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Abstract: We prove that if a sequence (f,,), of D.C. functions
(Difference of two Convex functions) converges to a D.C. function
f in some appropriate way and if u,, is a critical point of f,, in the
sense described by Toland, and is such that (u,), converges to u,
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it in order to compute the solution of a semilinear elliptic equation.
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1. Introduction

The purpose of this work is to study the stability property of Toland’s critical
points with respect to the convergence of sequences of D.C. functions (Difference
of two Convex functions) and its application to the resolution of semi-linear
elliptic problems. In the sequel, critical point always means critical in the sense
of Toland. Section 2 is dedicated to some preliminary results. In Section 3, we
study the normalized D.C. decomposition in a space having an infinite dimension
and prove that every D.C. function f : X — R = R U {400} has a normalized
D.C. decomposition. In Section 4, we present the conditions under which the
convergence of a sequence ( f,), of D.C. functions to f and the convergence of a
sequence (1, ), where u,, is a critical point of f,, to u, imply that u is a critical
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properties. In Section 6, the resolution of a semi-linear elliptic problem by this
algorithm is presented.

2. Preliminary results

Let X be a Banach space, X* its dual space and ['g(X) the cone of proper,
lower semi-continuous (Isc), convex functions on X.

DEFINITION 2.1 1. A function [ is called a D.C. function if there exist two
convex functions g and h such thai f = g — h. The couple (g,h) is called
a D.C. decomposition of f. If g and h are lower semi-continuous, this
decomposition is called a lsc D.C. decomposition of f.
2. A point z* in X s a local minimizer of f = g—h, if f(z*) = g(z*) - h(z*)
is finite and if there exists a neighbourhood V' of x* such that:
flz*) < f(z), Vz € V & g(z*) = h(z*) < g(z) — h(z), Yz € V.
3. T is a critical point of f = g — h if:
dg(T) N Oh(T) # @ & 0 € dg(T) — O(T).

DEFINITION 2.2 Let X be a reflexive Banach space and (f,), be any sequence
of lsc functions defined on X. The sequence (f,)n Mosco-epi-converges to a lsc
Junction [ (we write: f =M — elmf,) if:

Ve e X :w—elify(z) > f(z) 2 s —elsfa(x),
where:
w—elif,(z) = Iin_f‘r limninff,,(:c,,),
s—elsfn(z) = 13}1& Iim':sup Falzn)
DEFINITION 2.3 Let f : X — R be a D.C. function. The decomposition (g, h)
1s a normalized D.C. decomposition of f if: infex h(z) = 0.
Notice that this condition implies: h(x) > 0, Yz € X.

PROPOSITION 2.4 Let X be a Banach space and [ o lsc D.C. function, then f
has a normalized D.C. decomposition.

Proof. Let f be a D.C. function. If f is lsc, there exist two lsc convex functions g
and h such that f = g — h, Elhilali Alaoui (1996), with dom(9h) # (), Bronsted
and Rockafellar (1965). Let @y be any element of dom(dh) and xj be any

element of dh(zg). We define G and h: X — R as:

g(z) = g(x) — h(zo) — (xg,z — 0),
h(z) = h(z) = h(zo) — (z}, & — zo).

One immediately proves that § and h are convex, ﬁ(:.-:) >20,YVz e X, 'ﬁ(:.-;@)



Convergence of Toland's critical points 407

COROLLARY 2.5 Ewvery D.C. function f : R" — R has a normalized D.C.
decomposition.

Proof. Since domf = R", f is continuous on R", because every convex function
is continuous on the interior of its domain. Then, f has a continuous decom-
position, Elhilali Alaoui (1996). The above property is a direct consequence of
the previous Proposition 2.4, [ |

3. Coercivity

DEFINITION 3.1 Let X be a Banach space, f, be any element of U'o(X), for
every n in N. (fn)n 15 || ||-equi-continuous at zy in X if:

Ve >0, 3re > 0, Yo € B(zo,re), Yn € N : |pn(z) — @n(zo)| < e

DEFINITION 3.2 Let X be a Banach space and (fy)n be any sequence of func-
tions in X with values in R.
L. (fu)n is diagonal-coercive if:
H"rﬂ“ — +00 = fo(zn) — +o00.
2. (fu)n is strongly diagonal-coercive if:

x
e
3. (fu)n is equi-coercive if there exist two monnegative constants o and 3

such that:
Vz e X,Vn € N: fu(x) > a|jz|| - B.

