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Abstract: We study power indices for simple games which have
the following “uniform transfer property”: when only one losing
coalition in a game becomes winning, worths of all other coalitions
remaining unchanged, the index increases equally for all players in
that coalition and decreases equally for all players not in that coali-
tion. We show that both for superadditive simple games and for
all simple games there is only one such index: the Shapley-Shubik
index, the restriction of Shapley value to the class of simple games.
Moreover, the proof of this fact does not even require the standard
assumption of symmetry of power indices which can be replaced by
a weaker equal treatment condition.

Keywords: simple game, power index, uniform transfer, Shap-
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1. Introduction and prerequisites. Simple games

We prove in this note that in the class of all simple games the Shapley value is
the only power index with the following property: when a game is modified in
such a way that only one coalition changes its worth, then this modification has
the same impact on indices of all players in this coalition and the same impact
on indices of all players outside this coalition. This property, which we call
uniform transfer property, clearly has some equity or fairness flavour, because it
requires that the index treat equally all players whose role in the game changes
i!l th(! same manner.

There are numerous axiomatic characterizations of the Shapley value, start-
ing from the classical one by Shapley (1953); for some of the most interesting
see e.g. Young (1985) or recently van den Brink (2002). Most of them, however,
deal with the value defined on the class of all characteristic function games and
include conditions like linearity or marginal contributions condition which are of

little or no use when we work on the smaller class of simple games. In this line of
research two reanlte which are most elneslv related ta anre are thaes b Muorenn
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(1977 and 1980) on games endowed with structures of communication among
players. Myerson shows, in particular, that the Shapley value is the only “al-
location rule” (depending both on the game and on communication structure)
treating the players “fair” in the following sense: if a new link between two play-
ers which have not been linked previously is added to the structure, then those
two players gain the same amount. For simple games, the first axiomatization
was provided by Dubey (1975) using a transfer axiom which, however, while
mathematically convenient, has no natural interpretation. Recently, Laruelle
and Valenciano (2001) have independently proved a version of our Theorem 3
for a broader class of values (not just power indices), but a much narrower class
of games.

A simple game is a pair (N,v), where N = {1,2,... ,n} denotes the set of
players and v is a characteristic function—any function defined on the set A
of all coalitions, i.e. all subsets of N, taking values in {0,1} and satisfying the
following conditions:

(1) v(®) =0, v(N)=1,

(2) if Sc T, then v(S) < v(T) (monotonicity).

The value of v on T, v(T), is often called the worth of the coalition T'. Simple
games form an important subclass of cooperative (transferable utility) games,
whose characteristic functions map A to R and must satisfy only v() = 0.
The set of all n-person simple games will be denoted by P,,, and the sct of all
simple games with finite number of players by P* = Uff: 1 Pae

It is usual to identify a (simple) game with its characteristic function. In
a simple game winning coalitions are those in the inverse image of 1, and the
remaining ones are losing coalitions. A player i is decisive in a coalition S if
and only if S is winning and S\ {i} is losing. If this last condition holds for all
players in S, then the coalition S is minimal winning. Let us denote by W (wv)
and by MW (v) the sets of all winning and of all minimal winning coalitions in
v, respectively. Formally,

W(v) = v~1(1),

MW(@)={TeN :vT)=1land (SCT,S#T = v(S)=0)}.

It is well-known that every simple game is uniquely determined by the set of its
minimal winning coalitions.

We shall also denote by D(j,v) the set of all coalitions in which player
7 is decisive (in the game v). Further on d(7,v) will denote the cardinality of
D(j,v), and for any natural number m, d,,,(j, v) will denote the number of those
coalitions in D(j,v) which consist of exactly m players. The cardinality of a
set H will be denoted by #H. For brevity, we shall sometimes omit brackets in
one-clement sets, writing for instance T'U j instead of T'U {j}.

Players i and j are interchangeable in a simple game v when D(i,v)NN_;; =
D(j,v) NN_;j, where N_;; is the set of all coalitions containing neither ¢ nor j.
This is equivalent to contributing the same to every coalition in N_;;. Player i
is a null player in a game v if and only if for every coalition S, v(SU#) = v(S).
Far cimnle oames heine a null nlaver is clearlv eauivalent to not being decisive
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in any coalition. There is also another simple equivalent condition which will
be used in the sequel:

LEMMA 1. Player i is a null player in a stmple game v tf and only if i ¢
UMW (v) , i.e., if i does not belong to any minimal winning coalition in v.

