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Abstract: In this paper we develop the first and second order 
dual sufficient optimality conditions for a nonlinear optimal control 
problem. Our conditions are derived from the dual Hamilton-Jacobi 
approach applied to the generalized problem of Bolza. We do not 
require neither any convexity on the data, nor that the control set 
U be polyhedral, nor that the control function be in the interior 
of U. Instead, we assume the existence of a function which satisfies 
a certain inequality. 
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1. Introduction 

Let an interval [a,b], a point r in Rn, a closed subset U C Rm and functions 
f : [a,b] X Rn X Rm __, Rn, g: [a,b] X Rn X Rm __,Rand l0 : Rn __, R be given. 
We consider in this paper an optimal control problem (C): 

minimize J( x, u ) := jb g(t, x (t), u (t)) dt + l0(x (b)) 

subject to x (t) = f (t, x(t), u (t)) a.e. 

x(a) = r 

u (t) E U a.e. 

(1) 

(2) 

(3) 

where x : [a, b] __, Rn is an absolutely continuous function and u : [a, b] __, Rm is 
a Lebesgue measurable function. We call the function H : [a, b] x Rn x Rn __, R 
defined by 

H(t, x, p ) :=sup{ (p, f (t, x, u )) - g(t, x, u ) : u E U} (4) 

the Hamiltonian of the problem (C). Any absolutely continuous function y : 
[a, b] __, Rn is called an arc. 

It is known from Rockafellar (1971) that, under some nonrestrictive assump-
- - -
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the proof of Theorem 2.1 in Section 2). Thus, any sufficient conditions obtained 
for the generalized problem of Bolza can be transferred to the problem (C). 

Various sufficient criteria for a general optimal control problem (C) are well 
known. The earliest involve the Hamilton-Jacobi inequality (HJ inequality). 
Some other require the Hamiltonian H , defined by ( 4), to be concave in x 
and conve~ in p. In the others it is sometimes assumed that U is a compact 
polyhedron. We can also find sufficient conditions for simplified problems. For 
instance, when the functions f and g are convex or when the control function 
u always lies in the interior of U. 

In this paper we develop the dual sufficient optimality conditions for (C) by 
replacing the optimal control problem (C) by the generalized problem of Bolza 
(Pc) and then by applying to the latter the dual sufficient optimality criterion 
obtained in Mlynarska (2000). The way of deriving results in the paper is the 
same as in Zeidan (1984b) and the conditions obtained are analogous to the 
relevant conditions presented there in the primal version. However, unlike in 
Zeidan (1984b) now they are implied by the dual HJ inequality instead of the 
HJ inequality and they are formulated in the terminology of the dual theory. 
Applying dual sufficient optimality criterion of Mlynarska (2000) we derive not 
only the results which are similar to the theorems of Zeidan (1984B), but we also 
obtain in such a way the new sufficient optimality conditions for (C). We begin 
with presenting a very important dual sufficient optimality criterion for (C) 
based on the dual HJ inequality. Using this criterion, we obtain in subsequent 
sections the sufficient optimality conditions of the first and hence second orders 
for (C), which are different from those known so far. 

2. Dual sufficient optimality criterion 

In this section we are interested in finding a sufficient criterion for the existence 
of a strong relative minimum in the opimal control problem (C). Throughout 
the paper, we use the following definitions and notations. We say that an arc 
y lies in a set Y C Rn+l if its graph is contained in t his set; we denote by Tx 
the projection of a given set T C Rn+l of variables ( t, x) onto the space of the 
variable x. Moreover, for a given arc y: [a, b) -4 Rn and a positive number c:, 
we adopt the following notations: 

N(y;c:) := {(t,y) E Rn+l: t E [a, b) , jy-y(t)j < c:} 

NE(y) := {y ERn: Jy- y(t)j < c: for some t E [a,b]}. 

(5) 

(6) 

DEFINITION 2.1 Let x be an arc and let u : [a, b] -4 Rm be measurable. The 
pair (x, u is called admissible for (C) if it satisfies conditions (1)-(3). 

DEFINITION 2.2 Let a subset T c Rn+l and an admissible pair (x, u) such that 
the arc x lies in T be given. We say that (x, u) is a strong minimum for (C) 
relative to all admissible pairs ( x, u) such that x lies in T, if, for all admissible 

- - - - ' -- . -
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Given a subset T C Rn+l of variables (t, x), we shall make the following 
hypothesis: 

(H1) functions f and g are measurable on T x U; for each t E [a, b], a function 
( x, u) ---+ f( t, x, u) is continuous and a function ( x, u) ---+ g( t, x, u) is lower 
semicontinuous on Tx x U. 

