PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ergodic theorems for Markov chains represented by iterated function systems

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider Markov chains represented in the form Xn+1 = f (Xn, In), where {In} is a sequence of independent, identically distributed (i.i.d.) random variables, and where f is a measurable function. Any Markov chain {Xn} on a Polish state space may be represented in this form i.e. can be considered as arising from an iterated function system (IFS). A distributional ergodic theorem, including rates of convergence in the Kantorovich distance is proved for Markov chains under the condition that an IFS representation is "stochastically contractive" and "stochastically bounded". We apply this result to prove our main theorem giving upper bounds for distances between invariant probability measures for iterated function systems. We also give some examples indicating how ergodic theorems for Markov chains may be proved by finding contractive IFS representations. These ideas are applied to some Markov chains arising from iterated function systems with place dependent probabilities.
Rocznik
Strony
27--43
Opis fizyczny
Bibliogr. 28 poz.,
Twórcy
autor
Bibliografia
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT2-0001-0469
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.