4 , rtf at least for some subsequence. 

This ir11plies t hat fur k suffi ciently large t lte f1rst (secoml) component of vk li as to 
be negative (positive), respectively. Hcucc , tlt ere are indices ·n.(k), C(k), n(/;:) :::0: 

C(k) with yk E [an(k)• Un(k ) ] and y'' + T1, E [de(k)• af(k)-1J and we have T~,: :::0: 

de(k) - Vn(k) · 

For £(/c)::; n(k)- 1 we would get Tk :::0: dn (k)- 1 - bn(k) = 2
8
1 

2 - n(k) and 

lvkl < T -1 ~ Tn(k) < ~ < ~-
1 - k 16 - 42 14 

Thus, in order to obtain t he limit (- 1\_, ~ f, only the subsequences with£(!.;) = 

n.(l.:) a re suitable. As a consequence we have Tk :::0: dn (k)- bn (k) =% 2 -n(k) and 
,. < _ 2-n(k) 
T k _ Un(k) - 1 - Un (k ) - · 

In other words, for every sequence {Tk} with 2-("+1) < Tk < % 2-k, k E N 
it is impossible to f1nd a suitable sequence of iudices {n(k)} . Hence, f is not 
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For the function f of this example, there were pair-wise disjoint intervals 
h(f) and some v(f) E Tf (0)(1), such that the equation 

v(f) =lim rk" 1 [f(yk + Tk)- f (yk)] with Yk ---> 0 

can only hold if Tk E h(f) (for some infinite subsequence). Let the same 
situation occur with respect to a second function g : lR ---> IR2 and intervals h (g) 
such that h(g) n Iv(f) = 0 \:/k, v. Now, with the definition 

h(x,y) = (J(x),O) + (O,g(y)) E IR4
, x ,y E IR, 

the point (v(f), v(g)) cannot belong to Th(O, 0)(1, 1) , and the chain rule (4.3) 
fai ls to hold even for a sum of functions. 

EXAMPLE 4.4 (J E PC 1 not simple). Put for k E N 

We define a piecewise differentiable function f : IR2 ---> IR2 by f = (h , hf, 

where 

{

Yl(x,y) ifx 2 0, 91(x,y) 2 0, y E [a~c,h], 
h(:c,y) = g

0
2( x ,y ) ifx::::; 0, g2(x,y) 2 0, y E [ak,bk], 

otherwise, 

3 1 3 1 
YJ(x,y)=y cos - - :c, g2(x , y)=y cos -+ :~.: , 

and 

y y 

{ 

93(x , y) if :c 2 8y3 , g3(x , y) 2 0, y E [a~,; , b,], 
h(:c, y) = 94(:c, y) if X :S 8y3, g4(x, y) 2 0, y E [ak , uk] , 

0 otherwise 

By setting u = (1,0) and considering the sequence ~k = (xk , yk) = (0 , (2k7r) - 1) 
---> (0, 0) , with tk = 8(yk)3 we obtain 

~ [f (~k + tk ·u)- f ( ~k ) ] = ~ [ ( ~ ) - ( (yk)
3
)] 

tk tk (yk)3 0 

= ( -l) E T f(O, 0)(1, 0). 

Let the sequence Tk 1 0 be given. In order to show tbat f is simple a t (0, 0) 
we have to find a sequence ('' = (zk, w k)---> (0 , 0) with v k = Tk" 1[f((k + Tk 'u) ­

f((k )]---> ( - ~ , ~f at least for sollle s ubsequence. Necessarily, both components 
of v k h~ve to be nonzero f r_ k suffi ciently l arg~. T!tis is 01dy possible if ] 1 ((") -:/: 
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Without loss of generali ty let wk 2: 0. Because of ·u = (1, 0) we obtain 
.ft((k) = fr(zk , wk) =j:. 0 and h((k + Tkn ) = h(z' + Tk,wk) =j:. 0. This yields 
tha t fork sufficiently large there exists an index n(k) with 

( 4.4) 

and lzkl :S (wk) 3 , lzk+rk - 8(wk)31:::; (wk)3 . It follows zk+Tk E [7(wk) 3 , 9(wk) 3] 

and Tk E [6('wk)3, 10(wk)3]. Together with (4.4) we obtain fork sufficiently large 

( 4.5) 

On the other hand one can easily see that Vk. 2: 2 there is lOb~ < GaL 1. 