We shall now formulate and prove the dual sufficient optimality criterion 
for (C). We require in this criterion the existence of a function Q(t) which, to
gether with Hamiltonian, satisfies a certain inequality. Moreover, in the theorem 
below and in subsequent theorems the following assumption is made: 
(A) function Q(t) is defined on [a, b] and has a derivative almost everywhere 

in [a, b]; for almost all t E [a, b], Q(t) is ann x n symmetric matrix; Q(b) is 
nonsingular. 

The criterion formulated below and the sufficient optimality conditions yield 
the optimality of an admissible pair (x, u) relative to all pairs in the class R 
where for given p and Q(t) 

R consists of admissible pairs (x, u) for which there is an arc p lying in 
N(p,c) and satisfying x(t) = x(t)- Q(t)(p(t)- p(t)) fortE [a,b]. 

The set Tis defined in Theorem 2.1 in such a way that for each admissible pair 
(x, u) belonging to R the arc x lies in T. 

THEOREM 2.1 Let (x, u) be a given admissible pair for (C) such that J(x, u) is 
finite. Assume that there exist a positive number c, an arc p and a function Q ( t) 
satisfying (A). Next, define the set T by 

T := {(t,x) E [a,b] x Rn: x = x(t)- Q(t)(p- p(t)) for p E N<(p)}. 

Suppose further that (H1) holds and: 
(i) for almost all t E [a, b], for all p E N< (p) and for all u E U, 

g(t, x(t)- Q(t)(p- p(t)), u)- g(t, x(t), u(t)) 

- (p, f(t, x(t)- Q(t)(p- p(t)), u)) 

+ (p(t), f(t, x(t), u(t))) + (p(t), Q(t)(p- p(t))) 

2: -(~(t),p- p(t)) + i(P- p(t), Q(t)(p- p(t))); 
(ii) for all dE Rn such that (b, x(b) +d) E T, 

l0 (x(b) +d) - l0 (x(b)) 2: -(p(b), d) + i(d, Q- 1 (b)d). 
Then (x, u) is a strong minimum for (C) relative to all (x, u) in R. 

Proof. The proof bases on the replacement of the problem (C) by the gener
alized problem of Bolza (Pc) and the application of Theorem 2.1 of Mlynarska 
(2000) to it. 

Define the following functions: 

L(t, x, v) := inf{K(t, x, v, u): u E Rm} (7) 

whPrP T<ft T. 11 1 , 1 = f g(t, x, u) when u E U and v = f(t, x, u) 
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(9) 

Consider the following generalized problem of Bolza associated with the optimal 
control problem (C): 

(Pc) minimize Jc(x) :=I: L(t, x(t), x(t)) dt + l(x(a ), x(b)), 

where L and l are given by formulae (7) and (9), respectively. 
Then, the problems (Pc) and (C) have the same Hamiltonians given by 

formula ( 4). Condition (i) of Theorem 2.1 implies the inequality 

(p(t), f(t, x(t), u(t)))- g( t , x(t), u(t)) 

2: (p(t), f(t, x(t), u))- g(t, x(t), u) (10) 

for almost all t E [a, b] and for all u E U. Hence, applying (7) and (8), we get 

L(t, x(t), i(t)) = g(t, x(t), u(t)) a.e. (11) 

On the other hand, by definition (7) of the function L, we have that, for any 
admissible pair (x, u), the following inequality is satisfied: 

Jc(x):::; J(x, u). 

In view of the above, in order to show that (x, u) is a. strong relative minimum 
for (C), it is enough to prove that xis a strong relative minimum for (Pc). To 
this end, we shall make use of Theorem 2.1 of Mlynarska. (2000). 

From Lemma 6 of Rockafellar ( 1973) we have that the function ( t, x, v , u) ---+ 

K(t, x, v, u) defined by (8) is measurable and lower semicontinuous. Hence, 
and from Theorem 1 of Rockafellar (1971) it follows that the function L defined 
by (7) is measurable. Inequality (10) and property (11) imply condition (i) of 
Theorem 2.1 of Mlynarska (2000) and the equality 

H(t, x(t),p(t)) = (p(t), f( t , x(t), u(t)))- g(t, x(t) , u(t)) a.e. 

