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Abstract: We consider an optimal control problem for systems 
defined by nonlinear hyperbolic partial differential equations with 
state constraints. Since no convexity assumptions are made on the 
data, we also consider the control problem in relaxed form. We 
discretize both the classical and the relaxed problems by using a fi
nite element method in space and a finite difference scheme in time, 
the controls being approximated by piecewise constant ones. We 
develop the existence theory and the necessary conditions for opti
mality, for the continuous and the discrete problems. Finally, we 
study the behaviour in the limit of discrete optimality, admissibility 
and extremality properties. 
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1. Introduction 

Optimal control problems without any convexity assumptions on the data have 
no classical solutions in general. In order to prove the existence of optimal 
controls, the convexity of some extended velocity set is usually assumed, which 
is clearly unrealistic when nonlinear systems are involved. To overcome this 
difficulty, one has to relax, or convcxify, the problem in some manner, and then 
work on the relaxed problem. As a result, relaxation theory has been extensively 
used, not only to prove existence theorems and derive necessary conditions for 
optimality, see Warga (1972), Ekeland (1972), Chryssoverghi (1986), Fattorini 
(1994), Fattorini (1997), Roubicck (1997), but also to develop approximation 
schemes, sec Roubicek (1991), Chryssovcrghi ct al. (1993), and optimization 
methods, sec Warga (1977), Teo ct al. (1984), Chryssoverghi et al. (1997). 

Here, we consider an optimal distributed control problem for systems de
fined by nonlinear hyperbolic partial differential equations with several equality 
and ineaualitv constraints (for hvoerbolic svstems, sec also Bittner, 1975, Sloss 
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et al., 1995, Sadek et al. , 1996) . Under reasonable assumptions, the existence 
of optimal controls and the necessary conditions for optimality are established 
for the relaxed problem. We then discrctize the classical (resp. relaxed) prob
lem by using the Galerkin finite element method in space and the semi- implicit 
finite difference scheme in time for approximating the state equations, while 
the controls are approximated by piecewise constant classical (resp. relaxed) 
ones with respect to an independent partition of the space- time domain (see 
Cullum, 1971, and Casas, 1996, for discrctizatio:1s of classical problems) . T his 
independent control discretization corresponds to the use of controls of simple 
and flexible form for numerical and/or engineering reasons. The discretization 
of both the classical and t he relaxed continuous problems is motivated by the 
fact that in practice classical (resp. relaxed) optimization methods are usually 
applied to the classical (resp. relaxed) problem after some discretization. We 
then prove t he existence of optimal controls for both the discrete classical and 
the discrete relaxed problems, and derive a piecewise minimum principle of op
timality for the discrete relaxed problem. Finally, we study the behaviour in 
the limit of t he above approximations. More precisely, we prove that , under 
appropriate assumptions, accumulation points of sequences of optimal discrete 
classical controls are optimal for the continuous relaxed problem, and that ac
cumulation points of sequences of optimal (resp. admissible extremal) discrete 
relaxed controls are optimal (resp. admissible extremal) for t he continuous re
laxed problem. 

2. The continuous optimal control problems 

Let D be a bounded domain in Rd with Lipschitz boundary r, and let I := 

(0, T) , 0 < T < oo. Consider the following nonlinear hyperbolic state equations 

82yjoe + A(t)y = f(x , t, y(x, t) , w(x, t) ), in Q := n X I, 

y(x, t) = 0, in I: := r X I , 

y(x, 0) = y0 (x), inn, 

(oyjot)(x,O) = y1 (x) , in D, 

where A(t) is the second order differential operawr 

d 

A(t)y :=- L (f)joxi)[a·ij (x, t)(oyfoxj)J. 
i,j= l 

T he constraints on the control w are 

w(x, t) E U, in Q, 

(1) 

(2) 

(3) 

(4) 
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where U is a compact subset of Rd'. The constraints on the state and the 
control variables y, w are 

Jm(w) := h 9m(x, t, y(x, t), w(x, t))dx dt = 0, 1 S m S p, 

Jm(w) := hgm(x,t,y(x,t),w(x,t))dxdt S 0, p < m S q, 

and the cost functional is 

Jo(w) := h go(x, t, y(x, t), w(x, t))dx dt, 

where y := Yw is the solution of (1-4) for the control w. The optimal control 
problem is to minimize J0 (w) subject to the above constraints. 

Since such problems have no classical solutions in general, without additional 
convexity assumptions on the data, it is standard (see Warga, 1972) to work on 
the so- called relaxed form of the problem, which we define below. 

Define the set of classical controls 

W := {w: (x,t)----+ w(x,t)l w measurable from Q to U}, 

and the set of relaxed controls 

R := {r: (x,t)----+ r(x,t)l r weakly measurable from Q to M1 (U)}, 

where the set M 1 (U) of probability measures on U is a subset of the space 
M(U) ~ C(U)* of Radon measures on U, and has here the relative weak star 
topology. We have 

R c L::;:(Q, M(U)) ~ L 1 (Q, C(U))* ~ B(Q, U)*, 

where L':/(Q, M(U)) is the set of (equivalence classes of) functions from Q to 
M(U) which are measurable w.r.t. a weak norm topology on M(U) (which co
incides on M 1 (U) with the relative weak star topology) and essentially bounded 
w.r.t. the strong dual norm on M(U), and B(Q, U) is the space of Caratheodory 
functions on Q x U in the sense of Warga (1972). The subset R is endowed with 
relative weak star topology. The sets M 1 (U) and Rare convex and, with their re
spective topology, metrizable and compact. For¢ E B(Q, U), andrE span(R), 
we use the notation 

¢(x, t, r(x, t)) := l ¢(x, t, u)r(x, t)(du). 

