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Abstract: It is known that the procedure called Grade Cor­
respondence Analysis (GCA) transforms any bivariate contingency 
table into an approximation of table with a very regular positive 
dependence, called total positivity of order two (TP2). This fact is 
reminded in Sections 2 and 3, illustrated there by the GCA trans­
formation of an artificial contingency table T 8 x6. A search for rows 
and/or columns of table Tsx6, which most strongly outlie from the 
TP2 pattern, is described in Section 4. Section 5 presents the outliers 
found in three large contingency tables, containing the occupational 
mobility data from Britain and Poland and the parliamentary elec­
tion data from Poland. 
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1. Introduction 

Commonly, the term outlier designates such an element of a considered set, 
which is far from "the main body of elements". Data analysts have been espe­
cially interested in univariate and multivariate outliers occurring in data ma­
trices (see, e.g. Bartkowiakowa and Szustalewicz, 1997). In case of contingency 
tables, gross errors are being traced as well as any non-robust behaviour of the 
contents of particular cells; moreover, statisticians used to test whether a ta­
ble as a whole can be treated as a random sample from a particular model of 
bivariate distributions, etc. 

In the present paper we propose a procedure which finds out which rows 
and I or columns of a bivariate contingency table most strongly outlie from the 
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It is shown that the first step should rearrange rows and columns in order to 
maximise the value of Spearman's rho. This t ransformation is called the Grade 
Correspondence Analysis (GCA), introduced in Ciok et al. (1995). GCA and 
its link with the TPz pattern is described in Sections 2 and 3, referring to facts 
established by Kowalczyk (2000). 

Exclusion of outliers among rows and columns is very important in ex­
ploratory data analysis. Here we will only ment ion that it is a necessary prelimi­
nary procedure preceding clustering of rows and of columns based on GCA. Gen­
erally, we believe that it will be an important tool of recognising the structure 
of a contingency table, and this is the direction of the author 's further research. 

2. Grade Correspondence Analysis 

2.1. Contingency tables Tmx2 

In this section we consider bivariate contingency tables with two columns, de­
noted Tm x2 = (Niji i = 1, ... ,m, j = 1,2) . In an artificial example given in 
Table 2.1a, rows correspond to school regions and row total Ni fori= 1, . . . , m 
denotes the number of pupils who finished school in region i during the last three 
years. Each total Ni splits into the numbers of those who failed to become a 
student (Nil) and those who became students (Ni2 ). The regions are presumed 

Table 2.1a. Numbers of pupils ' failures and successes. 

regioni Nil (failure) Ni2 (success) Total (Ni) 
1 2470 618 3088 
2 1600 1530 3130 
3 150 100 250 
4 400 170 570 
5 1650 70 1720 
6 330 120 450 
7 200 194 394 
8 200 198 398 

Total 7000 3000 10000 

Table 2.1b. Probability table and its column distributions. 

regioni Pil (failure) Pi2 (success) Total (Pio) Pol Po2 
1 0.2470 0.0618 0.3088 0.35286 0.08829 
2 0.1600 0.1530 0.3130 0.22857 0.21857 
3 0.0150 0.0100 0.0250 0.02143 0.01429 
4 0.0400 0.0170 0.0570 0.05714 0.02429 
5 0.1650 0.0070 0.1720 0.23571 0.01000 
6 0.0330 0.0120 0.0450 0.04714 0.01714 
7 0.0200 0.0194 0.0394 0.02857 0.02771 
8 0.0200 0.0198 0.0398 0.02857 0.02829 

- . ' ... _ ...... ~ - - - ... -
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Table 2.1c. Indices of overrepresenta­
tion for Table 2.1a. 

region; hi1 (failure) h;2 (success) 
1 1.1427 0.6671 
2 0.7303 1.6294 
3 0.8571 1.3333 
4 1.0025 0.9942 
5 1.3704 0.1357 
6 1.0476 0.8889 
7 0.7252 1.6413 
8 0.7179 1.6583 