Thus, from (4), the above equality and condition (i) of Theorem 2.1 we obtain 
that the inequality 

H(t, x(t)- Q(t)(p- p(t)),p)- H(t, x(t),p(t)) 

:::; (i(t), p- p(t)) + (p(t), Q(t)(p - p(t))) - ~ (p - p(t), Q(t)(p - p (t))) 

is satisfied for almost all t E [a, b] and for all p E N 10 (p). This means that 
condition (ii) of Theorem 2.1 of Mlynarska (2000) holds. Finally, using formula 
(9) and condition (ii) of Theorem 2.1, we obtain that condition (iii) of the same 
theorem is satisfied. Consequently, x is a st rong relative minimum for (Pc ). 
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3. First order dual sufficient optimality conditions 

In this section we present two types of the first order dual sufficient conditions 
for optimality in (C). In the first, we require the given functions f and g to be 
Lipschitz in x while in the second, we assume that f and g are C 1 in (x, u). 
In both cases, we derive the sufficient conditions directly from Theorem 2.1 
obtained in the previous section. 

Given a subset T C Rn+l of variables (t, x), the following assumption will 
be made: 

(H2) functions f and g are measurable on T x U; for each t E [a, b] and x lying 
in T, a function u ---+ f( t, x, u) is continuous and a function u ---+ g( t, x, u ) 
is lower semicontinuous on U; functions x---+ f (t , x, u) and x---+ g(t, x, u) 
are Lipschitz on Tx uniformly fort E [a, b] and u E U. 

THEOREM 3.1 Let (x, u) be a given admissible pair for (C) such that J(x, u) is 
finite. Assume that there exist a positive number c:, an arc p and a function Q(t) 
satisfying (A). Next, define the set T by 

T := {(t, x) E [a, b) x Rn: x = x(t)- Q(t)(p - p(t) ) for p E N€(p)}. 

Besides, suppose that (H2) holds and: 

(a) for almost all t E [a, b] and for all u E U, 
(fi(t), f(t, x(t), u(t)))- g(t, x(t), u(t)) 

~ (p(t ), f (t, x(t), u))- g(t, x (t) u); 
(b) for almost all t E [a, b), for all p E Ne (p), for all u E U, for all a E 

o'l; f(t, x(t)- Q(t)(p- p(t)), u) and for all {3 E Bxg(t, x(t)- Q(t)(p
p(t) ), u), 

( - Q(t)ap + Q(t){3 + f(t, x(t) - Q(t)(p- p(t) ), u) 

+ Q(t)(p - p(t)) - ~(t) - Q(t)p(t),p - p(t)) :S 0; 
(c) for all dE Rn such that (b, x(b) +d) E T, 

Z0 (x(b) +d) - l0 (x(b)) ~ -(p(b), d) + ~(d, Q- 1(b)d). 

Then (x, u) is a strong minimum for (C) relative to all (x, u) in R. 

Proof. Using Theorem 2.1, it suffices to show that condition (i) of that 
theorem is satisfied. To do so, we shall make use of Lemma 4.1 of Zeidan 
(1984a). 

For the functions x, p and Q given in Theorem 3.1, we define 

F(t, u,p) := (pf(t, x(t)- Q(t)(p- p(t)) , u)) 

- g(t, x(t) - Q(t)(p- p(t)), u) + ~(p- p(t), Q(t)(p- p(t))) (12) 

where t E [a, b] a.e ., p E N"(p) and u E U. Then, the function p---+ F(t, u,p) 
'JI. T / - \ .1""'1 t l 1 ° 1 l l ' 1 1• I <'"\ n fl \ (' 
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Sections 1.11 and 1.14 of Clarke (1981) we have 

8pF(t, u,p) c f(t, x(t)- Q(t)(p- p(t)), u) 

- Q(t)o'f f(t, x(t)- Q(t)(p- p(t)), u)p 

+ Q(t)8xg(t, x(t)- Q(t)(p- p(t)), u) + Q(t)(p- p(t)). 

Hence, condition (b) of Theorem 3.1 implies 

(w- ~(t)- Q(t)p(t),p- p(t)) :::; 0 

E. MLYNARSKA 

for almost all t E [a,b], for all p E Nc(p) and for all wE 8pF(t,u,p). The 
above inequality means that, for a function h : [a, b] _, Rn given by the formula 

h(t) := ~(t) + Q(t)p(t), 

condition ( 4.2) of Lemma 4.1 of Zeidan (1984a) is satisfied. Thus, applying 
this Lemma to functions p _, F( t, u, p) and h, we obtain that, for almost all 
t E [a ,b], for all p E Nc(p) and for all u E U, 

F(t, u,p)- F(t, u,p(t)):::; (~(t) ,p - p(t)) + (Q (t)p(t),p- p(t)). 