We omit the proof, which is simple.

2. Power indices and their essential properties

All terms like “winning”, “losing” or “decisive” relate to the fact that sim-
ple games are widely used in political theory in analyses of various voting
assemblies—legislatives, councils, shareholders in a corporation etc. It is there-
fore of interest to assess how “strong” the players in a simple game are in
comparison one to another. Many different measures of this relative power have
been proposed and discussed; they are called power indices. Formally, a power
index is any function p : P* — [J7—,[0,1]" such that for every n

(1) p(P,) C [0,1]" and

(2) for every v € P, , szlzli"j{'“) =1
Here, pj(v) is the jth coordinate of the vector p(v) € [0, 1]"—the individual
power index of player j in the game v.

This definition of power indices—in particular, assumption (2)—is disputed
by some authors who claim that the indices should not necessarily be normalized;
sce ¢.g. Felsenthal and Machover (1998) or Laruelle and Valenciano (1999). In
effect, those authors consider simply restrictions of values (usually satisfying
some extra conditions) of cooperative games to the class P*. This approach
can sometimes lead to interesting general theorems, but on the other hand it
is hardly consistent with the notion of power index as a measure of relative
power. In this paper we adhere to the long terminological tradition of requiring
the power indices to be normalized, as for instance in Freixas and Gambarelli
(1997).

Among numerous power indices, the best-known and most widely applied
are the Shapley value (Shapley 1953), the Banzhaf index (Banzhaf 1965), the
prenucleolus (Schmeidler 1969) and the Johnston index (Johnston 1978). For a
more exhaustive survey, see Freixas and Gambarelli (1997) or Shubik (1985).

The index we shall deal with in this paper is the Shapley value, denoted
usually by ¢, which was originally defined for all cooperative games; it is also
known as the Shapley-Shubik index when restricted to the class of simple games.
For any simple game v € P, the Shapley value of v, ¢(v), is defined by the
formula

n

m— 1)!(n—m)!
$i(v) =) %dm(i,n).
m=1 .

A reasonable power index clearly should have some properties justifying its use.
For instance, it should equally treat players whose positions in the game are



120 M. MALAWSKI

the same, it should not decrease when a player absorbs another non-null player,
etc. Unfortunately, even the most commonly accepted indices do not have some
of the desirable properties; the most manifest of such violations are frequently
named “paradoxes”. Some standard properties which are most often expected
from power indices include symmetry (anonymity) and null player property.

Symmetry (S) : Let v,w be two n-person games. If there exists a permutation
IT of the set N such that w(S) = v(J1(S)) for every coalition S C N, then
pi(w) = prriy(v) for every player i € N.

Null player property (NP) : If 7 is a null player in the game v, then p;(v) = 0.

These two conditions are satisfied by all most common power indices—including,
of course, the Shapley value—and are even sometimes included in the definition
of a power index (e.g. in Felsenthal and Machover, 1995).

We propose another condition which seems quite plausible for power indices,
calling it the uniform transfer property. 1t requires that whenever a simple game
is modified in such a way that only one coalition changes its worth—ceteris
paribus—then the resulting change of the individual indices should discriminate
neither among players in that coalition nor among players outside that coalition.
Stating it formally,

DEFINITION. A power index p has the uniform transfer property (UTP) if for
every two games v, v € P* whose characteristic functions differ only on one
coalition

(o(T)=1, ¥'(T)=0, v(U)=2'(U) YU #T)
the following equalitics hold:

pi(v) = pi(v') = pj(v) = p;(®') >0 V ijeT,
pe(v) = pe(v) =pi(v) —pi(v') <0V kU ET.

That is, after the modification of the game as above, all the players in T'
should gain the same and all the players in N '\ T should lose the same.

One motivation for UTP comes from counsidering the transfer property as
formulated by Felsenthal and Machover (1995). An index p has the transfer
property if, whenever a game w is obtained from another game v by a transfer
of power from player i to j, then p;(v) > p;(w) (or, equivalently, p;(w) > p;(v);
the transfer of power from i to j means that (v(7') > w(T') implies 2 € T' and
7 ¢T)and (v(T) < w(T) implies i € T' and j € T')). This very reasonable and
so far hardly explored property prevents power indices from exhibiting some of
the most outrageous paradoxes. Now, changing the worth of only one coalition,
T, from 1 to 0 is exactly a transfer of power from any player in 7' to any player
in N\ T. Since it is only the worth of 7 which makes the two games distinct,
it scems natural to postulate that the change of any individual’s power index
should depend only on whether that individual belongs to T' or not. This is
exactly the uniform transfer property.
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The transfer property and the uniform transfer property seem unrelated at
first sight. However, we show in the next section that UTP is a pretty restrictive
condition and that, in particular, it implies the transfer property.