Table 2.1d. Permuted table of indices of over­
representation when regions are ordered according 
to increasing likelihood ratio (last column). 

regioni h;1 (failure) h;2 (success) Pii2/P;p 
5 1.3704 0.1357 0.0990 
1 1.1427 0.6671 0.5838 
6 1.0476 0.8889 0.8485 
4 1.0025 0.9942 0.9917 
3 0.8571 1.3333 1.5556 
2 0.7303 1.6294 2.2313 
7 0.7252 1.6413 2.2633 
8 0.7179 1.6583 2.3100 
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to be preliminarily somehow ordered, e.g. according to summarised results of 
final school exams. Denote 

m m 2 

Pij = Nij('f:J Ni, Pej = I:>ij, Pi• = L:>ij, Pili= Pii/Pej, 
i=l i=l i=l 

P. j=(PliJ,···,Pmij), i=1, ... ,m, j=1,2. 

The ratio Pii2/Pill, called the likelihood ratio and calculated in Table 2.1d, is 
the ratio of odds of an alumnus in region i to become and to not become a 
student. It is seen that initially the odds are not ordered increasingly (i.e. 
they are not matched with the results of final school exams). So we have two 
orderings of regions: the initial one and that corresponding to increasing odds 
as in Table 2.1d. The second ordering ensures maximal separation between the 
conditional column distributions P. 2 and P. 1, calculated on the basis of the 
so-called concentration curve of P. 2 w.r.t. P. 1. The curve is shown in Fig. 2.1 
as curve C. It consists of eight segments joining the following points 

(0, 0), (Plil,Pli2), (Plil + P211,P112 + P212), 

(Plil + P211 + P3il,Pli2 + P212 + P3i2), · · · , (1, 1). 
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Figure 2.1. Concentration curves C and Cmax (below C) for column distrbutions 
in Table 2.1b. For Cmax, regions are ordered 5, 1, 6, 4, 3, 2, 7, 8. 

Under curve C there lies the concentration curve for column distributions 
permuted to make the likelihood ratios increasing as in Table 2.1d; this curve is 
called the maximal concentration curve and is denoted Crnax· The integral 

2lt (t- C(t)) dt, (2.1) 

called the concentration index and denoted ar(P.2 : P. 1), is a numerical measure 
ofseparation between these two column distributions. The concentration index 
for Cmax is denoted armax· The indices ar and armax for C and Cmax shown in 
Fig. 2.1, which are easily expressed geometrically by means of the areas between 
the diagonal and the curves, are equal to 0.0240 and to 0.4455 . 

The probability table can be transformed into a continuous distribution de­
fined on the unit square with the density function which is constant on rectangles 

i-1 i j- 1 j 

Rij = { (u, v): LPs• ~ U ~ LPs•• LP•i ~ V ~ LPs• }, 
s=1 s= l t=1 t=1 

i = 1, ... , m, j = 1, 2, 

and is equal on Rij to 
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This ratio hij (see Table 2.1c) will be called the overrepresentation index for 
cell ( i, j), since it shows overrepresentation of the contents of cell ( i, j) as related 
to its fair representation emerging from the marginals. The density hij on Rij is 
called grade density of Table Tmx2· The corresponding correlation coefficient, 
called the gmde correlation of table T m x 2 and denoted p* (and also named 
Spearman's rho), is related to ar(P.2: P. 1) by the formula 

Note that another well-known dependence measure called Kendall's tau and 
denoted T is defined by the formula 

so that for any table with two columns (or two rows) p*(Tmx 2 ) = (3/2)T(Tmx 2). 
We see from Table 2.1d that the rearrangement of regions according to in­

creasing likelihood ratio results in a rather strong overrepresentation of failures 
in case of the initial region No 5 and of successes in case of the last regions No 3, 
2, 7, 8, while rather strong underrepresentation appears for successes in regions 
No 5 and 1. 