On the other hand, condition (a) of Theorem 3.1 can be written down, us
ing (12) , in the form 

F(t,u,p(t)):::; F(t,u(t),p(t)) 

for almost all t E [a, b] and for all u E U. The last two inequalities imply that 

F(t, u,p)- F(t , u(t),p(t)):::; (~(t) ,p - p(t)) + (p(t), Q(t)(p- p(t))) 

for almost all t E [a, b], for all p E Nc(p) and for all u E U. By (12), this means 
that condition (i) of Theorem 2.1 is satisfied, which ends the proof. • 

Applying the criterion from the previous section, we have thus obtained the 
first order sufficient optimality conditions for (C) in case of Lipschitz functions 
f and g, other than those known so far. We shall now consider the case when 
functions f and g are C 1 and show that condition (b) of Theorem 3.1 can be 
replaced by another first order condition. 

Given a subset T c Rn+l of variables ( t, x), the following hypothesis will be 
made: 

(H3) functions f and g are measurable on T x U; for each t E [a, b], functions 
(x, u) _, f(t, x, u) and (x, u) _, g(t, x, u) are C1 on Tx xU. 

THEOREM 3.2 Let U be a convex set and let (x, u) be a given admissible pair 
for (C) such that J(x, u) is finite. Assume that there exist a positive number E , 

an arc p and a function Q(t ) satisfying (A). Next , define the set T by 
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Suppose further that (H3), conditions (a), (c) of Theorem 3.1 are satisfied, and 
that, for almost all t E [a, b], for all p E N"(p) and for all u E U, the inequality 

( - Q(t)/; (t, x(t)- Q(t)(p - p(t)), u)p 

+ Q(t)gx(t, x(t)- Q(t)(p - p(t)), u) 

+ f(t, x(t) - Q(t)(p - p(t)), u) 

+ Q(t)(p - p(t)) - i(t)- Q(t)p(t), p - p(t)) 

+ u;; (t, x( t) - Q( t)(p - p( t) ), u )p - ,;; ( t, x( t), u(t) )p( t) 

- 9u(t, x(t)- Q(t)(p - p(t)), u) + 9u(t, x(t), u(t)), u - u(t)) ~ 0 (13) 

holds. Then (x, u) is a strong minimum for (C) relative to all (x, u) in R. 

Proof. We shall demonstrate that condition (i) of Theorem 2.1 is satisfied. 
Consider the function F defined by (12). Now, the function (u,p) ---+ 

F(t,u,p) is C 1 on U x Nc(P) with the gradient 'ilu ,pF(t,u,p). Then, inequal
ity (13) is equivalent to 

('Vu,pF(t ,u,p) - (Fu(t,u(t),p(t)),i(t) + Q(t)p(t)), 

(u- u(t),p- p(t))) ~ o 

for almost all t E [a, b], for all p E Nc(P) and for all u E U. Reasoning similarly 
to Lemma 4.1 of Zeidan (1984a), by convexity of the set U we get 

F(t, u,p) - F(t, u(t),p(t)) 

::; (Fu(t, u(t), p(t)), u - u(t)) + (i(t) + Q(t)p(t), p- p(t)) 

for almost all t E [a, b], for all p E Nc(P) and for all u E U. On the other hand, 
condition (a) of Theorem 3.1 implies that 

(Fu(t, u(t), p(t), u- u(t)) ~ 0 a.e. 

From the last two inequalities it follows that condition (i) of Theorem 2.1 is 
satisfied, which completes the proof. • 

It can be seen from the last two proofs that inequality (13) and condition 
(a) of Theorem 3.1 imply condition (i) of the dual sufficient optimality criterion 
for (C) presented in the previous section. We have thus obtained new sufficient 
optimality conditions of the first order for (C) in case when functions f and g 
are smooth. 

4. Second order dual sufficient optimality conditions 

In this section we present the second order dual sufficient optimality conditions 
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Given a subset T C Rn+l of variables ( t, x), we shall make the following 
assumption: 

(H4) functions f and g and their partial derivatives up to the second order with 
respect to (x, u) exist and are continuous on T x U. 