REMARK 3.3 Any equi-coercive sequence (or strongly diagonal-coercive) is diag-
onal-coercive.
1. An equi-coercive sequence is not necessarily strongly diagonal-coercive. For
example, let f : X — R defined by: f(z) = ||z|| + r, where v is a fized
real. f is equi-coercive but it is not strongly diagonal-coercive. Indeed:

f(z) 7

s e, ==y,

llzIl ll]l tell—+oo _

2. If (fu)n is diagonal-coercive (resp. strongly diagonal-coercive) then, for
any sequence (xTy)n of X, if (fu(zn))n (resp. (fal@n)/||@nl|)n) is bounded

from above, then (x,), is bounded from above.

Let X be a Banach space and f be any function in I'g(X'). The continuity
of f on X implies the coercivity of f*, Moreau (1965), where:

f*(y) = sup{(z,y) - f(z) : 2 € X},

is the conjugate function of f. This result has been generalized in Elghali (1988)
for sequences of functions in T'g(X).

The purpose of this section is to study the conditions to be imposed on the
sequence (fp), in Io(X) which imply the strong equi-coercivity of the sequence
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PROPOSITION 3.4 Let X be a Banach space and (f,)n be any sequence of func-
tions in To(X). If (fn)n is || - ||-equi-continuous at 0 and sup,, ¢ fn(0) < o0,
then (f), is equi-coercive.

Proof. Because (f,), is strongly equi-continuous at 0, there exist & > 0 and
r > 0 such that:

fa(z) < @, VzerB, Yne N,

(see Elghali, 1988), where B = B(0,1) is the unit ball centered at the origin.
Then:

fala®) = Sup{ (z,2%) — fu(z)} 2 sup {(z,27) — a} = 7|27+ —
r€X z€rB

Vz* € X*, ¥ne N,
where || - ||« denotes the norm of the dual space X*. Hence, (f}), is equi-
coercive, o

We deduce from the above result that when X has a finite dimension, if ( f,,),
is a sequence of convex finite functions, that is if for every n in N : dom(f,) =
X, which converges to some convex finite function f, then (f}), is strongly
diagonal-coercive.

PrROPOSITION 3.5 Let (fu)n (fn : R? — R) be any sequence of conver and
finite functions, which converges to f. Then (f})n is strongly diagonal-coercive.

Proof. Let (z}), be any sequence of vectors in R? such that: ||| — +oc.
Using the definition of the conjugate function, we obtain:

fa(zy) {< _Tn > fn(wJ}
—— = sup B Sl )
lznll  eex L\ llznll/ 0 Nzl
which implies:
N < {5 {( T > fn(z )}
lim inf 2= = lim inf sup L
no gl noozex L\ llznll/ o Nl
> sup lim inf {(x, _a,_’?_> - i’-l—gf—)}
zeX M “In” “I"”
We choose a subsequence such that:

imint { (o, i) = ot} =t { ooty - e f @

Because ||z%,|| — +oo and (fu())nr converges to f(z) € R, the equality
(1) may be written down as:

L J'/,. Ty \ fﬂ(x)\ s Mk /M Ty \




Convergence of Toland’s critical points 409

The sequence (. /||z}/||)n’ being bounded, there exists a subsequence such
that:

T
—— =u € R, with |Ju|| =1.
llz5

We then deduce
fa(zh)

lim
n.rt

lim inf =—== > sup (z,u) = 400,
no flznll T zex
which ends up the proof. |

4. Critical points of sequences of D.C. functions

Since its introduction by Toland in 1978, the notion of critical point of a D.C.
function has attracted attention of several researchers such as, for example, Cor-
rea and Lemaréchal (1993), Pham Dinh Tao and El Bernoussi (1986), Lemaire
(1988), Yassine (1988, 1999). Our purpose is to prove that if ( f,,), is a sequence
of D.C. functions which converges in an appropriate way to a D.C. function f
and if u, is a critical point of f, such that (u,), converges to u, then u is a
critical point of f.

Let us first recall some results we will use in the remaining parts of the
paper.

DEFINITION 4.1 Let X be a Banach space, f: X — R be a D.C. function and
(g,h) be a D.C. decomposition of f. We define the function f, : X* — R as:

Vz* € X* : fu(z”) = h*(2*) — g*(z*).

Notice that f, is not the conjugate function of f. The link between f, and
the conjugate function f* of f can be found in Ellaia and Hiriart-Urruty (1986)
and Ellaia (1984).