The related concentration index can be expressed as (Kowalczyk, 2000): 

1 
m m 

ar(P.2 : P.I) = --L L (PiiPj2 = PiiPi2)· 
P• IP•2 i=l j=i+l 

Its value for column distributions in Table 2.1b is 0.4455. 
It is immediately seen that the likelihood ratio of the column distributions 

is increasing if and only if for all pairs ( i, j), i = 1, . . . , m, j = i + 1, . .. , m, the 
following inequality is satisfied 

PiiPi2 - PiiPi2 2: 0, 

which means that in all the subtables 2 x 2 formed by rows i,j (i < j) the 
likelihood ratios are increasing. This property of a table T m x 2 is also known as 
its total positivity of order two. 

2.2. Contingency tables with m rows and k columns 

The notion of the grade density can be easily extended to m x k tables , with 
the overrepresentation indices hij defined as Pij / (Pi•P•i ) for i = 1, . .. , m, j = 
1, ... , k. Similarly, the definitions of Spearman's rho and Kendall 's tau are 
extended as: 

k t-1 m m 

p*(Tmxk) = 3 ')' ')' l(St + St-1 - SsS, _I) ')' ')' (Pis Pit- PisPitl l , 
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where Su = L:~=l P•i for u = 1, ... , k, and 

k t-1 m m 

r(Tmxk) = 2 L L L L (PisPjt- PisPit)· 
t=2 s=l i=l j=i+l 

By a suitable permutation of rows and columns one gets a pair (possibly more 
than one) of permutations which maximise p* (an algorithm was proposed in 
Ciok et a!., 1995). Usually, there is just one pair of optimal permutations and 
usually the same pair maximises the value of p* and of r; but whenever the 
optimal pairs of permutations for p* and of T are different, they usually differ 
only slightly. The operation of permuting rows and columns ofT m x k in order to 
maximise p* is called the Grade Correspondence Analysis (GCA) of Tmxk· The 
analogous procedure maximising T is called the Grade Correspondence Analysis 
based on T (denoted GCAjr). Both procedures will be applied here to the 8 x 6 
contingency table given in Table 2.2a, which contains data related to Table 2.1a: 
three first columns of Table 2.2a sum up to the first column of Table 2.1a and 
denote, respectively, the numbers of failures in three consecutive years, while 
three last columns of Table 2.2a sum up to the second column of Table 2.1a 

Table 2.2a. Numbers of pupils ' failures and successes in t hree 
consecutive years. 

failures successes Total 
region; year 1 year 2 year 3 year 1 year 2 year 3 (N;) 

1 850 820 800 230 210 178 3088 
2 500 540 560 500 540 490 3130 
3 50 50 50 32 33 35 250 
4 90 130 180 140 30 0 570 
5 570 550 530 22 24 24 1720 
6 120 110 100 43 40 37 450 
7 66 67 68 61 66 67 394 
8 67 66 67 65 66 67 398 

Total 2313 2333 2355 1093 1009 898 10000 

Table 2.2b. Indices of overrepresentation: rows (regions) 
and columns ordered according to GCA. 

failures successes 

region; year 1 year 2 year 3 year 1 year 2 year 3 

5 1.433 1.371 1.309 0. 117 0.138 0.155 
1 1.190 1.138 1.100 0.681 0.674 0.642 
6 1.153 1.048 0.944 0.874 0.881 0.916 
4 0.683 0.978 1.341 2.247 0.522 0.000 
3 0.865 0.857 0.849 1.171 1.308 1.559 
2 0.691 0.739 0.760 1.462 1.710 1.743 
7 0.719 0.729 0.728 1.416 1.660 1.894 

- - - - - ~ - . · ~ . . "" . ..... . ...., __ 
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and denote, respectively, the numbers of successes in three consecutive years. 
The values of p* and T for Table 2.2a are 0.0162 and 0.0092. After GCA, which 
provides here the same results as GCAIT, the overrepresentation indices are as 
shown in Table 2.2b, and the values of p* and T increase to their maximal values 
of 0.2971 and 0.1998. We see that a rather strong overrepresentation occurs in 
case of region No 5 for columns 1, 2, 3, in case of regions No 3, 2, 7, 8 for 
columns 3, 4, 5, and also in case of region No 4 for columns 3 and 4; a rather 
strong underrepresentation appears in case of regions No 5 and 1 for columns 
4, 5 and 6, and also in case of region No 4 for columns 1, 5 and 6. 