Note that this expression is linear in r. A sequence {rk} converges tor in R if 

lim r ¢(x,t,rk(x,t))dxdt = r ¢(x,t,r(x,t))dxdt, 
k->oo }Q }Q 
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for every¢ E B(Q, U), or equivalently for every 4• E C(Q xU) . In addition, we 
ident ify every classical control w(-, ·) with its as~:ociated Dirac relaxed control 
8w(· ,·)· Thus, we have W C R, and it is proved in Warga (1972) that W is dense 
in R. 

We denote by(-, ·) and I· I the inner product and norm in £ 2 (0.), by ((-, ·)) 
and 11·11 the usual inner product and the norm in the Sobolev space V := HJ (O.) 
and by < ·, · > the duality bracket between V and its dual V *. Define the family 
of bilinear forms on V 

d 

a(t, v , w) := L i aij (x , t) (fJvjfJxj )( fJw jfJxi)dx . 
·i,j=l S1 

In order to define the relaxed as well as the classical solutions of our problem, we 
shall first interpret the state equation in the following weak and relaxed form: 

< y",v > +a(t, y,v) 

y(x ,O) == y0 (x ), in 0., 

y' (x,O)= y1 (x), in 0., 

k f( x, t , y(x, t) , r(x , t) )v (x )dx, 

for every v E 1/ , a.e. in J , (5) 

(6) 

(7) 

where the deriva tives are taken in the sense of di~:tributions ( cf. Lions, 1969, p . 
115). Note that, accordingly to our nota tion, t he relaxed control r appears here 
in mean- value form. Defining the functionals 

Jm(r) := h 9m(x , t , y(x , t ), r (x, t ))dx dt , 0 .::; m:::; q, (8) 

the continuous relaxed opt imal control problem (CRP) is to minimize J0 (r) 
subject to t he constraints r E R, Jm (r) = 0, 1 :::; m :::; p , and Jm(r) :::; 0, 
p < m:::; q, where y = Yr is the (unique) solution of (2,5,6,7) . The continuous 
classical problem (CCP) is the problem CRP with addit ional constraint r E W . 

We suppose that the operators A(t) satisfy the following condit ions 

d d 

L aij(x, t) ziZj 2 a L zf , (x, t) E Q, .?:.i E: R , 1 :::; i:::; d, with a> 0, 
i ,j=l 

aij E C 1 (f, L00 (0.) ), i, j = 1, ... , d , 

aij = aji, i,j =1, . . . , d, 

which imply that 

a t , v ,w) :::; a1 llv w , t E J, v,w E V, 
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2 -
a(t, v, v) 2: a2!lvll , t E I, v E V, 

for some a 1 2:0, a 2 > 0, and that a(t,v,w) is symmetric. 
We suppose also that the function f is defined on Q x R x U, measurable 

for fixed y, u, continuous for fixed x, t, and satisfies 

if(x, t , y, u)i :::; F(x, t) + .BIYI, for every x, t, y, u, 

with FE L2 (Q), ,8 2: 0, 

if(x, t, Y1, u)- f(x, t, Y2, u)i :::; LIY1- Y2!, for every x, t, Y1, y2, u. 

Then, for every r E R, y0 E V and y 1 E L2 (D), it can be proved that 
equations (2,5,6,7) have a unique solution y = Yr, such that y E L00 (I, V), 
y' E L00 (I, L2 (D)) and y" E L2 (J, V*) (see Lions, 1972, Chap. 4, for the 
uniqueness in the linear case, and proof of Lemma 2.1 below, with fixed con
trol). It follows that y is essentially equal to a function in C(l,L2 (D)), that 
y' is essentially equal to a function in C(l, V*), and thus the initial conditions 
(6,7) make sense. 

LEMMA 2.1 The mapping r----> Yr, from R to L 2 (Q), is continuous. 

Proof. Let r E R be a fixed relaxed control. Let { rk} be any sequence con
verging tor in R, and set Yk := Yr,· Note that, since the bilinear form a(t, ·, ·) 
is defined on V only, we cannot directly replace v by y~ ( t) E L 2 (D) in ( 5). To 
overcome this difficulty, we shall use the following approximation. Since V is 
separable, there exists a sequence { vi}~1 such that the elements v1 , ... , Vn are 
linearly independent for every n, and the set span({vi}~ 1 ) is dense in V. For 
every k and n, define the approximate solution Ynk 

n 

Ynk(x, t) := 2.: (jnk(t)vj(x), 
j=l 

which satisfies 

n 

Ynk(O) =Yon = l:~Jnvj, 
j=l 

n 

(10) 

(11) 

where Yon ----> y 0 (resp. Yln ----> y 1 ) in V (resp. L 2 (D)) strongly. For example, 
we can choose Yon (resp. y1n) to be the projection of y0 (resp. y 1 ) onto the 
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space span( {·u1 , . .. , Vn}) in V ( resp. L 2 ( n)). By our assumptions, for each n, k, 
equations (9,10,11) reduce to a system of linear ordinary differential equations in 
the (jnl.:, which has a unique solution, with (jnk and c;;nk absolutely continuous 

on I (see Warga, 1972, Ch. II). Hence, in particular, Ynk, y~k E C(I, V). From 
equation (9) , with Vi replaced by y;.,k , we obtain 

