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Abstract: The purpose of short- term load forecasting is to op­
timise the power supply volume in short time horizon. There is no 
straight forward mapping rule between the type of time period and 
the resulting power consumption. Still , it is inevitable for the overall 
effi ciency of the power system to rely on a good prediction model. 

Our paper illustrates a novel approach based on evolutionary pro­
gramming. Feed forward networks are being evolved by the ECoMLP 
method in order to properly solve the optimisation problem, defined 
as minimisation of the prediction error. All the results have been ob­
tained using the data from the Polish Power System. The data used 
for the training and tests has been chosen so as to reflect both short­
time and long-time dependencies between time period category and 
load of the system. 

The primary feature of the described method is a novel self­
adaptive procedure that is a part of a sophisticated design algori thm 
serving to select both network architecture and weight connections. 
Due to the application of this procedure, no time consuming tests are 
required to train and retrain neural prediction models. Therefore, 
the method makes it possible to construct and maintain prediction 
models for load forecasting without expert knowledge about neural 
networks. 

Keywords: opt imisation, neural networks, evolutionary pro­
gramming 

1. Introduction 

The paper deals with the construction of prediction models for power consump­
tion (see Loi , 1998, Osowski and Siwek, 1998). The way the prediction models 
are deployed has to reflect optimisation criterion. In the problem discussed in 
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the actual system load as possible. In other words both insufficient volume of 
power supply and the power supply exceeding actual demand should be avoided. 
Formal description of the optimisation criterion is presented in the next section. 

Load forecasting models for power systems can be based on several factors. 
The most important of them is power consumption on previous days and hours. 
In our work, the prediction model has been prepared in accordance with the 
following requirements: 

• power demand for every hour t I t = 0, ... , 23 of the next day has to be 
predicted, 

• real power consumption measured during each hour of preceding days is 
used as input data for the prediction model , 

• type of the day has to be encoded and used as a part of input vector as 
well , 

• for both training and testing of the prediction models the real data de­
scribing actual power demand on the territory of Poland is used. 

The optimisation criterion for the prediction models built in accordance with 
the assumptions formulated above is described in Section 2. 

Several factors affect power consumption. It is vital for the overall quality of 
the prediction model to determine the most important of them. Data analysis 
has been based on the real data describing the demand for electric power in 
Poland and has been used to derive general characteristics of the data. The 
results of this pre-processing stage have been presented in Section 3. 

The problem of power demand prediction has been analysed for over 40 
years. Different methods based on pattern recognition, knowledge-based sys­
tems, statistic methods and artificial neural networks have been proposed and 
applied during that period (see Srinivasan, 1995, for references). Some of the 
best results have been obtained using the latter technique (see Doveh, 1999). An 
important factor affecting power consumption is air temperature. However, it 
can be used as input data only under strict conditions. First of all , it should be 
uniform over the region considered or some additional information on the tem­
perature distribution should be provided. Unfortunately, in Polish data set no 
temperature information can be provided. This is due to significant differences 
in air temperatures between different areas of the country and large dispropor­
tion in power consumption between these areas. As a consequence, t he results of 
the simulations performed on the Polish data set can not be compared to similar 
results on the data sets including temperature, like the Singapore data set (see 
Srinivasan, 1995). In addition, data sets from real power systems are confiden­
tial, thus limiting the possibility of methodological comparisons. Therefore, we 
can compare our results only with these reported for the Polish data set by S. 
Osowski (see Osowski and Siwek, 1998). Still , we have been ab le to use only a 
part of this set. 

The prediction models we have applied were based on multilayer perceptrons 
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construction of multilayer perceptrons ECoMLP. The method was used to select 
the network architecture and weights. 

ECoMLP is based on our previous experience with evolutionary design of 
feedforward (Grzenda and Macukow, 2000) and evolutionary neural networks 
(see Macukow and Grzenda, 2001 for an overview). ECoMLP has been based 
on evolutionary programming (EP) (see Back and Schwefel, 1993; Fogel, 1999) 
and allowed for parallel implementation. The design and optimisation of neural 
networks has been performed on SUN HPC E10000 parallel server. In order to 
properly exploit the opportunities offered by the parallel architecture a group 
of 24 processes has been deployed. 