Table 2.2b provides a good insight into the chances of failures and of suc­
cesses. GCA does not lead to the interchange of columns concerning failures 
(numbered 1, 2, 3) and columns concerning successes (numbered 4, 5, 6), which 
means that differences, which occurred in consecutive years, were negligible as 
compared to those between successes and failures. The optimal ordering of re­
gions in Table 2.2b remains the same as in Table 2.1d, in which failures and 
successes are aggregated over years. 

3. Total positivity of order two 

Procedures GCA and GCAIT provide patterns of positive dependence between 
the row variable and the column variable such that the strength of positive 
dependence is maximised. Then, we can ask how regular is this dependence. 
Looking backward to tables with only two columns, discussed in Sec. 2.2, we 
become aware that in this case GCA ensures an ordering of rows according to 
the increasing likelihood ratio for the conditional distributions corresponding to 
the two columns. Now we ask: does this condition hold for any pair ( i, j) of 
columns of a Tmxk table when i < j? The answer is that generally it does 
not hold, although such requirement would certainly be desirable. Whenever 
it holds, we deal with a very regular pattern of positive dependence between 
row and column variables. It is easy to check (Kowalczyk, 2000) that this 
requirement holds if and only if 

PisPjt - PjsPit 2: 0 (3.1) 

for any 2 x 2 subtable of Tmxk with cells in rows i,j and columns s, t such that 
1 :::; i < j :::; rn, 1 :::; s < t :::; k. Formula (3.1) entails that such model of positive 
dependence is called total positivity of order two (TP2). 

The aforesaid condition imposed on all pairs of columns is equivalent to such 
condition imposed on all pairs of rows. Moreover (Kowalczyk, 2000), if Tmxk 

is TP2, then it remains unchanged under GCA as well as under GCA!T. 
A useful characterization of TP2, based on the expression 

k t-1 m m 

Tabs ~' L L L L IPisPjt- PjsPitl, (3.2) 
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states that a table Tmxk is TP2 if and only if T(Tmxk) =Tabs· It has been there­
fore suggested in Kowalczyk (2000) to use 1 - T /Tabs as a measure of departure 
of Tmxk from the family of TP2 tables. This measure is nonnegative, equal to 
zero if and only if Tmxk is TP2, and it attains its minimal value in the set of all 
tables obtained from Tmxk by permutations ofrows and/or columns when Tmxk 

is transformed according to GCAjT. So, we say that GCAIT applied to Tmxk 

provides the best approximation of the TP2 property with respect to 1- T /Tab s · 

For Table 2.2a, Tabs is equal to 0.2181, Tmax = 0.2010 and hence 1 -
Tmax/Tabs = 0.0785. This implies that Table 2.2a transformed by GCA is 
almost a TP2 table. 

In practice, however, we are less interested in how distant from TP2 a table 
is, than in detecting which rows and/or columns are particularly responsible for 
this departure. Then, we could throw these rows and/ or columns out and deal 
with a more regular positive trend between the row variable and the column 
variable. The row variable is well represented by the grade regression function 
defined on rows, the column variable - by the grade regression function defined 
on columns, where by definition the grade regression function is the regression 
function of the grade distribution. It should be noted that in a TP2 table 
the first regression is increasing w.r.t. the likelihood ratio for any pair (s, t) of 
columns (s < t), and the second regression is increasing w.r.t. the likelihood 
ratio for any pair ( i, j) of rows. This is why we are often inclined to represent 
the whole vector of columns of a TP2 table (or of a table close to TP2) solely 
by the first regression; this possibility can be exploited in further exploratory 
analysis of that table (when it is confronted with other tables or when the data 
are additional explanatory variables) . 