This means tha t for every sequence {rk} with lOb~ < rk < GaL 1 Vk 2: 2 the 
condition (4 .5) cannot be satisfied. Thus, f is not simple a t (0 , 0) . 

5. Pathological Lipschitz functions 

In this final section we give examples of Lipschitz functions which are patholog­
ical with respect to properties of (generalized) derivatives. 

In the basic Example 5.1 (see Kla tte and Kummer, 2002), we construct a 
special real Lipschitz function G such that the Clarke subdifferential satisfi es 
oG(x) = [-1 , 1]. 

Further , Example 5.2 is taken from Kummer (1988) and presents a real Lip­
schitz function f such that , for almost all initial points , the st andard Newton 
method provides alternating Newton sequences, though f is differentiable at 
all iteration points. It illustrates why one has to utilize suitable local approxi­
mations in the analysis of Newton-type methods for locally Lipschitz functions 
(see, e.g., Kummer 1988, 1992, 2000, P ang, 1990, Qi and Sun, 1993, Robinson, 
1994) . 

Finally, Example 5.3 (compare Klatte and Kununer , 2002) presents a convex 
real function which is non-differentiable on a dense set. 

ExAMPLE 5.1 (a pathological real Lipschi tz function: lightning function). We 
present a simple construction of a special real Lipschitz funct ion G such that 
F .H. Clarke's subdifferential fulfills oG(x) = [-1 , 1]. The existence of such 
functions has been clarified in Borwein, Moors and Xianfy (1994). 

It will be seen tha t the following sets are dense in JR.: 
the set D N = {x I G is not directionally differentiable at x }, 
the set of local minimizers, and the set of local maximizers. 

To begin with, let U : [a, b] __, lR be any affine-linear function with Lipschitz 
modulus L(U) < 1, and let c = ~ ( a+b). As the key of the following construction, 
we define a li near function V by 
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Here, 

k 
ak := k + 1' 

and k denotes the step of the (further) construction. Given any c E (0, ~(b- a)) 
we consider the following four points in IR2 : 

Pl = (a, U(a)), pz = (c- c, V(c- c) ), P3 = (c + c, V(c + c)), 

P4 = (b, U(b)). 

By connecting these points in natural order, a piecewise affine function 

w(c, U, V) : [a , b] ----> IR 

is defined. It consists of 3 affine pieces on the intervals 

[a,c - c], [c- c,c + c], [c+c,b]. 

By the construction of V and Pl, . . . , P4, we have 

Lip (w(c,U, V)) < 1 provided that cis small. 

After taking c in this way, we may repeat our construction (like defining Cantor 's 
set) with each of the related three pieces and larger k. 

Now, start this proced ure on the interval [0 , 1] with the initial function 

U ( x) = 0 and k = 1. 

In the next step k = 2 we apply the construction to the three pieces just 
obtained, then with k = 3 to the now existing nine pieces, and so ort. 

The concrete choice of the (feasible) c = c( k) > 0 is not important in this 
context. We obtain a sequence of piecewise affine functions Yk on [0, 1] with 
Lipschitz modulus< 1. This sequence has a cluster point g in the space C [O, 1] 
of continuous functions, and g has t he Lipschitz modulus L = 1. Let 

Nk = {y E (0,1) J Yk has a kink at y} and N be the union of all Nk. 

If y E Nk , then the values g;(y) will not change during all forthcoming steps 
i > k. Hence g(y) = Yk(y). The set N is dense in [0 , 1]. 

Connecting arbitrary three neighboring kink-points of Yk and taking into 
account that these points belong to the graph of g, one sees that g has a dense 
set of local minimizers (and maximizers). 

Further, let D be the dense set of all centre points c belonging to some 
subinterval used during the construction. Then, each y E D is again a centre 
point of some subinterval I(k) for each step with sufficiently large k. Thus, 
g(y) = Y~t(Y) is again true. Moreover , for arbitrary 8 E (0, 1) , one finds points 

y',y" E (y,y+8) such t hat y',y" EN 
and g(y')- g( y) > (1 - 8)(y'- y) as well as 
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namely the nearest kinks of 9k on the righthand side of y where k is (large and) 
odd or even, respectively. This shows that directional deriva tives g'(y ; 1) cannot 
exist for y ED. In addition , by the mean-value theorem for Lipschitz functions, 
Clarke (1983), one obtains 8g(x) = [-1 , 1]\fx E (0, 1). 

