PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

A duality for starshaped functions

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A conjugacy is introduced for the class of starshaped functions from [0, infinity] into [0, infinity], i.e. the class of functions f such that their slope s : t --> f (t)/t is nondecreasing. This class is stable by several operations and plays a key role in the study of uniformly convex and uniformly smooth convex functions and in the geometry of Banach spaces. Here the inversion of the subdifferential as in the Legendre-Fenchel transform is replaced by an inversion device of the slope s which uses the ordering of R.
Rocznik
Strony
127--139
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
autor
  • Université de Pau et des Pays de L’adour, Laboratoire de Mathématiques Appliquées, Ura 2055 - CNRS, Avenue de L’université, 64000 Pau - France
Bibliografia
  • [1] E. Asplund, Fréchet differentiability of convex functions, Acta Math., 121 (1968) 31-47.
  • [2] H. Attouch, R. J.-B. Wets, Quantitative stability of variational systems; II. A framework for nonlinear conditioning, SIAM J. Optim., 3 (1992) 359-381.
  • [3] D. Azé, M. Volle, Stability results in quasi-convex programming, J. Optim. Theory Appl., 67 (1) (1990) 175-184.
  • [4] D. Azé, J.-P. Penot, Uniformly convex and uniformly smooth convex functions, Ann. Fac. Sci. Toulouse Math. (6), 4 (4) (1995) 705-730.
  • [5] B. Beauzamy, Introduction to Banach spaces and their geometry, Math. Studies Series 68, North-Holland, Amsterdam 1982.
  • [6] E. Bednarczuk, J.-P. Penot, On the positions of the notions of wellposed minimization problems, Boli. Unione Mat. Ital. (7), 6-B (1992) 665-683.
  • [7] E. Bednarczuk, J.-P. Penot, Metrically well-set minimization problems, App. Math. Optim., 26 (1992) 273-285.
  • [8] S. Dolecki, S. Kurcyusz, On Φ-convexity in extremal problems, SIAM J. Control Optim., 16 (1978) 277-300.
  • [9] K. H. Elster, A. Wolf, Recent results on generalized conjugate functions, in: Trends in Mathematical Optimization, eds.: K. H. Hoffmann et al., Birkhäuser, Basel (1988) 67-78.
  • [10] T. Figiel, On the moduli of convexity and smoothness, Studia Math., 56 (2) (1976) 121-155.
  • [11] V. I. Liokoumovich, The existence of B-spaces with non-convex modulus of convexity, Izv. Vyssh. Uchebn. Zaved. Mat., 12 (1973) 43-50.
  • [12] J. Lindenstrauss, On the modulus of smoothness and divergent series in Banach spaces, Michigan Math. J., 10 (1963) 241-252.
  • [13] J. Lindenstrauss, L. Tzafiri, Classical Banach spaces, Lectures Notes in Math., 338, Springer-Verlag, Berlin 1973.
  • [14] J. E. Martīnez-Legaz, I. Singer, Subdifferentials with respect to dualities, ZOR Math. Methods Oper. Res., 42 (1995) 105-125.
  • [15] V. D. Milman, The geometrie theory of Banach spaces, Part II, Uspekhi Mat. Nauk., 4 (1960) 15-17.
  • [16] G. Nordlander, The modulus of smoothness and divergent series in Banach spaces, Michigan Math. J., 4 (1960) 15-17.
  • [17] D. Pallaschke, S. Rolewicz, Foundations of mathematical optimization; convex analysis without linearity, Kluwer, Dordrecht 1997.
  • [18] J.-P. Penot, Metric regularity, openness and Lipschitzian behavior of multifunctions, J. Nonlinear Analysis, Th. Methods Appl., 13 (6) (1989) 629-643.
  • [19] J.-P. Penot, Conditioning convex and nonconvex problems, J. Optim. Theory Appl., 90 (3) (1996) 539-558.
  • [20] J.-P. Penot, What is quasiconvex analysis?, Optimization, 47 (2000) 35-110.
  • [21] J.-P. Penot M. Volle, Inversion of real-valued functions and applications, ZOR-Methods and Models of Oper. Research, 34 (1990) 117-141.
  • [22] J.-P. Penot, M. Volle, On quasi-convex duality, Math. Oper. Res., 15 (4) (1990) 597-625.
  • [23] J.-P. Penot, C. Zalinescu, Harmonic sum and duality, J. Convex Anal., 7 (1) (2000) 95-113.
  • [24] J.-P. Penot, C. Zalinescu, Elements of quasiconvex subdifferential calculus, J. Convex Anal., 7 (1) (2000) 95-113.
  • [25] R. T. Rockafellar, Convex analysis, Princeton University Press, Princeton, New Jersey 1970.
  • [26] A. Rubinov, Abstract convexity and global optimization, Kluwer, Dordrecht 2000.
  • [27] I. Singer, Abstract convex analysis, Wiley, New York 1997.
  • [28] S. Traore, M. Volle, Subdifferentiability, lower semicontinuity and exactness of the level sum of two convex functions on locally convex spaces, in: Recents Developments in Optimization, Seventh French-German Conference on Optimization, eds: R. Durier, C. Michelot, Lecture Notes in Econom. and Math. Systems, 429, Springer, Berlin (1995) 346-356.
  • [29] A. A. Vladimirov, Yu E. Nesterov, Yu N. Chenakov, On uniformly convex functionals, Vestnik Moskov Univ. Ser., 15 (3) (1978) 12-23.
  • [30] M. Volle, Conjugaison par tranches, Annali di Mat. pura ed applicata, 139 (1985) 279-312.
  • [31] C. Zalinescu, On uniformly convex functions, J. Math. Anal. Appl., 95 (1983) 344-374.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT2-0001-0393
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.