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Abst ract: The general problem of an off-line parameter tuning 
in the Binary Genetic Algorithm (BQA) is introduced. An example 
of such a tuning: a class of Correlational Tuning Methods (CTMs) is 
proposed. The main idea of a CTM is that it uses a mapping called 
measurement function as an assessment of the BQA's efficiency. An 
example of a measurement function is described and two examples of 
CTMs: a modified "trials and errors" method and a modified genetic 
meta-algorithm (metaBQA) are shown. Finally, experimental results 
with the metaBQA for four kinds of test fitness functions, where the 
code permutation is the tuned parameter, are presented. 

K eywor ds: genetic algorithm, parameter tuning, adaptation, 
optimization, code permutation. 

1. Int roduction 

As stated in Wolpert and Macready (1995), there is no universal optimization 
algorithm equally good for all possible fitness functions . So the only way to 
improve performance in optimization is to choose a suitable algorithm's variant 
and its parameters for a given problem. 

In the case of the Binary Genetic Algorithm (BQA) we do not want to 
modify the algorithm structure but we are looking for a method for adjusting 
the parameters of the BQA for a given problem. Of course, for real problems we 
are especially interested in such methods that do not need to know the global 
m aximnm of a fitnP.ss fnnr.t ion . 'T'h P. P.x is tin !T n ::l.r a m P. t P.r a clinst mP.nt m P.thocls 
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(b) 

Figure 1. Typical schemes of parameter adjustment methods in the BQA: (a)­
off-line method, (b)- on-line method 

• off-line methods (parameter tuning in Eiben et al., 1999)-parameters are 
adjusted according to measurements of the solved fitness functions before 
the BQA is run (see Kies, 1998 and Kies and Kosit1ski, 1998), 

• on-line methods (adaptation or parameter control in Eiben et al., 1999)­
parameters are adjusted while the algorithm is working, basing on mea­
surements of the BQA's activity (see Mercer, 1977, Back, 1992, Grefen­
stete, 1986, Schaffer and Morishima, 1987, Spears, 1995, Jones, 1996 and 
other). 

In this paper we describe the idea of parametr tuning methods and we 
propose a class of such methods called Correlational Tuning Methods (CTMs) 
which measures fitness functions (see Hordijk, 1996, Jones and Forrest, 1995, 
Altenberg, 1997) using measurement functions that will be introduced here. Ad­
ditionally we will propose a new tuned BQA's parameter: a code permutation. 

In Section 2 we introduce the general idea of the parameter tuning. In 
Section 3 we show the idea of CTMs and define the notion of a measurement 
function as well as present two examples of a CTM. In Section 4 we describe our 
experiments. We show the use of the code permutation as the tuned parameter, 
and we describe shortly an example of a measurement function. In Section 5 we 
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2. Overview of the parameter tuning problem 

The aim of parameter tuning is to find better parameter values for an opti­
mization algorithm (here the BQA) before its execution. We usually do not 
tune all BQA's parameters but a certain subset of them only, while remaining 
parameters are fixed. A proper choice of the subset is one of the most impor­
tant problems. For generality, in this section we will use a generalized tuned 
parameter with values from the set P. We will investigate neither its structure 
nor its properties. 

We assume that the efficiency of the BQA is a certain desired feature (or a 
complex of features) of the algorithm and it can be expressed as a real number. 
Each problem solved by the BQA is fully defined by its fitness function , that 
is- a mapping from the family of functions defined on N-bit chromosomes F = 
{!: l3 ~ JR}, where l3 = {0, 1}N is a set of N-bit chromosomes. 

DEFINITION 2.1 Let P be the set of values of the tuned parameters of the BQA. 
Let f E F denote the problem solved. By the efficiency function we will under­
stand a function CJ : P ~ lR for which fulfilling the condition £J(Pd > E:t(P2) , 
where Pl , P2 E P , implies that the BQA usually solves the problem f more effi­
ciently joT the parameter val·ue P1 than for P2. 