The most important feature of the method is a new self-adaptive procedure 
serving for the adjustment of algorithm parameters. Not only did it help to 
reduce t he computation time, but also it allowed for automatic selection of 
the problem and search-related muta tion rates and types. By selecting both 
architecture and weight connections the algorithm can be applied to create 
final solutions in one run of the algorithm without user interaction. Unlike 
most evolutionary algorithms it uses self-adaptive procedure to avoid manual 
selection of algorithm parameters. These features should be emphasised as they 
make it possible to apply the algorithm in a software package that docs not 
require expert knowledge on neural networks and training algorithms. 

The method itself and the most important implementation details are de­
scribed in Sections 4 and 5. 

In order to evaluate the efficiency of the training method, several tests have 
been made. The results of training performed by ECoMLP have been described 
in Section 6. Finally, conclusions and the main topics of future research arc 
outlined in the last sect ion. 

2. Optimisation 

In the problem discussed the primary goal is to make the power system provide 
snitable volume of power supply. More precisely, it is to make the power volume 
equal to the a~l demand in a given t ime period. With A being t he set of 

time periods, P(a) - the real load volume for the t ime period a, and P(a) -
predicted load volume, we can define the optimisation task as the minimisation 
of the following function (see Grzenda, 2001): 

M APE(s) = 1 L IP(a)_=_ft0)1 . 
card(A) P(a) 

a EA 

(1 ) 

Thus, the lower MAPE (s) is, the closer the power profile produced by the 
power system s to the demand observed in the set of time periods A. In our 
paper, the set A will be composed of a number of one hour long periods corre­
sponding to each hour of the day. Not only does it allow to take into account the 
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hour separately. In addition, deeper insight into the complexity of prediction 
process is provided. Once again , proper minimisation of the criterion (1) can 
be obtained only when the proper prediction model producing adequate P(a) 
values is provided. 

The purpose of the next section is to present the most important tendencies 
in load volume profiles . It should also help verify the validity of one hour long 
time periods approach. 

3. Dat a profiles 

The primary purpose of this pre-processing stage is to determine the most im­
portant factors, crucial for satisfactory prediction. In order to evaluate the way 
different types of day categories affect the demand for power , a set of statistics 
has been prepared. All of them have been based on real data collected during 
three years on the territory of Poland. The most important of them are: 

• the impact of the type of the day on power consumption, 
• the impact of the day of the week on power consumption. 

The most important features of t he so-prepared demand profiles are: 
• virtually identical power consumption on Sundays and bank holidays, 
• close overall characteristics of power consumption between Monday and 

Friday, 
• considerable differences between Sundays, Saturdays and other days. 
The differences related to the day category e.g. the difference between t he 

load of the power system observed on Fridays and bank holidays can be as large 
as 20- 25%. Moreover , similarly large differences can be observed within the 
same day, in particular between mid-night hours (the so called valleys) and late 
evening (peak consumption). T herefore, the power system should be capable of 
following t he day profile and changing the power supply volume continuously. 

4. Prediction models 

In accordance with the optimisation cri terion (1) , the power systems should be 
made capable of producing power demand equal to the actual load in a set of 
time periods. In order to let t he power system acquire the expected behaviour , 
we have to be able to predict the actual load of the system for each of the time 
periods a E A. 

In our approach the mult ilayer perceptrons MLPs (see Haykin, 1999) have 
been used as a prediction model. The input of each network is composed of 
data from the preceding days and hours - both day categories and actual load 
volume. The output of t he network is the forecasted load for the given hour 
of the next day. All the networks are being constructed under the assumptions 
listed in t he int roduct ion. These assumptions stem from the availability of the 
real data and the capabilities of the power system. The next section deals with 
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5. Algorithm 

The optimisation algorithm has been based on the novel ECoMLP method. 
The purpose of the algorithm is to minimise the prediction error measured on 
a learning set and obtain networks with generalisation abilities, thus making it 
possible to use the final networks for the purpose of load prediction. Therefore, 
the final networks should enable management of power supply volume assuring 
optimisation in terms of (1). 