( dj dt) [jy;,dt) 12 + a( t, Ynk(t), Yndt))] - at ( t, Ynd t), Ynk (t)) 

= 2(!( t, Ynk ( t), Tk ( t)), y;,k (t)), 

where at ( t , v, w) is defined by replacing the coefficients a·ij by aaij /at in a( t, v, w) . 
Integrating on [0, t], we get 

' 2 2 IYnk(t)i + a(t, Ynk(t), Ynk(t)) = IY1nl + a(CI, Yon, Yon) 

+it at(s, Ynk(s) , Ynk(s) )ds + 2it (.f(s, Ynk(s), rk (s) ), Y~k(s))ds. 
By our assumptions, it follows easily that 

' ' 2 2 1
t 

+c 
0 

[iYnk(s)i + IIYnds)ll J ds. 

Hence, by Gronwall's inequality 

iY;,k(tW + 11Ynk(t)ll2 ~ c, t E f, 

which shows, in particular, that the double sequence {Ynd (resp. {y~k}) is 
bounded in £ 2(1, V) (resp. £ 2(Q)). Now, let {b'n,,k,J~=l be any subsequence 
such that nl-' ___. oo and k~-' ___. oo. By the Alaoglu- Bourbaki theorem, there 
exists a subsequence {Yn,,kJ (same notation) such that 

Yn,,k, ---t z in £ 2 (1, V) weakly, 

y;,,,k,, ___. z in £ 2 (Q) weakly. 

We have, for every v E V and ¢ E C~(J) 

iT (y;,,k,,,v)¢(t) dt =- i T (Yn, k,,,v) ¢' (t) dt, 

and passing to the limit we sec that z = z' (Lemma 1.1 in Temam, 1977, p. 
250) . By the Aubin compactness theorem (see Temam, 1977, p . 271), we can 
suppose also that 

Yn , k,, ---t z in L 2 
( Q) strongly. 
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We can then pass to the limit (in J..L) in the approximate equations (9,10,11) 
in weak integrated form (see Lions, 1972), using here Proposition 2.1, from 
Chryssoverghi (1986), for the term containing f, to show that z = Yr· Since the 
limit Yr is unique, it follows by contradiction that Ynk-----+ Yr, in L2 (Q) strongly, 
as n, k -----+ oo. Note that the above proof shows, in particular, that for each k, 
i.e. keeping the control rk fixed, we have Ynk ---> Yk := Yrk in L2 ( Q) strongly, as 
n---> oo. These convergences imply that, for given c:, there exist Nk, for each k, 
such that 

IIYk- Ynkli£2(Q) :S c:/2, for every n :2: Nk, 

and N such that 

IIYnk- Yrii£2(Q) :S c:/2, for every n :2: Nand k :2: N. 

Hence, for each k :2: N, by choosing some n 2 max(N, Nk), we get 

IIYk- Yrii£2(Q) :S c. 

Therefore Yk -----+ Yr in L2 (Q) strongly, which proves the lemma, since R is 
metrizable. 

• 
In order to prove the existence of an optimal relaxed control, we suppose 

in addition that the functions 9m, 0 :::; m :::; q, are measurable for fixed y, u, 
continuous for fixed x, t, and satisfy 

lgm(x, t, y, u) I :S Gm(x, t) + l'miYI2
, for every x, t, y, u, 

with Gm E L1 (Q), I'm :2: 0, 0 :S m :Sq. 

LEMMA 2.2 The functionals Jm, 0 :::; m :::; q, are continuous on R. 

Proof. Follows from Lemma 2.1 and Proposition 2.1. of Chryssoverghi (1986) . 

• 
THEOREM 2.1 If there exists an admissible control, i.e. a control satisfying the 
constraints, then there exists an optimal control for the CRP. 

Proof. By Lemma 2.2, the set RA C R of admissible controls is closed, hence 
compact, and the functional J0 is continuous. The theorem follows. 

• 
In order to derive necessary conditions for optimality, we suppose in addition 

that f~ and g~Y' 0 :::; m :::; q, exist, are measurable for fixed y, u, continuous for 
fixed x, t, and satisfy 

l9;ny(x,t,y,u)l :S Glm(x,t) +I'ImiYI, for every x,t,y,u, 

with Glm E L 2 (Q), /'lm :2: 0, 0 :S m :Sq. 

Since f is Lipschitzian, we have also 

lf~(x,t,y,u)l :::; L, for every x,t,y,u. 
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LEMMA 2.3 For f..L 2 0, r E R , 1"\ E R, i = 0, .. , p, ,. B = (Bo , . . . , B/.1.) , with Bi > 0, 
i = 0, .. . , p,, and L:r=o Bi ::; 1, set re := r + L::r=o Bi ('r.i- r), y := Yr, Ye := Yr8 , 

6.ye := Ye - y. Then 

lltJ.yeiiP(QJ::; ci iBII=, 

where IIBII= = maxiBil-
• 

Proof. Let Yne (resp. Yn) be the solution of equations (9,10,11), where Ynk is 
replaced by Yne (resp. Yn) and rk by ro (rcsp. r) . Setting tJ.y,e := YnfJ- y," we 
have 

( tJ.y;~e ( t), 6.y;,8 ( t)) + a( t, 6.yne ( t), 6.y;,0 ( t)) 
= (J(t , Yno, re)- f(t, Yn , r), tJ.y~e (t)) 
= (J( t, Yno, re) - f( t, Yn , re) , 6.y~0 (t)) 

/.1. 