To better understand what we mean by more efficienctly we give an example. 

EXAMPLE 2.1 In this paper we assume that the efficiency of the BQA for a fixed 
fitn ess function f E F is given by the following formula: 

(1) 

where E( ·) is an expected value and G f (p) E JR+ is a random variable whose 
values aTe numbeTs of generations necessary to reach the global optimum by the 
BQA for the paramete1· value p E P , and where executions of the BQA are 
random events. The value E( G f (p)) = Q f (p) is estimated by the mean number 
of generations from Tepeated executions of the BQA. 

In the proposed parameter tuning method we arc looking for two mappings: 

M : F ~ M and P : M ~ P, (2) 

where M is a measurement method for measuring fitness functions from the 
family F , P is a method for calculating the tuned parameters from the mea­
surement results, and M is a space of measurement results. We impose the 
following condition on the desired mappings M and P: 

p* = P(M(f)) =} £J(p*) = max£t(P), 
pEP 

(3) 
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The desired mappings M and P should be universal, in the sense that the 
value p* should be determined correctly for the biggest possible class of problems 
from the family F. This aim is very difficult to reach, hence some parameter 
tuning methods could be promising here. One of them will be presented in the 
next section. 

3. Correlat ional paramet er tuning 

3.1. Measurement funct ion as an assessm ent of an efficien cy function 

Let us assume that an efficiency function £1 as in Def. 2.1 is given. Let the space 
of measurement results be the space of vectors of a length equal to the number 
of elements of P, i.e. M = JRI PI. The components of the vector M(f) EM, as 
in (2), are defined in the following way: 

M(f) = (m(f,p1), ... , m(f,PiPI)) = (mt(Pl), .. . , mt(PIPI)), (4) 

where Pk for k = 1, ... , IPI takes succeeding values of all elements of P, and a 
function m is of type F x P -+ JR. For fixed f E F we write it briefly as 

(5) 

The function m1 will be called a measurement function. One can see that the 
function ( 5) is of the same type as £1 (see Def. 2.1). Let us assume for a moment 
that the function m1 gives the efficiency as a result, i. e. m1 = £1. In order to 
get the optimal parameter value p• exactly the same as in (3), it is enough to 
take P, consistently with (2), defined as follows: 

(6) 

hence we can write the LHS of (3) equivalently as 

p* = P(mt(pl), ... , mt(JJIPI)) = mj 1(max £t(P)). 
pEP 

(7) 

Let us notice that we can define the mapping£: F-+ JRIPI, similarly to (4), as 

(8) 

where values Pk are the same as in (4). One can see that P can be treated here 
as a kind of a tuning method, and m f can be treated as a kind of an assessment 
of £1. The vectors M(f) and£(!) are the graphs of mt and £1 as functions of 
k E {1, ... , IPI}. If we find such m1 that its graph is similar enough to the £j's 
graph, we will be able to infer about values of £1 using the following rules: 

mt(Pl) ~ mt(P2) =? Et(Pl) ~ Et(P2 ), and 

mt(Pl) > mt(P2) =? Et(pl) > Et(P2 ), (9) 

where p 1 ,p2 E P. Obviously the probability of correctness of these rules is 
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3.2. Correlation as a measure of graph similarity 

In order to compare the quality of various measurement functions we need a 
statistical tool for determining similarity between two graphs. We assume that 
succeeding components of M(f) and £(!) are realizations of two random vari­
ables creating a 2D general population. As a measure of similarity of these 
variables we can take their correlation coefficient. One can notice that the cor­
rectness of the rules (9) is higher when the value of the correlation coefficient is 
higher. This idea is explained better when applied to graphs showed in Fig. 2. 

0.8 0.8 

0.6 0.6 

(a) o.4 (b) 04 

02 0.2 

.0.2 -0.2 

Figure 2. Comparison of (a) low and (b) high correlated graphs 

It is usually difficult to calculate the correlation for M(J) and£(!) because 
P possesses a huge number of elements. So, in practical implementations one 
calculates the correlation as a statistic from a random sample from P. 