3. Uniqueness of the Shapley value

In this section we aim at characterizing power indices possessing the uniform
transfer property first for superadditive simple games and then for all simple
games. It will turn out that there is only one index with this property in both
classes, namely the Shapley value.

Let us define the following partial order relation 3 on the set P, :

v & W) D W(').
We first prove

THEOREM 1. Let p and p’ be two symmelric power indices satisfying the condi-
tions NP and UTP, and denote by Q, p the set of all simple games on which
the indices p and p’ differ. Then

(i) every minimal game (according to the relation J) in the set Q, ,» has evactly
two ‘minimal winning coalitions, S , S' and S'= N\ S,

(11) every maximal game (according to the relation J) in the set Q, , has exactly
two mazimal losing coalitions, S , §' and S' = N\ S.

Proof. Let w be a J-minimal game in the set Q, ,» and let S be some minimal
winning coalition in the game w. Clearly, S # N (when N is the only winning
coalition, all symmetric indices take the same value on w). Therefore, there
exists a game y such that W(y) = W(w)\ {S}. Since w is minimal, p(y) = p'(y)
and so, denoting by 4 the difference p — p’, we have for every player i

8i(w) = pi(w) — pi(w) = (pi(w) — pi(y)) + (Pi(y) — Pi(w)),

and because of the UTP property of both p and p’, each of two differences above
takes the same value for all i € § and the same value for all j € S. Denote the
common value of §;(w) for all i € S (of §;(w) for all j ¢ S) by ds(w) (dn\s(w)).
Now, three cases are possible:

(a) S is the only minimal winning coalition in w. Then, all players not
belonging to S are null players in w (by Lemma 1, since they do not belong
to any minimal winning coalition), and all players from S are non-null and
interchangeable. Since both p and p’ have the properties S and NP, we have
pi(w) = pi(w) = 0 for i ¢ S and p;(w) = pi(w) = 1/s for all j € S (where
s = #585), so p(w) = p'(w), which is a contradiction.

(b) There exists some other minimal winning coalition T in w different from
S and from N\ S. Then at least one of the sets 7', N \ T denote it by
U—has non-empty intersections with both S and N\ S. (Actually, when we
assunte w to be superadditive, it is T that must intersect both S and N \ ).
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Therefore, by UTP of p and p’, dy(w) = ds(w) and dy(w) = dy\s(w), and
hence for all 4,7 € N we obtain é;(w) = 6;(w) = dy(w). But this is possible
only when éy(w) = 0, because otherwise Y,y pi(w) # 3¢ pi(w), which
is incompatible with the notion of an index of power. Thus, again p(w) =
P (w).

(c) There are exactly two minimal winning coalitions in w: S and N\ S.
Since this is the only remaining possibility, we have proved (i).
The proof of (ii) goes exactly the same way, except that we start from the game
in which all nonempty coalitions are winning and on which all symmetric indices
take the same value, then take a J-maximal game z in @, ,» and make some
maximal losing coalition in z winning. |

An immediate corollary of Theorem 1 is the characterization of all power
indices satisfying symmetry, null player condition and UTP on the class SP*
of all superadditive simple games. A game is superadditive if the sum of worths of
any two disjoint coalitions does not exceed the worth of their union. For simple
games, superadditivity is equivalent to the condition that every two winning
coalitions intersect.

THEOREM 2. The Shapley value is the only symmetric power index on SP*
satisfying the NP and UTP conditions.

Proof. 1t is obvious that the Shapley value satisfies symmetry and NP, and it is
straightforward fo check that it also satisfies UTP. (Actually, this is true for all
simple games). To prove the converse, just apply Theorem 1 (i) to ¢ and to any
index p # ¢ and recall that there cannot be two disjoint winning coalitions in a
superadditive simple game. Thus the set @, , N SP* has no minimal element,
s0 it must be empty and we have p = ¢ on the whole class of superadditive
simple games. |

REMARK 1. Laruelle and Valenciano (2001) have proved a result (Theorems 2
(i) and 6 (i)) which is slightly more general than Theorem 2. They relax the
NP condition, requiring only that the individual indices of all null players in
all games be equal and smaller than all other individual indices, and assume
the indices of players to sum up to the same number (not necessarily nnity) in
all games. Assuming UTP (which they call “symmetric gain-loss”) they obtain
that each symmetric “index” on P, with those properties is of the form « ¢+,
where 3 is the unit n-vector multiplied by the index of a null player, and « is
a positive constant. However, our proof of Theorem 2 (including the proof of
Theorem 1), being significantly simpler than that by Laruelle and Valenciano,
easily carries through also to their case.