+ :L Bi(J(t, Yn , fi- ri), tJ.y;,e(t)). 
i=O 

Since f is Lipschitzian, we deduce, similarly to the proof of Lemma 2.1, c de
noting various constants, that 

hence, using Gronwall's inequality 

II6.Yne lli2(Q) :S clltJ..y,ellioo (J,£2(0)) :S cll6.ynelli=(J,V) 

::; ciiBIIZxo t lr if(yn ,1\- rWds 
i=O O 

::; ci i B I I ~ (p, + 1)[11FII£2(QJ + ,BIIYn ii£2(Qll2
-

By Lemma 2.1 , with fixed control, Yn ---> y, Ynl:i ---> Ye and 6.yne ---> 6.ye , in 
L2 ( Q). Therefore 

LEMMA 2.4 Dropping the index m , with the notation of Lemma 2.3, we have 

/.1. 

J[r + :L Bi(fi - r)]- J (T) 
i=O 

= tei 1 H(x,t, y(x, t),¢(x,t), fi (x,t) -- r (x,t))dx dt +o(IIBII= ), 
i=O Q 
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where, for each function g, the general Hamiltonian H is defined by 

H(x, t, y, ¢, u) := cpf(x, t, y, u) + g(x, t, y, u), 

and the general adjoint state ¢ := ¢r satisfies 

¢" + A(t)¢ = f~(y, r)¢ + g~(y, r), in Q, 

¢(x, t) = 0, in L:, 

¢(x, T) = ¢' (x, T) = 0, in 0, 

(12) 

(13) 

(14) 

(15) 

where y := y, .. In particular, for 11 = 0, r, r E R, the directional derivative of J 
is 

DJ(r, r- r) := lim [J(r + B(r- r))- J(r)]/B 
11-+0+ 

= k H(x, t, y(x, t), ¢(x, t), r(x, t) - r(x, t))dx dt. 

Proof. Under our assumptions on g and g~, for given r E R, it can be proved 
(similarly to Warga (1972), II.6.7, II.6.8 and VIII.2.2, using essentially the 
mean-value theorem and the Lebesque dominated convergence theorem) that 
the functional W, with 

'lf(y) := k g(x, t, y, T)dx dt, 

defined on L 2 
( Q)' has Frechet derivative w'' with 

w' (y)!.iy = k g~(x, t, y, r)!.iydx dt. 

By Lemma 2.3, we have 

J(To)- J(r) = k[g(yo,ro)- g(y,ro) + g(y,ro)- g(y,r)]dxdt 

J-L 

= 1 g~(y, r)!.iyodx dt + 2.: ei 1 g~(y, r:i - r)Liyodx dt 
Q i=O Q 

+o(IIBIIoo) + tei 1 g(y,i'i- r)dxdt 
i=O Q 

= 1 g~(y, r)!.iyodx dt + t ei 1 g(y,ri- r)dx dt + o(IIBIIoo)· 
Q i =O Q 

Since !.iy11 (0) = !.iy~(O) = ¢(T) = ¢' (T) = 0, integrating by parts, we obtain 
from the state equation 

T {T 
(!.iy~, ¢')dt + /n a(t, Liyo, ¢)dt 
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= 1 f~(y, r)6.yo¢dx dt + t ei 1 f(y, i'i -· r)<j;dx dt + o(llelloo), 
Q i=O Q 

and from the adjoint equation 

-1T (¢', 6.y~)dt + 1T a(t, ¢, 6.w)dt 

= k f~(y, r)¢6.yodx dt + k g~(y, r)6.yodx dt, 

and the lemma follows. 

The following theorem states necessary conditions for optimality. 
• 

THEOREM 2.2 If r E R is optimal for either the CRP or the CCP, then r is 
extremal, i.e. there exist multipliers Am E R, 0 :::; m, :::; q, with >-o 2': 0, 
Am 2': 0, p < m,:::; q, and L~,=O 1>-ml # 0, such that 

and 

H(x, t , y(x, t) , <j;(x, t), r(x, t)) 

= minH(x,t , y(x, t),<j;(x,t) ,u), a.e. in Q, 
uEU 

(16) 

(17) 
q 

where H and¢ are defined by {12) and {13,14,15), withg replaced by L Am9m· 
m=O 

Proof. Let 
p 

s := {e E R~+ll L em:::; 1}. 
m=O 

By Lemma 2.4, the functions 

e---> Jm(ro), 0:::; m:::; q, 

from S toR, have a derivative at 0 (see Warga, 1972), and by Lemma 2.2, the 
functionals Jm are continuous on R. If r is optimal for the CRP or the CCP, 
then, by Theorem V.3.2 in Warga (1972), p. ~:10, t here exist multipliers as 
above such that 

q 

L AmDJm(r, i'- r) 2': 0, for every i' E R, 
m=O 

which is equivalent to (16) (see Warga, 1972, p. :::60) , and such that (17) holds . 