Usefulness of CTMs depends on the existence of sufficiently universal mea­
surement functions that are strongly correlated with the efficiency function for 
many classes of fitness functions. Additionally, the necessary condition is that 
the applied measurement function should be computationally simpler than the 
BQA, because in the opposite situation it is better to use the BQA as a measure­
ment function (see our considerations related to (6)). It appears that finding 
measurement functions that are good enough for certain problems is possible. 
An example will be described below in Subsection 4.2. 

3.3. Examples of CTM's applications 

3.3.1. The "trial and error" method 

The simplest tuning method whose correlational version can be easily obtained is 
the "trial and error" method shown in Fig. 3. In the original method we execute 
a number of times the BQA for determining the efficiency [ f with parameter 
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parameter value p, for which Et(P) was the highest. In the correlational version 
we evaluate mt(P) (in the frame) instead of Et(P), so we do not need to execute 
the BQA. 

choose initial parameter value p from P . 
let Mmax := 0 
while Mmax is not high enough do 

I calculate M := mt(P) I 
if M > Mmax then let Mmax := M and Pmax := p 
choose next value of p from P 

end 
use BQA with the parameter value Pmax 

Figure 3. Correlational version of the "trial and error" method 

3.3.2. Genetic meta-algorithm 

The simple "trial and error" method is not enough for the effective search of the 
set P when no additional information about P's structure is available, because of 
a huge number of elements in P. A better solution is to use another BQA, called 
binary genetic meta-algorithm (metaBQA). This idea was originally proposed in 
the papers Mercer (1977) and Grefenstette (1986), where chromosomes encode 
values of the tuned parameter from the set P, and the fitness function has been 
taken as fmeta(P) = Et(P) for pEP. In our case of the modified metaBQA, the 
fitness function is fmeta(P) = rnt(P) (see Fig. 4). 

choose randomly the initial population of metaBQA 
execute W generations of metaBQA 
let Pmax be the best chromosome i n Wth generation 
execute BQA with the parameter value Pmax 

Figure 4. Correlational version of the genetic meta-algorithm ( W - fixed param­
eter) • 

One can observe that after a certain number, say W, of generations of 
metaBQA, we should get better parameter values, if, of course, m f is a suf­
ficiently good assessment of [f . 

4. Description of t he exper iment s 

4.1. Code permutation as the tuned parameter 

In order to use the BQA on a particular search space X we have to code each 
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need to discretize it. Usually, one defines the coding function as a bijection 
Ill : X -4 B, where X is the discrete search space, B = {0, 1}N is a set of N-bit 
chromosomes, and power of both sets is equal, i.e. lXI = IBI. For chromosomes 
produced by the coding function we evaluate the fitness function f E F (see 
Def. 2.1) during the evaluation stage of the BQA. 

In this paper we define the coding function differently: 

w·: x x n -4 B (10) 

where n is the set of all permutations that could be applied to bits of anN-bit 
chromosome, and w• is a bijection with respect to the first argument. This 
special kind of the coding function will be called the coding with permutation . 

EXAMPLE 4.1 Let us assume that n is a set of all 8-element permutations. Let 
us take a permutation w E f2 denoted as w = (2, 4, 6, 8, 1, 3, 5, 7) that is also 
a mapping w : B -4 B. Thus, we can apply it to chromosomes, for example 
w(10101010) = 00001111 and w(11001100) = 10101010. 

It is easy to notice that code permutations affect only the crossover stage 
of the BQA, because the remaining genetic operations , i.e. mutation and se­
lection, are independent of the order of the bits. For better understanding of 
permutations the reader is referred to Dixon and Mortimer (1996) and Stadler 
(1995). 