We are also able to show that Theorem 2 generalizes to all simple games.
However, the proof of this fact is harder and makes use of some additional
lemmata.
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To this end, let us introduce some more notation. Denote for any nonempty
coalition U C N :

Et = {veP,: Ue MW(v), N\U € W(v)},
E; = {veP,: Ue MW(v), N\U¢&W(w)};
and for any game v € Zf U Z (i.c., such that U € MW (v))
v_y = the game obtained from v by changing the worth of U:
W(v_y) = W)\ {U}.

LEMMA 2. Ify,z are two games in E; orin Eg and the power index p satisfies
UTP, then for every k € N

Pe(y-s) = pe(y) = pr(2-s) = pi(2).
Proof. Fix a player i € S and for any game v € £F U Z5 denote by (v, S) the
difference p;(v) — p;(v_s). By the definition of UTP,

pr(v-s) = pr(v) — €(v,S) for k € S,
se(v, S)

n—s

pr(v-g) = pp(v) + for k¢ S

(where s = #5), and

pe(y-s) =pi(y) —e(y,S)  for k€S,
se(y, S)
n=g

pr(y-s) = pr(y) + for k¢S
We need to show that (v, S) = ¢(y, S) for any y,v € 5; and for any y,v € 5.
We present the proof for y,v € E‘S" the proof for y,v € =5 is analogous.
When the characteristic functions of v and y differ only on one coalition T
distinct from 9, it is clear that 7" must be minimal winning in v or in y. We may
assume without loss of gencrality that 7€ MW (y); then o(T) = 0, y(T) = 1,
ie., v = y_p. Now the game v_g is derived from both v and y_gs by making
exactly one minimal winning coalition—respectively, S and T'—losing. Thus,
v_s = (y-1)-s = (y-g)-7 and so

pi(v=s) = pr(y-s) — €(y-s,T)  for k€T,

$ély)5:T)

for k ¢ T,
n—t

pr(v-s) = pk(y-s) +
and since v is derived from y in the same way, also

pr(v) = pr(y) — e(y, T) for ke T,
te(y, T)
=1

pr(v) = pi(y) + for kg T



124 M. MALAWSKI

where t = #T and e(w,T) = p;(w)—p;(w-r) for any game w with T € MW (w),
j € T. Using the four above equations, we can compute p(v_g) in two ways to
obtain

pr(v-s) = pe(y) =

—€(v,S) — e(y, T) = —€(y-5,T) — €(y, S) when k€ SNT, (1)
&, 50+ “éy_'? - “(z—_sf) _e(y,S) whenkeS\T, )
'5:1(‘1}%9)—5(‘;, T = elyz, T ) ("”S) when k € T'\ S, 3)
i + ey, T) _ tely-s.T) + SE(J'S) when k¢ (SUT). (4)

n—3s n—t  n-—t n-—s

Moreover, T'\ S # @ (since 5,7 € MW (y)) and T # N \ S (because v € Z¢).
Therefore at least one of the sets SNT, N\ (SUT) must be nonempty. This
guarantees that (3) holds non-vacuously and so does (1) or (4). Subtracting
(1) from (3) yields ey, S) = €(v, S) directly, and subtracting (4) from (3) gives
e(y,T) = €(y—-s,T) and so €(y,S) = (v, 5).

When z and y differ on more than one coalition, we repeatedly apply the
above argument for pairs of “noighbouliug games. Since every game y € Z&
can be obtained from any other z € = by successive adding or removing one
minimal winning coalition (different from S and from N \ §), we can prove
e(y, S) = €(2,8) for any y,z € E¢. o

By applying once again the definition of UTP, Lemma 2 gives the following
direct

COROLLARY. For every coalition S € N there exist two numbers e*(S) and
e~ (8) such that e(v,S) = e*(S) for every v € Z¥, €(v,S) = ¢ (S) for every
vE g,

LEMMA 3. When #8S = s such that n/2 < s <n,
(s —=1)(n—s)!