• 
We have also the following continuity result, whose proof is similar to that 

of Lemma 2.1. 

LEMMA 2.5 The mapping r---> ¢r, from, R to L 2 (Q), is continuous. 
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3. The discrete optimal control problems 

We shall now discretize our continuous optimal control problems. For simplicity, 
we suppose that the domain n is a polyhedron. 

For every integer n, let { Si} ~~~n) be an admissible regular triangulation (see 

Temam, 1977, p. 73) of D into closed d- simplices, {Jj}fJ~l)-l a subdivision of 

the interval! into N(n) intervals Ij1 := [tj', tj1+1 ], of equal length 6.t = TjN, and 

{ Bk} ~~~) a partition of Q into P(n) Borel subsets with maxk[diam (B[' )] --+ 0, 
as n --+ oo. Set Qij := Si x Tj. For example, the B[' may be unions of some 
of the Qij. Let vn C V be the subspace of functions which are continuous on 
D and affine on each SJ1

• Let Rn c R be the set of piecewise constant relaxed 
controls 

R11 := {r 11 E Rlr11 (x, t) := r[' E lvh(U), on B[', k = 1, ... , P}, 

and wn := Rn n W the set of piecewise constant classical controls. 
For given values vj, j = 0, ... , N, in a vector space, we define the following 

functions, a.e. on 1 
0 

v~(t) := vj, t Elj', j = 0, ... , N- 1, 

0 
v~(t) := v_j'+l, t Elj', j = 0, ... , N- 1, 

v~(t) :=the function which is affine on each Ij' , such that 

v~(tj) = v'], j = O, ... ,N. 

For a given discrete relaxed control r 11 
: = (ri\ . . . , r[', . . . , rrp), the corresponding 

d . t t t n ·- ( n n n ) . . b 1scre e s a e y .- Yo, .. . , Yj, .. . , YN 1s given y 

y']+I - y_j' = 6.tzj1+1 , j = 0, ... , N - 1, 

(1/6.t)(zj'+I- zj,v) + a(tj+l,Y_f1+I,v) = (fj',v), 
for every v E V 11

, j = 0, ... , N - 1, 

n n . n n vn · _ 0 N Yo, z0 given, Yj , zj E , J - , ... , , 

Jj(x) := (1/ 6.t) 1~, f(x, t, yj1 (x), r"(x, t))dt, j = 0, . .. , N - 1. 
J 

Choosing a basis { vJ.L} in vn and writing 

(18) 

(19) 

(20) 

(21) 
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we reduce equations (18,19) to a linear system of the form 

c = b.tc' + b, (22) 

(23) 

where D and E are the corresponding mass and stiffness matrices, respectively. 
This system is regular since (23) has a posit ive definite matrix. Defining t he 
discrete functionals 

J;:,(rn) := k 9·m(X, t, y':_ (x, t), r"(x, t))dx dt, 0:::; m :::; q, 

the discrete constraints are rn E R n, either of the two following constraints 

J n (rn) = t:n 1 <m< P 1n m' - - l 

and 

(24) 

(25) 

(26) 

where the c:~, 1 :::; m :::; q, are given numbers. The discrete relaxed problem 
DRP" (resp. DRP'") is to minimize J0(1·") subject to t he above constraints, 
case (24) (resp. (25)) . The discrete classical problem DCP" is the problem 
DRPn with the additional constraint rn E W " . 

T HEOREM 3.1 If theTe exists an admissible contml joT any of the above disaete 
pmblems, then theTe exists an optimal control jo1· this problem. 

Proof. We first remark that the convergence in R" = [M1(U)]P implies the 
convergence in R, hence in each set ~j of restrictions ri-Q .. , for 7' E R. The ,, 
continuity of the mapping T" ----> y71 is proved by induction on j, using system 
(22,23), and Proposition 2.1, from Chryssoverghi (1986) . The same proposition 
shows that the functionals J;:, arc continuous. The existence of an optimal 
control for the DRP" and the DRP'" follows then from the compactness of the 
set R A. of admissible discrete relaxed controls. The existence for the DCPn is 
easily proved, using here the ordinary topology of wn. 

• 
LEMMA 3.1 Dropping the index m, define the geneml discrete 1·elaxed adjoint 
state </Jn = (<PR, ... , </Jj', ... , </J'N) by 

</Jj+1 - </J'] = b.t'l/J'/, j = N- 1, ... , 0, (27) 
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for every V E v n, j = N- 1, ... ' 0, (28) 

f~'}(x) = (1/ !::.t) 1~J~(x, t, yj, r")dt, j = 0, ... , N- 1, 
J 

(29) 

g~j(x) = (1/ !::.t) 1':' g~(x, t, y'J, r 71 )dt, j = 0, ... , N- 1. 
J 

(30) 

The directional derivative of the functional Jn on Rn is given by 

DJn(rn rn - rn) = 1 H(x t yn ,~,.n r11
- rn)dxdt ' ' ' _,'+'+' ) 

Q 

where H is defined by {12}. 

Proof. (Outline.) The proof parallels that of the continuous case (Lemmas 
2.3 and 2.4). The discrete analogue of Lemma 2.3 is first proved similarly to 
Lemma 4.2 below. The analogue of Lemma 2.4 is then proved by interpreting 
the discrete estimates and the discrete equations in terms of y":.., y'j:, y~ , etc ... 
and using the discrete integration by parts formula 

which is directly verified. 