4. Search for rows and/or columns, which most strongly 
outlie from TP2 

The requirement put on pairs of columns in the definition of TP2 is equivalent 
(Kowalczyk, 2000) to the statement: table T m x k is TP2 iff, for each pair of 
columns, distributions (P. s, P. t) satisfy 

( 4.1) 

the analogous statement can be also formulated for all pairs of row distributions 
Pi• and Pi• . Therefore we will consider two sets: the scat terplot 

SGCA {( (PGCA pGCA (PGCA . pGCA)) . 
columns = ar • t : •s 'armax • t 0 •s 0 

s=1, ... ,k, t=s+1, ... ,k} 

(when we are interested in outliers from TP2 among colums) and the scatterplot 

s;;,~~ = {(ar(Pj~CA: pi~CA,armax(Pj~CA: pi~CA)): 

i = 1, ... , m, j = 1, ... ,m} 
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The indices ar and armax for rows of Table 2.2a transformed by GCA are 
given in Table 4.1, and the resulting set s;;,~~ is shown in Fig. 4.1. Since in this 
table the equality ( 4.1) holds or nearly holds for the majority of pairs of row 
distributions, almost all points in Fig. 4.1 are close to the diagonal y = x (called 
in the sequel the TP2 line); however, there are a few exceptions (marked grey), 
which refer to the following pairs of regions: (4, 6), (4, 3), (4, 1) , (4, 2), (4, 7), 
( 4, 5). Clearly, any row, say i, of the table is described by the subset of SGcA 
consisting of points (ar(i , j) ,armax(i , j)) , j = 1, .. . ,m. The position of this 
subset among all points in SGcA indicates whether points corresponding to row i 
tend to be more distant from the TP2 line than in the case of remaining rows. 
This is a visual suggestion that row i is an outlier. According to that, Fig. 4.1 
suggests that region No 4 is an outlier from TP2 in the set of regions. After 
removing this region from the data set we get a new scatterplot s;;,~~ presented 
in Fig. 4.2, which practically lies on the diagonal. We note that according to 
Table 2.1a the size of region No 4 slightly exceeds four other regions which do 
not outlie from TP2, so we have no reason to think that region No 4 outlies 
because of having small size (i.e. it is not a make believe outlier from TP2 in 
the set of regions). 

Table 4.1. Indices ar (below the diagonal) and armax (above the diagonal). 

region 5 region 1 region 6 region 4 region 3 region 2 r e gion 7 region 8 

region 5 0 0.1621 0.2436 0.3958 0.3688 0.4688 0.4629 0.4649 
region 1 0.1608 0 0.0835 0.3194 0.2124 0.3096 0.3080 0.3090 
region 6 0.2083 0.0520 0 0.3337 0.1568 0.2511 0.2504 0.2510 
r egion 4 0.3624 0.1598 0.0881 0 0.3474 0.3562 0.3747 0.3724 
region 3 0.3686 0.2124 0.1568 0.1060 0 0.1033 0.0965 0.1011 
r e gion 2 0.4679 0.3096 0.2506 0.2262 0.0917 0 0.0237 0.0279 
region 7 0.4628 0.3080 0.2504 0.2267 0.0945 0.0049 0 0.0132 
region 8 0.4643 0.3090 0.25 10 0.2288 0.0948 0.0050 0.0000 0 

Turning to columns , we see from the scaterplot s:;;,fu~ns in Fig. 4.3 that none 
of the columns of Table 4.1a transformed by GCA ought to be treated as an 
outlier even when region No 4 is not excluded . After exclusion of this region, 
the scatterplot of columns in Fig. 4.4 transmits the same visual message as that 
obtained from Fig. 4.2: the GCA transform of Table 2.2a with region No 4 
excluded is almost a TP2 table. 