(n—s—1)s!
n! '

e (S)= o

and €T(N\S)=
Proof. Let us consider the game vs*! with W(v**!) = {T: #T > s} and
the game z with W(z) = {S} U {T: #T > s}. Obviously v**! = z_g. When
s > n/2, both these games clearly are superadditive, so by Theorem 2 p(v**1) =
#(v**1) and p(z) = ¢(z). Since obviously v**! € =3, we have

(s —1)!(n—s)!
n!

€7 (8) = pi(2) = pi(v™H) = ¢i(2) = Gi(v*) =

for any player i € S. For the second equality, consider the games v with
W) = {T: #T > n — s} and y = (v %)_ms with W(y) = {T #

n—s
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N\ S: #T > n— s}. Clearly, for s > n/2 " € E.'I,\S. Moreover, since
every game wyp having exactly two maximal losing coalitions, T and N \ T
(where @ # T # N), has many (n — s)-element losing coalitions, it cannot sat-
isfy wp 3 y. Thus, by Theorem 1 (i), for every maximal element w of Q, 4
w Ay, so neither y nor v"~* can belong to @, 4. Therefore p(v"~%) = ¢(v" %)
and p(y) = ¢(y) and so (for any i € N \ S5)

3 A i = (n—s—=1)!s!

e (N\S) =pi(v" ") = piy) = (") -~ tiy) = —F7—— W
THEOREM 3. The Shapley value is the only symmetric power index on P* sat-
isfying the NP and UTP conditions.

Proof. As before, let p be an index with the required properties different from ¢.
We know from theorem 1 (i) that any J-minimal game for which p # ¢ must
have exactly two minimal winning coalitions, S and N \ S. Denote this game
by Ws.

Assume first that s > n/2. The game wWs is obtained from the game ws,
in which winning coalitions are exactly proper supersets of S and of N\ S, by
adding two minimal winning coalitions, S and N \ S. Thus for each k in S

n—s

pe(Ws) — pe(Ws) = —€t(S) + e (N\S)

_n-—-3:

eH(N\8) —€e ()

and so, by Lemma 3,

n—s (n—s-Nls! (s=Dl(n—s)!
s n! n! -

0.

pr(Ws) — pr(Ws) =

But wg is minimal in Qg ,, so the indices p and ¢ must coincide on the game
wg and—by the above equality—also on the game ws.

Thus for #S > n/2 the game Ws cannot belong to Q4 ,, which also obvi-
ously implies the analogous statement for #S < n/2. By combining this with
Theorem 1 (i) we obtain that the set Qg4 ;, has no minimal element, and therefore
it must be empty. |

REMARK 2. It is worthwhile to notice that the signs of differences in the defini-
tion of UTP, introduced there in order to stress the intuitive link between UTP
and transfer property, have not been used anywhere in this section. The null
player property and symmetry combined with equations in UTP are sufficient
to assure the desired signs of py(v) — pr(v').

4. Replacing symmetry by equal treatment

While assuming symmetry ( “anonymity”) is standard when working with power
indices, it is also interesting to investigate whether “full” symmetry is necessary
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for the results or a weaker condition of equal treatment is sufficient, as it has
been shown in quite general settings for values (Malawski 2002). In view of the
proofs of theorems in the preceding section, the answer turns out to be quite
simple in our case. It suffices to observe that in all proofs only equal treatment
property—i.e., indices of interchangeable players being equal-—has been used
instead of symumetry. Actnally, the earlier version of Lemma 3 (Malawski 1999)
has been strenghtencd in this paper to climinate the only use of symmetry in
the old proof of Theorem 3—the case s = n/2, for which symmetry (but not
equal treatment) directly implies the equality p(ws) = ¢(is).
We can therefore re-state Theorems 2 and 3 in the following form:

DEFINITION. A power index p has the equal treatment property (ET) if the
indices of interchangeable players in any game are equal, i.e., if

(VSst. 4,j€S v(SUi)=v(SUj)) = pi(v)=p;).

THEOREM 4. The Shapley value is the only power index on SP* and on P*
satisfying the conditions ET, NP and UTP.

The assumptions of this theorem combine two natural aspects of “equity”
for a power index: ET requires that the index treat equally players who play
the same roles in a game (interchangeable players), and UTP postulates that
it react equally to changes which affect the players’ roles in the same way.
Therefore, in our opinion, Theorem 4 offers a particularly strong support for
the Shapley value as a power index.
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