Evolutionary construction of multilayer perceptrons ECoMLP 

• t := 0, 
• create initial population ofMLPs P(O) = {si E I I i = 1, . .. , N} sat isfying 

the following assumptions: 

- fixed number of input layer nodes card (Lo) and output layer neurons 
card(LM) defined by the problem, 

random number of hidden neurons, 

randomly chosen connection weights, 

• in a sequence of generations construct consecutive populations P(t) by: 

applying standard EP selection and promoting the best if networks 
to the next population, duplicating them and producing child sub­
population thereafter; t he networks are evaluated in terms of their 
compliance with (1), i.e. the closer the predicted load of the system 
to the actual one, the better the network, 

affecting offspring networks with the mutation operator composed of: 

* hidden node mutation (add or delete a neuron with probability 
Pa and Pd, respectively), 

* weight mutation in accordance with the learning rule of each 
individual (see below), 

* mutation of learning rule with probability of PLT·, 

• t := t + L 

As far as the number of hidden neurones is concerned, it is randomly chosen 
from a predefined range. Then it can be changed by the mutation operator 
within the same range. 

The weight mutation has been strictly based on the form of the learning Tule 
controlling the behaviour of the mutation operator. 

Learning rule and weight mutation 

• let us define for each individual in the population ai E P(t) the learning 
rule (Meti,PaTi) where: 

M eti E {0, 1} stands for mutation type, discrete or real, 

- PaTi is defined by PaT; = (Pm) for the discrete type and PaT; 
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• mutate the weights of the network in accordance wit h t he learning rule of 
the individual, using uniform distribution over a specified range of weights, 
in case of discrete mutation , or Gaussian distribution, otherwise; thus Par 
is used to store the dist ribution settings, 

• mutate learning rules as well. 

Every network can be mutated using a different learning rule. As a conse­
quence, numerous search strategies are applied and verified in each generation. 
The way learning rule affects the weight mutation is described by the following 
operator: 

Weight mutation operator 
For each offspring network s; : 
• if M et; = 0, each network weight w is replaced with probability Pm with 

another valid discrete weight w' E 8; the range of weights 8 should be 
chosen in accordance with the neuron activation function so as to ensure 
that virtually all function values are feasible; 

• if M et; = 1, each network weight w is replaced with probability Pm with 
a disturbed weight value w' := w + N(O , J-L) . 

The learning rules are also mutated with probability Ptr·· As a consequence, 
mutation mode can be switched between discrete and real. In addition Pm and 
J-L can be randomly changed as well , with the same probability Plr· 

As a consequence of learning rule mutation and standard selection mechan­
ism, appropriate mutation types and attributes are promoted in the population. 
Still , the changes in attribute set t ings are possible, so as to refl ect the different 
nature of initial search and fi nal adjustment of weights. Having applied this 
method , we can easily obtain the solutions close to the optimum in one run 
of the algorithm. In other words, learning rules help overcome one of primary 
deficiencies of the evolutionary algorithm - strong impact of the algorithmic 
parameters on the search efficiency and lack of straightforward methods for 
managing them. In the proposed algorithm, standard selection promotes the 
best weight mutation attributes. What is important, optimal mutat ion settings 
depend on the search stage. In the early stages large changes to the genotypes 
may provide the best results. These are unlikely to improve the performance 
of the networks in the final stages of the search. On the contrary, only slight 
modifications should be used . Learning rules allow to reflect these guidelines in 
a straightforward method . 

The solution belongs to the class of self-adaptive control methods and al­
lows for serious reduction in computations. For an overview of different control 
methods see Back (1998) . 

6. Prediction models 

A set ofT = 24 networks has been evolved using the ECoM LP method. They 
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day. Two sets of experiments have been prepared . The results of the series A 
have been obtained for the training and validation patterns collected from the 
whole available period and are listed in Table 1. The second series has been 
prepared on the data set with discarded input patterns corresponding to the 
prediction for bank holidays, the days that precede and follow the bank holidays. 
The results of the computations on the so-prepared data set are summarised in 
Table 2. In both cases the error rates for the best network in the population 
P(20000) are provided. Thus the search complexity for different hours of the 
day can be compared. 