According to the remark at the end of Section 3, the sequence of regions 
5, 1, 6, 3, 7, 2, 8 (with region No 4 excluded) can be well represented by the 
respect ive grade regression function defined on rows. This function could be 
next compared with various explana tory variables, which describe the regions 
(for example, in order to find out which factors influence t he more successful 
regions) . However, in practice it is rarely so that there is just one definit e outlier, 
and the points in s;;,~~ and s:;;,?u~ns are usually much more distant from the 
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Figure 4.1. Scatterplot SccA for 
Table 2.2a (rows) 
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Figure 4.3. Scatterplot SccA for 
Table 2.2a (columns) 
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Figure 4.2. Scatterplot SccA for 
Table 2.2a (rows) when region No 4 
is excluded 

0.1 0.2 0.3 0.4 0.5 

Figure 4.4. Scatterplot SGCA for 
Table 2.2a (columns) when region 
No 4 is excluded 

Apart. from visual suggestions, we will introduce numerical measures describ­
ing how distant is a row or a column from the TP2 line. This is simply done by 
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of points. So we introduce the mean distance from TP2 line of row (i) as 

drows(i) = d[(ar(i,j), armax(i,j)), line y = x] 
{j:j::;m, ar(i,j)~O} 

+ d[(ar(i,j), armax(i,j)), line y = -x] 
{j:j::;m, ar( i ,j)<O} 

for i = 1, .. . , m, and let the mean distance from the TP2 line of column ('i), 
denoted dcolumns( i), be defined analogously. It follows that those rows and 
columns can be ordered, according to their mean distances, from those most 
to those least likely to be treated as an outlier. There are many possibilities 
of further decisions and actions to be undertaken by a data analyst but this 
exceeds the scope of this paper. Some possibilities will be discussed in a next 
paper being currently prepared by the present author. Now, we only suggest 
that a contingency table can be described by the following real-valued statistics: 

1 m-- L drows(i) 
m i=l 

(called total mean distance from TP2 line in case of rows); 
k 

1"' -k L.....J dcolumns( i) 
i=l 

(called total mean distance from TP2 line in case of columns); 

max{drows(i); i = 1, ... ,m} 

(called maximal distance from TP 2 line among rows); 

max{dcolumns(i ); i=1, ... ,k} 

(called maximal distance from TP2 line among columns), 

and by a vector (q1 , q2, . . . ), where q8 for s = 1, 2, ... is a fraction of points in 
SccA satisfying 

lar(i,j)l + 0.1(s- 1) ~ armax(i,j) < lar(i,j)l + 0.1s 

(i.e. q1 is the fraction of points which are distant from the TP2 line or the line 
y = -x by no more than 0.1 /2, etc.). In a TP2 table, or in a table very close 
to it, (qi,q2,·· ·) = (1,0,0 ... ). 

In case of Table 2.2a, the total mean distance from TP2 line is 0.0315 in case 
of rows and 0.0182 in case of columns, maximal distance from the TP2 line 
is 0.1737 among rows and 0.0559 among columns, and (qi,q2,q3,q4,···) = 
(0.786, 0.143, 0.071, 0, ... ) for rows and (1, 0, .. . ) for columns. When region 
No 4 is excluded, these statistics take the values: 0.0051, 0.0038, 0.0249, 0.0148, 
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5. Examples of graphical and numerical analysis of out­
liers in t h ree large data sets 

Three contingency tables will be analyzed: 

(i) Table BRIT7x7 containing frequencies of father/son pairs such that fa­
ther's occupation belongs to category i and son's occupation belongs to 
category j (i,j = 1, 2, . .. , 7). The table, which summarizes the results of 
a study made in Britain, was published in many statistical papers on data 
analysis, e.g. Gifi (1990), Kowalczyk (1999), 

(ii) Table POH12xl2 which also deals with father/son occupational mobility 
data for 12 categories, summarizing the results of a study performed in 
Poland (Pohoski, 1983, Kowalczyk, 1999), 

(iii) Table ELECTs2x2s summarizing the results of two elections to the Pol­
ish parliament, in 1993 and 1997, with vote numbers { nij} obtained in 
52 election regions by altogether 25 political parties (15 in 1993, 10 in 
1997). This data table was analyzed in Szcz<';sny et al. (1998). 