• 
THEOREM 3.2 Ifrn is optimal for the DRP'n, then r 11 is extremal, i.e. there 
exist multipliers A~ E R , 0 S m S q, with Ni 2: 0, A~ 2: 0, p < m S q, and 
L~=O IA;;.I = 1, such that 

and 

{ H (x, t, y'.:_, cp~, r/Jdx dt = 
j BJ: 

min { H(x,t, y'.:.,cp~,u)dxdt, k = 1, ... ,P, 
u.EU }BJ: 

A~[J~(rn)- e:~ ] = 0, p <m S q, 

(32) 

(33) 

where H,yn, cpn are given by {12}, {18}, {19,20,21} and {27-30} with g replaced 
by L A;;.9m· 
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Proof. Follows from Theorem V.2.3 in Warga (1972), p. 303, noting t hat the 
inequality 

or 

q 

L ).~DJ;:.(rn, in- rn) ~ 0, for every fn ERn, 
m=O 

p 

L 1 H(x,t,y'.!:_,if/}t_,f~ - r~)dxdt ~ 0, for every 7~n ERn, 
k=l B~ 

is equivalent to (32), since the f~ are independent. Relations (33) are the 
transversality conditions. 

• 
4 . Convergence 

In this section we s tudy the behaviour of the discrete problems in the limit, as 
n ---+ oo. We first state the following control approximation lemma which is 
proved in Chryssoverghi et al. (1993); see also Roubicek (1991). 

LEMMA 4.1 For every r E R, there exists a sequence {un E Wn} such that 
un-+ r in R. 

LEMMA 4. 2 (Stability) For every rn E Rn, if I IY~ 11 and lz~ I remain bounded 
and b..t is sufficiently small, then 

IIY.il l ~ c, j = 0, ... ,N, 

lzj l ~ c, j = 0, ... , N, 

N-l 

L IIY.i+I - Yj ll2 ~ c, 
j=O 

N-1 

L izj+l - zj'l2 ~c. 
j =O 

Proof. It is easily proved (see Chryssoverghi et al. , 1993) that 

If;'!~ Fj' + ,Biyjl, 

where 

F n · j . -
( ) 

1/2 

(1/ b..t) kxr; F 2
dxdt 

(34) 

(35) 

(36) 

(37) 
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We have, since Y':/+1 - y';/ = D.tzj+l 

(z_?+l- zj,zj+l) + 6.ta(t'J+1 ,yj+l,zj'+l) = D.t(fj',zj'+l) . 

Hence, by the assumptions and the mean value theorem 

I n 12 I "12 + I n "12 + (t" n n ) zj+l - zj zj+l - zj a j+l, Yj+l, Yj+1 
(tn n ") + "t2 (t" n n ) -a j 'Yj 'Yj u a j+1' zj+1' zi+1 

:::; la(tj'+l, Yj, Yj) - a(tj', Yj, Yj') I + 26.tl(fj, z.f+l)l 
:::; c' 6.tllvj'll2 + c6.t((Fj)2 + llvj ll2 + lzjl2 + lzj+l- zj'I2

) -

Assuming that c6.t:::; 1/2 (where c does not depend on the triangulation of n), 
and summing over j, we obtain 

i 

lzf+ll2 + (1/2) L lzj~l- zjl2 + a2 IIY-i+1ll 2 + a2 L IIY]+I- Y]W 
j~ j~ 

i 

:::; lz(W + a1llvoW + c11FIIl2cQ) + c" D.t 2:)11vj'll2 + lzjl2
), 

j=O 

and the lemma follows from the discrete Gronwall inequality (see Lees, 1960) . 

• 
From now on, we choose (for example) y0 to be the projection of y0 onto 

vn in V and zg the projection of y 1 onto V" in £ 2(0). This implies here that 
yg--+ y0 in V strongly and that zg--+ y1 in L2 (f1) strongly. 

LEMMA 4.3 (Convergence) If r" --+ r in R, then the corresponding discrete 
states y~,y+.,y~ converge toy,. in L 2 (Q) strongly, as n --+ oo . 

Proof. Since llvO'I I and lzQ'I are bounded, inequalities (34), (35) show that 
y~,y+.,y~ are bounded in £ 2 (!, V) and that z~,z+.,z~ are bounded in L2 (Q). 
By inequalities (36), (37), we have 

y~- y"!:_ --+ 0, in £ 2 (!, V) and in L2 (Q) strongly, 

z~- z"!:_ --+ 0, in L 2 (Q) strongly. 
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It follows easily that 

yf_- y~---> 0, in L2 (Q) strongly, 

z~~- z~ ---> 0, in L2 (Q) strongly. 

Therefore there exist subsequences y"'}:_, yf_, y~ converging to some y in £ 2 (I, V) 
weakly, hence in £ 2 ( Q) weakly, and subsequences z"'}:_, zf_, z~ converging to some 
z in L 2 (Q) weakly. By the Aubin compactness theorem (Temam, 1977, p. 271), 
there exists a subsequence y~ converging to the same y in £ 2 

( Q) strongly, hence 
y"'}:_ , yf_ converge to y in £ 2 ( Q) strongly, for the corresponding subsequences. 