4.2. Fitness increment correlation as the measurement function 

Measurement functions used in CTMs are usually designed heuristically, basing 
on experience of a researcher and on experiments. Here we describe shortly an 
example of such a measurement function (see (5)) . We use code permutations 
from n (see Ex. 4.1) as the set of tuned parameter values. One can find exact 
descriptions of this and other measurement functions in Kies (1999a), Kies and 
Kositiski (1998), Kies (1998) and Kies (1999b) . 

The value of the proposed function is a correlation coefficient between a 
fitness and a fitness increment of the measured fitness function. The measure­
ment function is called Fitness Increment Correlation and denoted by r FI. It is 
calculated in the following way: we choose randomly a certain sequence of cluo­
mosomes from B, and then we modify randomly a randomly chosen segment 
of each chromosome. We receive two sequences: a sequence of mean fitnesses 
of pairs of original and modified chromosomes, and a sequence of differences 
between their fitnesses. Next, treating both sequences as a two-dimensional 
random variable, we calculate the correlation coefficient, and its value is the 
value of the rFI measurement function . 

One can see that the value 1'FJ depends on the value of the tuned parameter, 
because of the use of coding with permutation (10). So it can be used as a 



1038 P. KIES, W. KOSINSKI 

4.3 . Experiment parameter s 

The efficiency of a CTM will be investigated basing on the CTM with a metaBQA 
(see Fig. 4) . Let us assume that the metaBQA always generates a fixed number 
W = 15 of generations. Chromosomes in the metaBQA encode code permu­
tations from 0. We realize V = 100 identical experiments with the metaBQA 
with different random initial generations. For the i-th experiment we calculate 
the following coefficients: 

• relative increment of efficiency: (Ei = 2 ~tw;ftol, 
[W [0 

• relative increment of efficiency assessment: (Mi = 2
(mtw;mro), 
mtw mto 

• tunability coefficient: J<i,Ei = ~, 
'M' 

where£ Jj and m fj are respectively: the expected number of BQA's generations 
and its assessment by the r F I measurement function achieved after j = 0 or W 
generations of the metaBQA for the parameter value decoded from the best 
chromosome. Note that values m fj and (Mi do not depend on the run of the 
BQA, nor on Pm, nor PopSz. Hence, they are shown once for each problem. 

The calculated coefficients can be put in V -element sequences { (ei}, { (M i} 
and {J<i,ei}. We denote their mean values by (e, (M and lie, respectively. The 
correlation coefficient of { (Ei} and { (M i} is denoted by e( (e, (M). These values 
are shown in Table 1. 

Problem Params. of B9A {!( ( E, (M) (M (E (Ej(M RE 

Pm PopSz 

1 0.1 20 0.199 0.311 0.0465 0.150 0.152 
0.1 40 0.507 0.223 0.717 0.697 

2 0.01 40 - 0.0151 0.0248 -0.0025 -0.101 -0.455 
3 0.01 20 0.157 0.0796 0.0476 0.598 1.247 

0.005 20 0.122 0.0320 0.402 0.891 
4 0.01 20 0.225 0.0455 0.0019 0.0417 -1.619 

0.005 20 0.0039 0.0074 0.163 0.0366 

Table 1. The results of measurements of t he efficiency of a CTM with metaB9A (see 
Fig. 4), where TFJ is the measurement function and the code permutation S1 is the 
tuned parameter. Values for four problems solved by the B9A are shown with example 

settings for Pm and PopSz. 

During our experiments we tune the code permutation in the standard BQA 
(see Michalewicz, 1996) with elitism (see Rudolph, 1994). The BQA's efficiency 
£! is measured according to the Example 2.1 by the mean from n£, = 500 exe­
cutions of the BQA. We assume that the BQA stops when f(!l.max) > J(!l.opt)- E, 

where !2.max is the best chromosome in the current generation, !2.apt is the global 
optimum, and E is the maximum error. All the examined fitness functions, 