Moreover, we define the following: 

W(t, u) := 9xx(t, x(t), u)- f;x(t, x(t), u)p(t) 

S(t, u) := 9ux(t, x(t), u)- f~x(t, x(t), u)p(t) 

R(t, u) := 9uu(t, x(t) , u)- f~u(t, x(t), u)p(t) 

A(t, u) := fx(t, x(t), u) 

B(t, u) := fu(t, x(t), u). 

THEOREM 4.1 Let U be a compact convex set and let (x, u) be a given admis
sible pair for (C) such that J(x, u) is finite. Assume that there exist a positive 
number e, an arc p and a Lipschitz function Q(t) defined on [a, b), such that, 
for almost all t E [a, b), Q(t) is ann x n symmetric matrix, Q(b) is nonsingular. 
Next, define the set T by 

T := {(t, x) E [a, b] x Rn : x = x(t)- Q(t)(p- p(t)) for p E N,(p)}. 

Besides, suppose that (H4) , conditions (a), (c) of Theorem 3.1 are satisfied and: 

(1) -p(t) = /;(t, x(t), u (t))p(t)- 9x(t, x(t ), u(t)) a. e.; 
(2) R(t, u) > 0 for all t E [a, b] and for all u E U; 
(3) for all t E [a, b), for all u E U and for all 17( t) E fJQ( t), 

M(t, ry(t), u) := -ry(t) + A(t, u)Q(t) + Q(t)AT(t, u) 

+ Q(t)W(t, u)Q(t)- KT (t, u)R(t, u)K(t, u) > 0 
where K(t, u) := R- 1(t, u)(S(t, u)Q(t) + BT(t, u) ). 

Then, (x, u) is a strong minimum for (C) relative to all (x, u) in R. 

Proof. By Theorem 3.2, it is sufficient to show that inequality (13) is 
satisfied. Conditions (2) and (3) are equivalent to the statement that the 
(n + m) X (n + m)-matrix 

N(t (t) ) ·= ( M(t, ry(t), u) D nxm ) 
' 17 ' u · 0 R (t u) mxn ' 

is positive definite for all t E [a, b], for all u E U and for all ry(t) E EJQ(t). Define 
another (n + m) x (n + m)-matrix 

C( ) ( 
lnxn Onxm ) 

t, u := -K(t, u) I mxm . 

Since the matrix C(t, u) is nonsingular, conditions (2) and (3) are equivalent to 
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D (t, ry(t), u ) := CT(t, u )N (t, ry(t), u )C(t, u ) 

( 

- ry(t) + A (t, u )Q(t) + Q(t) A T(t, u ) - K T(t, u )R (t, u ) ) 
= + Q (t) W (t, u )Q (t) 

- R (t, u )K (t, u ) R (t, u ) 

is positive definite for all t E [a, b], for all u E U and for all ry(t) E 8Q(t). 

53 

(14) 

Consider the function F(t, u ,p ) defined by (12). Then, for almost all t E 
[a, b] and for all u E U, having computed the Jacobian 'l~,uF(t, u ,p(t)), we have 

v;,uF(t, u,p(t)) = - D (t, Q(t), u ), 

where the matrix D is given by (14). Since D (t, ry(t), u ) is positive definite and 
U is compact, we can find a positive number I such that 

v;,uF(t, u ,p ) ~ 0 

for almost all t E [a, b], for all p E N-y(P) and for all u E U. Thus, for almost 
all t E [a, b], for all p E N-y(P) and for all u E U, the inequality 

('lu ,pF(t, u ,p )- 'lu,pF(t,u(t), p(t)), (u. - u(t), p - p(t))) ~ 0 (15) 

holds. Using condition (1) of Theorem 4.1, we obtain that (15) is equivalent to 
the inequality 

('lu,pF(t, u ,p )- (Fu(t, u(t), p(t)), ill"(t) + Q (t) p(t)), 

(u - u (t), p - p(t))) ~ o 

which, in turn, as we know from the proof of Theorem 3.2, is equivalent to (13). 
This completes the proof. • 

The above proof shows how important is the role played by the dual sufficient 
optimality criterion for (C) formulated in Section 2. Namely, conditions (1)- (3) 
of Theorem 4.1 imply inequality (13) which, together with (a) of Theorem 3.1, 
gives condition (i) of Theorem 2.1. We have thus obtained sufficient optimality 
conditions of the second order for (C), other than those known so far. 
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