In order to pass to the limit in the discrete equations, let v E C;;xo(O), 
~ E C 1 (J), with ~(T) = 0, w := v~ , v 11 (resp. ~n) the continuous piecewise 
affine interpolant of v (resp. ~ ), with respec1; to the partition of o (resp. I) , 
and W 11 := vn~n . The discrete state equation (19), with v = wj+1 , yields by 
summation 

1
T 

1
T rT 

((z~)' , wf-)dt+ a(tf-,yf-,wf-)dt== J (f(t , y"'}:_ , r 11 ),wf-)dt, 
o o lo 

hence, by the discrete integration by parts formula (31) 

-faT (z'.:_, (w~)')dt + 1T a(tf-, y'f_ , wf-)dl~ = 

faT (f(t, y'.:_, r 11
), wf-)dt + (zb', v11 )~(0). 

Moreover, since (y~)' = zf_, then, by integrating by parts, we get 

Now, we have clearly 

z"'}:_, zf_---> z in L 2 (Q) weakly, 
(w~) ' ---> w' in L 00 (Q) strongly, 
tf- ---> t in L 00 (I) strongly, 
yf_ ---> y in £ 2 (1, V) weakly, 
wf- ---> w in L 00 (I, V) strongly, 
y"'}:_,yf_,y~---> y in £'2(Q) strongly, 
rn ---> r in R, 
wf_---> w in L2 (Q) strongly, 
zQ' ---> y 1 in £ 2 (0) strongly, 
YO' ---> y 0 in V strongly, 
vn ___. v in C (O) strong:lv. 
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We can thus pass to the limit in the above two equations, using Proposition 2.1, 
from Chryssoverghi (1986), for the term containing j, to obtain 

-1T (z, v)( dt + 1T a(t, y, v)~dt = 1T (f(t, y, r), v)~dt + (y1
, v)~(O), 

and 

which hold for every v E V, since C~(D) is dense in V. Choosing first ~ E 

C~(I), these equations yield y' = z and equation (5) (see Temam, 1977, p. 
250). Finally, integrating by parts, we obtain the initial conditions (6), (7). 
Therefore, y = Yr, and the convergences of the lemma hold for the original 
sequences. 

• 
LEMMA 4.4 If rn-+ r in R, then J;~(r11)-+ Jm(r), 0 ~ m ~ q, as n-+ 00. 

Proof. We have 

J,';:.(rn) = fogm(x,t,y'.::_,rn)dxdt, 

and the lemma follows from Lemma 4.3. and Proposition 2.1 from Chryssoverghi 
(1986). 

• 
First we study the behaviour in the limit of optimal discrete controls. We 

assume that the CRP is feasible. Consider the DRP71 (resp. DCP11
). In the 

presence of state constraints, we assume that the sequences {E;::_.}, in (24) and 
(26), converge to zero as n-+ oo and satisfy 

IJ;,~(r71 )1 ~ E~, 1 ~ m ~ p, 

J n (-n) < n n > 0 < < m r _ Em, Em _ , p 171 _ q, 

for every n, where {r E Rn} (resp. {rn E wn}) is a sequence converging to 
some optimal control r of the CRP. Such sequences exist since, by Lemma 4.1, 
there exists a sequence {r71 E Wn} such that r" -+ r , for some optimal r, and 
by Lemma 4.4 

lim J;.:,(r'"') = Jm(r) = 0, 1 ~ m ~ p, 
71---+(X) 

lim J;.:,(r11
) = Jm(r) ~ 0, p < m ~ q. 

n-+oo 

In particular, the DRPn (resp. DCP11
) is thus feasible for every n. We have the 

following, rather theoretical, result. 
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THEOREM 4.1 For each n , let r" be optimal for the DRPn {resp. DCPn ). Then 
the sequence {r"} has accumulation points, and .~very such point is optimal for 
the CRP. 

Proof. Since R is compact, let {r"} (same notation) be a subsequence conver
ging to some r E R. Since rn is optimal and rn a,dmissible for the DRP" (resp. 
DCP" ), we have 

J'Q(r"') :::; Jo'(rn), 

IJ:;,',(rn) l ::=; c:~, 1 ::=; m ::=; p, 

J" (rn) < en p < m < q 
111. - m ' - ' 

Taking the limit and using Lemma 4.4, we see that r is optimal for the CRP. If 
there are no state constraints, by using any sequence {r" E wn} converging to 
some optimal control of the CRP, we also obtair in the limit that r is optimal 
for the CRP. 

• 
In the presence of inequality state constrain·;s only, under appropriate as

sumptions, we can take c:;;, = 0 in the discrete state constraints, following the 
approach of Casas (1996) . Given 8 E R , define the parametrized continuous 
problems CRP0 and CCP0 , with state const raints Jm :::; 8, 1 :::; 1n :::; q, and 
discrete problems DRP;5 and DCP;5, with constraints J;;, :::; 8, 1 :::; m:::; q, and 
suppose that 

(i) 6 := inf{81 the CRP0 is feasible}< 0, 
(ii) the CRP0 is stable to the left , i.e. lim (min CRP0 ) =min CRP0 . 

0-->0-
Note that since W is dense in R, we have 

b =min { max Jm(r)} = inf { max Jm(w)}, 
TER l:S:m:S:q wEW l:S:m:S:q 

Condition (i) implies that the CRP 0 is feasible for every 8 2:: band not feasible 
for every 8 <b. It follows from condition (i) and Lemmas 4.1 and 4.4 that the 
DRP0 and the DCP0 are feasible for n sufficiently large. If b < 0, condition (ii) 
implies that t he CRP0 is stable, since it is always stable to the right, if b:::; 0. 