To finish the construction, define G on JR. by setting G(:c) = g(x- integer (x)), 
where integer ( x) denotes the integer part of x . It is worth noting that G is 
nowhere semisrnooth in the sense of Miffiin (1977). 

De:rived ./'U'I!.ct'ions: Let h(x) = ~( :c + G(x)). Then oh(x ) = [0 , 1] for all x, 
h is strictly increasing, has a continuous inverse h - 1 which is nowhere locally 
Lipschitz , and his not directionally differentiable on a dense subset of JR.. In the 
negative direction -1 , his strictly decreasing, but Clarke's directional derivative 
hc(x; -1) is identically zero . The integral 

F(t ) =fat h(x) dx 

is a convex C0 •1 function with strictly increasing deriva tive h, such that 

0 E Th(t)(1) = [0 , 1] \It and 0 E Ch(t)(1) for all t in a dense set 

holds true. 

EXAMPLE 5.2 (alternating Newton sequences for real, Lipschitzian f with al­
most all initial points). 

To construct f : JR. ___. JR., consider intervals I ( k) = [k - 1 , ( k - 1) - 1] C JR. for 
integers k 2 2, and put 

1 
c(k) = 2[k- 1 + (k - 1)- 1

] (the center of I(k )) 

1 
c(2k) = 2[(2k)- 1 + (2k- 1r1

J (the center of I(2k)). 

In the (x, y )-plane, define 

Yk = Yk(x) to be the linear function through 
the points ((k- 1) - 1 , (k- 1)- 1) and ( - c(k), 0) , 

i.e., 

Yk(x) = ak(x + c(k)), where ak = (k- 1)-1 /[(k - 1)-1 + c(k)]. 

Similarly, let 

i.e., 

hk = hk ( x) be the linear function through 
the points (k- 1, k- 1 ) and (c(2k) , 0) , 
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Evidently, Yk = 0 at x = - c(k ), hk = 0 at x = c(2k). Now define f for :c > 0 as 

f( x) = rnin{gk(x), hk(x )} if x E I (k) and f(x) = g2(x) if x > 1. 

We finish the construction by setting f(O) = 0 and f(x) = -f(-x ) for x < 0. 
The related properties can be seen as follows: 
For k ___, oo, one obtains lim ak = ~ and lim h = 2. The assertion D f(O) = 1 

can be directly checked. Again directly, one determines the global Lipschitz 
modulus 

L = max h = b2 = ~ / [ ~ - ~ ( ~ + ~)] = 
1

5

2 
. 

On the lefthand-side of the interval I (k), f coincides with hk, on the right with 
9k· Since gk(c(k)) < hk(c(k)), f coi ncides with 9k on a small neighborhood of 
the center point c( k). 

Now, let us start Newton's method at some x 0 E 8 1, where 8 1 is the set 
of C 1 points of f. Then the next iterate x1 is some point ±c(k) E 8 1. There, 
Df = Dgk (or Df = -Dgk for negat ive arguments ) holds. Hence, the method 
generates the alternating sequence x 0 , x1, x 2 = - x1, :c3 = x1, ... 

EXAMPLE 5.3 (a convex function f : lR ___, JR, non-differentiable on a dense 

set) . Consider allrationa arguments y = !!._ E (0, 1] such that p, q are positive 
q 

integers, prime to each other, and put 

1 
h(y) = ,. 

q. 

For fixed q, the sum S(q) over all feasible h(y) is bounded by 

S(q) :::::; ~ and '2: S(q) = c < oo. 
q. 

Now define 91 by 

91(0) = 0 and g1 (x) = l:y :s;x h(y) for x E (0, 1] . 

Then 91 is increasing, bounded by c and has jumps of size (q!)- 1 at x = y . 
Next. extend 91 on ~ by setting g(O) = 0 and 

9(x) = kg1(1) + 91(x- k) if x E [k , k + 1) , k = 1, 2, ... , 

and put g(x) = -g( - x ) for x < 0. Since g is increasing, the function 

j(t) = 1t g(x) dx with Lebesgue integral 

is convex. For t ! y and t j y (t irrational, y rational) one obtains different 
limits of D j(t). Thus f is not differentiable at y. 
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