The scatterplots SacA for fathers (rows) and sons (columns) in case of 
BRIT7x7 are presented in Figs. 5.1 and 5.2; the respective scatterplots for fa­
thers and for sons in case of POH12xl2 are presented in Figs. 5.3 and 5.4; SacA 
for political parties (columns) in ELECTszx25 is presented in Fig. 5.5. The 
points corresponding to the row or column, which is the most distant from TP2, 
are distinguished on every figure. 
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Figure 5.1. Scatterplot SacA for 

0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Figure 5.2. Scatterplot SacA for 
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0.1 0.2 0.3 0.4 0.5 0.6 

Figure 5.3. Scatterplot SacA for 
POH12x12 (rows). 
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0.1 02 0.3 0.4 0.5 0.6 

Figure 5.4. Scatterplot SacA for 
POH12x12 (columns). 

0.1 02 0.3 0.4 0.5 

Figure 5.5. Scatterplot SacA for 
ELECTs2x25 (columns). 

The table BRIT7x7 is equal to its GCA transform, and it is immediately seen 
that it is very close to TP2 , with no outliers among its rows and columns. The 
GCA transform of table POH12x 12 is visually less close to TP2 than BRIT7x7 
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On the other hand, the GCA transform of table ELECT52x 16 is irregular 
and contains at least one definite outlier among political parties ( "SAMOO­
BRONA'', Engl. "SELF-DEFENCE"). 

The results for examples (i), (ii), (iii) appearing in Figs. 5.1- 5.5 and Table 5.1 
imply convincingly that there are no outliers in (i) and (ii) but there is one 
obvious outlier among columns in (iii). Although these conclusions are certainly 
true, we have to stress once more that neither scatterplots Sac A nor values of the 
statistics used in Table 5.1 are directly comparable from one study to another. 
They depend on the total N = L L Nij , on the numbers of categories m and k 
and on the extent of diversification of probabilities in marginal distributions , and 
also on the strength of maximal positive dependence. In examples (i)- (iii), the 
totals N are very large (3497 in (i), 8767 in (ii), over 20,000,000 in (iii)) and the 
quotients N / ( mk) are rather similar, but probabilities in marginal distributions 
are diversified in different ways. It is evident that a row with very small Pi• or 
column with very small P•j could induce a very large value of mean distance 
from TP2 as compared with those for other rows and columns. Therefore, we 
checked the marginal probability for "SAMOOBRONA" in ELECTs2x2s and 
found it equal to 0.014, which is not exceptionally small (seven other parties in 
ELECT52x25 had smaller probabilities, while all of them had the mean distance 
from TP2 much smaller than "SAMOOBRONA"). 

Table 5.1. Numerical description of depart ure from TP2 for examples (i), (ii), (iii). 

GCA transforms of tables 

(i) BRIT7 x 7 (ii) POH12x12 (iii) ELECT 52 x 25 

ql, ... , q5 in case of rows 1, 0, 0 , 0, 0 .803, .167, .030, 0, 0 not calculated 

q1, ... , q5 in case of columns 1, 0, 0 , 0 , 0 .788, .197, .015, 0, 0 .343, .417, .177, .037, .027 

Total mean distance from .009 .048 not calculated 
TP2 line in case of rows 

Total mean distance from .007 .064 .105 
TP2 line in case of columns 

Maximal distance from .012 .075 not calculated 
TP2 li ne among rows 

Maximal distance from .017 .067 .231 
TP2 line a mong columns 

Yet , inference from outliers is usually more obscure and a general method 
of standardization is needed. When m, k and N are rather small , checking 
could be based on simulation from the discretized binormal distribution with 
correlation coefficient and marginal distributions such as in the observed table. 
By drawing N times , we build a random contingency table, form SacA, and 
calculate values of all real-valued statistics, which are of interest. Then, from a 
sufficiently large number of random tables, we find thresholds for those statistics. 
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