For b :::; 8 < 0, it can be shown that 

min CRP0 :::; inf CCP0 :::; min CRP0 :::; inf CCP0 . 

Now suppose that 6 < 0 and that the CCP0 is stable, i.e. 

lim(inf CCP0 ) = inf CCP0 . 
0-->0 

Then min CRP0 = inf CCP0 (Casas, 1996) , hence condition (ii) holds. Note 
that conditions (i) and (ii) also imply that 

min CCPo = inf CCPo. 
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Since the function () --+ min CRP o, defined on [8, +oo), is non increasing, 
it is continuous (i.e. the CRPo is stable) for every () ~ 8, except at most a 
countable number of them. This assures us in some manner that the CRPo is 
almost always stable. 

Under conditions (i) and (ii), Theorem 4.1, with c-;~, = 0, remains valid. To 
see this, let { r 11

k} be a subsequence of { rn} such that r"k --+ r E R, where r 
is feasible for the CRP0 by Lemma 4.4. Now let 8 < 8 < 0 be given, and let 
T{j be optimal for the CRP{j. There exists a sequence {rg E W 11

} (Lemma 4.1) 
such that r6 --+ r6 , where rl;' is feasible for the DRP0 (resp. DCP0), for n ~No 
(Lemma 4.4). We have 

and taking the limit , as k--+ oo 

Jo(r) :::; Jo(rti)· 

Finally, 

J0(r) :::; lim J0(r15) = lim (min CRPli) =min CRPo, 
{j ...... Q- {i ...... Q-

which shows that r is optimal for the CRP0 =CRP. 
Next, we examine the behaviour in the limit of extremal discrete controls. 

This is motivated by the fact that numerical optimization methods often com
pute approximations of extremal controls. We shall need the following lemma 
whose proof is similar to that of Lemma 4.3. 

LEMMA 4.5 If rn --+ r in R, then the corresponding discrete adjoint states 
¢'!:.., ¢+., ¢"')., converge to ¢r in L 2 (Q) strongly, as n--+ oo. 

Now consider the DRP'n. Sequences {c~J, in (25) and (26), converging to 
zero and such that the DRP'n is feasible for every n can be constructed here as 
follows. Let 7'71 be any solution of the unconstrained problem 

c11 := min {~[J71 (r11 )] 2 + ~ [max(O,J"(r11
))]

2
}, 

rnERn ~ 1n L...,; m 
m = l m = p+l 

and set 

- n _ Jn (-n) 1 < < Em - m r , _ m _ p, 

"t11 = n1ax(O J 11 (r11
)) p < m < q 

m ' n1 ' - · 

Let r be an admissible control of the CRP and { r 11
} a sequence converging to 

r. We have 

lim J~~(rn) = Jm(r) = 0, 1:::; m :::; p, 
n->oo 
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lim J;~(r") = Jm(T) :=:; 0, p < m :=:; q, 
n->oo 

which show that en ----> 0, hence E"~ ----> 0, 1 ::::• m :=:; q. Now choose c:;~ = E;~" 
1 :::; m :::; p, and c:~ such that c:;~, 2 E"~, and c:;~, ---+ 0, p < m :::; q. Then clearly 
the DRP'" is feasible for every n. We suppose that the c:~, 1 :=:; m :=:; q, are 
chosen as above. 

THEOREM 4.2 For each n, let rn be admissible and extremal for the DRP'". 
Then the sequence {r"} has accumulation p01:nts, and every such point is ad
missible and extremal for the CRP. 

Proof. Since R is compact and Lm lA;~, I = 1, we can suppose that r" ----> r E R 
and A~1 ----> A111 , as n----> oo, with Lm IAml = 1, Ao 2 0, Arn 2 0, p < m :=:; q. By 
Lemmas 4.1, 4.3, 4.5 and Proposition 2.1, in Chryssoverghi (1986), we have, for 
given r E R and y:n ----> r 

q q 

""AmDJm(r, r- r) = lim "" A~1DJ;~(rn , y:n- r11
) 2 0, 

~ n-+(X) L._.; 
m = O m = O 

Amlm(r) = lim A;~,[J;:,(rn) - c:;~,] = 0, p < m :=:; q, 
n->oo 

Jm(r) = lim [J;;,(r'') - c~] = 0, 1 :=:; m :=:; p, 
n->oo 

J711 (r) == lim [J,';;,(r") - c:;.:,_] :=:; 0, p < m ::; q, 
n-+oo 

which show that r is extremal and admissible for the CRP. 

• 
5. Final comments 

In order to obtain in the limit the strong relaxec. minimum principle, we have 
used the relaxed discrete problems, since (i) the strong discrete classical mini
mum principle does not hold in general (see Canon et al., 1970), and (ii) weak 
discrete classical necessary conditions obviously cannot yield the strong condi
tions in the limit. 

Optimization methods, when applied to the discrete relaxed problem, usu
ally compute discrete Gamkrelidze controls. These controls, which are convex 
combinations of Dirac relaxed controls, can chen easily be approximated by 
piecewise constant classical controls by a simple procedure (see Warga, 1972, 
and Chryssoverghi et al. , 1997). 

Finally, the authors wish to thank the referees for their many useful remarks. 
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