In all the algorithm runs the following settings have been applied: 
• the range of the number of hidden neurons: 1, . .. , 3 x card(L0 ) ; this range 

has been used for the initialisation of the networks, 
• Pm E (0, 0.3] for the discrete mutation modeM et = 0 and 8 = [- 3, 3], 
• Pm E (0, 0.7] and f..i E (0 , 0.2] for the real mutation mode, 
• probability of learning rule mutation pz.,.=0.05, 
• probability of adding/deleting a single neuron P<L = Pa = 0.1. 
In both cases MAPE and MAE errors have been computed both on the 

learning and validating set. The error measures have been computed using the 
following formulas: 

card(AU . ---:-

MAPEL(st) = 1 "' IP(z) - P(l)i ·100% 
card(AU ~ P(i) 

(2) 

where At is a learning set for time t, P( i) stands for real value, P('i) denotes 
predicted value, and 

card(A' ) 1 /. 
MAEL(st) = card(AU ~ IP(i)- P(i)l· 100%. (3) 

MAEV and MAPEV are computed against a separate set Av consisting of 
the data patterns from another year and not used for network evaluation, thus 
assuring unbiased evaluation of the final networks. It is crucial for the overall 
assessment of the networks to evaluate their generalisation abilities (see Haykin , 
1999). In other words, the prediction error has to be computed on a separate 
set of validation data patterns and compared to the error obtained for the 
learning set. The learning and validation set errors are referred to as MAPEL 
and MAPEV in our work, respectively. If neural network is able to represent 
the general rules between input and output data, it should predict the load 
demand for different input patterns with a similar quality. However, if network 
docs not gain the understanding of these rules and just reproduces the expected 
output for known patterns, it can not properly react to new data patterns. The 
MAPEV error rate is greater than MAPEL error rate, then. In the latter case, 
the neural network provides little or no practical value, as it ca1.1 not be used 
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the demand forecast for the next day. In order to evaluate the generalisation 
abilities, we have used the difference MAPEV-MAPEL as a general measure. 
The closer to zero it is, the better generalisation has been obtained by the 
network. 

Table 1. Series A - results for all the day categories 

Hour MAPEL MAPEV MAPEV-MAPEL MAEV 
0 2.24 2.21 -0.03 1.33 
1 2.54 2.60 0.06 1.55 
2 2.99 3.31 0.02 1.95 
3 1.94 1.94 0.00 1.14 
4 2.88 3.00 0.12 1.76 
5 3.29 3.69 0.40 2.16 
6 3.06 3.23 0.17 2.00 
7 3.85 3.60 -0.15 2.25 
8 3.84 3.52 -0.32 2.25 
9 3.76 3.53 -0 .23 2.51 

10 3.39 3.43 0.04 2.28 
11 3.61 3.60 -0.01 2.35 
12 3.06 3.10 0.04 2.05 
13 3.71 3.79 0.08 2.34 
14 3.58 3.47 -0.11 2.25 
15 4.13 4.11 -0.02 2.61 
16 3.72 3.89 0.17 2.52 
17 3.23 3.26 0.03 2.14 
18 3.19 3.15 -0.04 2.70 
19 3.34 3.36 0.02 2.30 
20 3.42 3.26 -0.16 2.20 
21 2.52 2.52 0.00 2.52 
22 2.48 2.63 0.15 1.67 
23 3.27 3.19 -0.08 1.92 

avg 3.21 3.22 0.01 2.01 
min 1.94 1.94 -0.32 1.14 
max 4.13 4.11 0.40 2.80 

The results show that: 
• an appropriate prediction model has been obtained , 
• strong relation between time of the day and error rate can be noticed , the 

latter tends to be higher in the mid-day hours , 
• considerable impact of bank holidays and the neighbouring days on the 

overall quality of the prediction can be observed; the error rates are sig­
nificantly lower when the input pat terns corresponding to these days are . . 
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• good generalisation ability of the thus obtained networks has been achie­
ved, the average difference between the error rate measured on training 
and validation set is close to ~ero . 

Table 2. Series 13 - results for all the day categories but bank holidays and the neigh­
bouring days 2 

Hour MAPEL MAPEV MAPEV-MAPEL MAEV 
0 2.14 2.46 0.32 1.45 
1 2.44 2.63 0.19 1.54 
2 2.02 2.35 0.32 1.41 
3 3.01 3.01 0.00 1.77 
4 2.88 3.00 0.12 1.82 
5 2.97 2.68 -0.29 1.58 
6 2.94 3.14 0.20 1.95 
7 2.94 2.84 -0.10 1.81 
8 2.98 2.68 -0.30 1.79 
9 2.83 2.81 -0.02 1.94 