Correlational parameter tuning by genetic meta-algorithm 1039 

4.4. Test fitness functions 

4.4.1. Problem 1: Maximization of a function of a scalar argument 

We maximize the following function of type lR -> lR: 

f(x) = (0.1x + 1)(2sin40 (5x2 + Tr/4)- 1) 

for x E ( -231 /109 , (231 -1)/109), encoded in the standard way (see Michalewicz, 
1996). The global maximum is J(v/1.457r) = 1.2134317, and E = 10-6 • 

4.4.2. Problem 2: The knapsack problem 

We pack a knapsack by a number of objects of weights wi and values v; (one 
object per bit) . We maximize the total value V(.Q.) of packed objects on the 
condition that the total weight W(Q.) does not exceed the given maximum weight 
Wmax = 320. The possible solutions are coded by chromosome bits: 1 means 
packed object and 0-not packed. We maximize the following function: 

J(Q.) = V(Q.)- g(W(Q.), Wmax), 

where g : lR x lR -> lR is a nonnegative penalty function, and E = 10-6 • 

4.4.3. Problem 3: Maximization of a function of a vector argument 

We maximize the following function of type JR4 
-> lR: 

4 

j(x1, X2, X3, X4) = _L)0.1xi + 1)(2sin2 (i + 1)(xr + Tr/4)- 1) 
i=1 

for x 1 ,x2 ,x3 ,x4 E (-27/64,(27 -1)/64) encoded in the standard way (see 
Michalewicz, 1996), each on 8 bits. The global maximum is !(1.9843, 1.8745, 
1.8431, 1.8275) = 4.7476, and E = 10-2 • 

4.4.4. Problem 4: A simple classifier 

We classify 16 two-dimensional vectors into maximum 4 clusters. A solution 
consists of 16 numbers of assignment clusters, two bits per vector. We maximize 
clustering quality rating J given by the following formula: 

where L- number of all vectors; ;fj-jth vector; m- mean vector (centroid) of 
all clusters; ;fij- jth vector from ith cluster; c-number of clusters; Ni- number 
of vec~~rs _in - ~ tl~ cluster; ~i-me~n , vector (centroid) of ith cluster; M - mean 
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4.5. Results of experiments 

When interpreting the values shown in Table 1 one can see that the most im­
portant aim, considering the ability of increasing the BQA 's efficiency £1 during 
tuning, is the maximization of(E. But the maximization of e((E,(M), (E/(M 
and /f,E is the most important aim considering the exactness of the assessment 
of £1 by m1. 

One can see that r F I is more suitable for P roblems 1 and 3, where the fitness 
function is analytically defined , because of high values of e((E,(M), (E/(M 
and /f,E· For the Problem 2, TF I gives false results because the sign of (M is 
different from the remaining values, so we conclude that r F I is not suitable 
for this kind of problems. The case given in P roblem 4 is controversial. We 
suppose that the influence of the code permutation on the BQA's efficiency is 
very weak here, so the received results are open for an influence of errors and 
the experiment should be repeated with higher values of V and ne1 . 

5. Conclusions 

We suppose that the explanation of the dependence between BQA efficiency and 
code permutation is related to the building block hypothesis presented in Bagley 
(1967) and Rosenberg (1967). The cause is t hat the ability of creating good 
building blocks during crossover can be different for different code permutations. 

Our experiments show that it is possible to find such a measurement function 
that can be used in CTMs and we conclude that the parameter tuning is an 
idea of not only the theoretical value. The development of CTMs depends on 
discovering other, more universal, measurement functio ns . All measurement 
functions demand also more tests in a well-defined environment. The idea of 
NK-model introduced by Kauffman (1989) can be very useful here, because it 
makes possible generation of various fi tness functions that can be tuned from 
smooth to rugged. 

Numerous new evolutionary algorithms have been proposed that are based 
strictly on the idea of coding solutions with binary chromosomes. Here tl{e work 
of Jones (1996) can be a good example. Applying the code permutation can be 
an interesting way of extending the algorithms. 

Undoubtedly the most excit ing task is to discover a constructive method 
for finding the best code permutation for a given problem instead of compar­
ing qualities of various permutations. This will be the subject of our further 
research. 
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