10 2.35 2.39 0.04 1.58 
11 2.55 2.58 0.03 1.78 
12 2.87 2.48 -0 .39 2.05 
13 2.62 2.70 0.08 1.78 
14 2.71 2.67 -0.04 1.77 
15 3.37 3.19 -0 .18 2.19 
16 3.89 3.78 -0.12 2.56 
17 3.05 2.72 -0.33 1.82 
18 3.97 4. 13 0.16 2.71 
19 2.55 2.48 -0.07 1.66 
20 2.08 2.19 0.11 1.49 
21 2.48 2.59 0.11 1.71 
22 2.29 2.32 0.03 1.51 
23 3.01 3.01 0.00 1.79 

avg 2.67 2.79 0.12 1.81 
min 2.02 2.19 -0.30 1.41 
1nax 3.97 4.13 0.32 2.71 

To sum up, the results of the computations show that EGaN! LP is capable 
of providing fine-tuned networks by selecting both their archi tecture and con­
nection weights. Preliminary results suggest changes in the input attributes as 
the most promising way of further improvements. The stability of results has 
been also checked . For selected time unit 30 runs have been performed, resulting 
in average MAPEL error 3. 19 and standard deviation 0.201. Average difference 
in error rate compared to the validation set has been lower than 0.05%. In 



380 M.GRZENDA, B. MACUKOW 

final ECoM LP networks have been obtained without exhaustive search for net­
work architecture and do not require the OBD procedure (see Haykin, 1999) to 
ensure proper generalisation. Even though only a part of the whole set has been 
available for our experiments, better generalisation and error rates have been 
achieved. 

The structures of the prediction models based on the final neural networks 
vary strongly in size and complexity. For instance, the sample structure of the 
network for the 3:00 a .m. hour prediction task is 29-2-1 , which stands for 29 
input nodes (24 hour loads + type of the day + time of the year) , 2 neurons 
in the first hidden layer, 1 hidden neuron in the second layer. The sample 
structure for 3:00 p.m. is 29-9-1. In general, the number of input nodes and 
output neurons is the same for all the networks. The algorithm prefers simple 
network structures based on limited number of neurons to more sophisticated 
ones. T his is due to the fac t that appropriate weight settings are easier to 
find when lower number of neurons and possible connections exists. Simulation 
results show that additional neurons are added only when necessary. It is also 
reflected by proper generalisation of the networks. If the network st ructure was 
inadequately large, the performance of t he network on the validation set Av 
expressed by MAPEV would worsen (see Haykin, 1999) . 

When compared with load profiles described in Section 3, the difference in 
complexity of the final networks seems to be quite natural. During the night 
the load profiles tend to be close to each other, no matter which type of t he day 
is analysed. T his is due to the static part of the demand resulting from by the 
continuous work of industry. On the other hand, the load for the mid-day hours 
is much more related to the type of the day. Thus, the network corresponding 
to one of the aft ernoon hours has to be able to properly reproduce some very 
different load profiles. The latter results in a much more complex structure of 
neural connections and increase in their number, as well. 

7. Conclusions 

The parallel implementation of t he E CoM LP method has provided a set of 
prediction models for 24 time periods of the day. Depending on the t ime of 
the day the mean average error MAPEV ranged from approximately 1.9% to 
4.11 %. As a consequence, the neural-networks based optimisation of power 
supply volume has been obtained . As the power system enriched with the 
neural prediction model can properly predict the load volume, it can also adapt 
to the changing power demand and provide power volume close to the actual 
demand. 

Due to the different power consumption profiles for different day categories, 
the quality of prediction models strongly depends on the time of t he day. As 
a consequence, further development of a new heterogeneous prediction system 
can be considered. For the night periods one neural network-based model can 
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set of models can be constructed. Each of these models can be made responsible 
for the power consumption prediction for different categories of days, e.g. bank 
holidays and other days. In other words, the complexity of the solution of the 
optimisation problem can reflect the complexity of the prediction problem for 
each hour separately. 

What is important, all the results have been obtained in one run of the 
algorithm and did not involve time-consuming computations. Still, the stability 
of results has been checked as well. 

It should be emphasised that the proposed method, unlike most other neural 
network methods, selects the network architecture and weights at the same 
time. In addition, the self-adaptive procedure makes it possible to avoid manual 
setting of algorithm attributes. Therefore, parallel implementation has been 
made available. Traditional methods frequently use trial-and-error method to 
select architecture or the parameters of the evolutionary algorithm. 

To sum up, the ECoM LP method has successfully created prediction mod­
els. These models can be used to optimise the power supply volume by reducing 
the difference between the power supply volume and the actual demand for the 
system. 
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