DEFINITION 4.2 Let X be a reflexive Banach space, (fn)n be a sequence of

D.C. functions of X in R and (gn,hn) be a D.C. decomposition of f,. We

say that (f,)n D.C. Mosco-converges to f = g — h and we note f, L .

if (gn)n Mosco-converges to g and (hy,), Mosco-converges to h (see the above
Definition 2.2).

Before announcing the main result of this section, let us recall the following
theorem.

THEOREM 4.3 (Attouch, 1989) Let X be a reflexive Banach space. For ev-
ery sequence (¢n)n of proper, lsc and conver functions X — R, the following

properties are equivalent:
LE S
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2. Opy & dp, which means that:
Vz,z* € dp, Iz, x),) € Opn 2y — , 2, — 27, @u(Ta) — p(x).

REMARK 4.4 This above defined graph-convergence is also called the Kuratow-
ski-Painlevé convergence.

THEOREM 4.5 Let X be a reflexive Banach space, (fn)n be a sequence of D.C.
functions and (gn, hn) be a normalized D.C. decomposition of f,,. Let us assume
that the following conditions are verified:

1. The sequence (fn)n D.C-Mosco-converges to f = g — h.

2. The sequence (h},), is strongly diagonal-coercive.

3. For everyn in N, u, is a critical point of f,, and (un)n converges to u in

the strong topology of X.
Then, u is a critical point of f.

Proof. According to assumption 3., for every n in N, we have: dg,(u,) N
Ohn(u,) # 0. Hence one can choose u} in dgn(u,) N dhyp(uy,). According to
Fenchel’s equality, we have:

hn(n) + by (up) = (un,uy,).

Because (g, hy) is a normalized decomposition of f,, one has: h,(u,) > 0,
which implies:

ha (uy)
fleer i
for every |luy|| # 0. Because the sequence (uy)n is supposed to be convergent,

the inequality (2) and the hypothesis 2. imply that (u)), is bounded. Let
(%y(n))n be any subsequence *-weakly convergent to u* € X*. We have:

ha(ug) < (unyuz) < flunlllfunll = < lfualls (2)

; & * M M
Ug(n) L[I» Uy Ug(n) = Uy Gn = 9, B h,

which prove, according to Theorem 4.3 and the definition of the graph-conver-

gence, that u* belongs to dg(u) and u* belongs to dh(u). This completes the

proof. O

It is sometimes better to impose some conditions on the D.C. function f itself
instead of imposing some other ones on a decomposition (g,h) of f. Accord-
ingly, we prove the following theorem, which looks like the above Theorem 4.5,
changing the hypothesis 2. of this theorem as follows.

THEOREM 4.6 Let X be a reflexive Banach space, (fn)n be any sequence of
D.C. functions and (g,,hy) be a normalized D.C. decomposition of f,. Let us
suppose that the following conditions are verified:
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2. The sequence ((fn)s)n is diagonal-coercive.

3. For everyn in N, u, s a critical point of f,, (un)n converges to u in the
strong topology of X and (9 (un))n converges to g(u).

Then, u is a critical point of f.

Proof. According to the assumption 3., one has, for every n in N: h,,(u,) N
Agn(u,) # 0. Upon choosing u’ in 8¢, (u,) N dh,(u,), we have, according to
Fenchel’s equality:

ho(twn) + by (uy) = (unyup)s gn(un) + g5 (uy) = (un, up),
= (fn)'(u:e) = gﬂ(“ﬂ) - h'n(un) < gn(un)s

because h,(u,) 2 0, for every n in N. Thanks to the above assumption 3., the
sequence (gn(un))n converges, from which we deduce thanks to the inequality
(3) that:

(3)

lim inf( fy )« (uy) < +00.

This ensures, thanks to this hypothesis 2., that (u}), is bounded. Let
(w3(ny)n be a subsequence *-weakly convergent to some u* in X*. We have
"H *® * G M
Usn) = Uy Ug(y) = Uy gn = g, ha = b,

which imply, using Theorem 4.3 and the definition of the graph-convergence,
that u* belongs to dg(u) and to dh(u). L

5. Algorithm

In the following, H denotes a real Hilbert space, (-,-) and || - || are respectively
the scalar product and the norm on H. In this paragraph, our purpose is to
study the algorithm:

Given ug € H,
{ find pp, € Ohy,(un); Unt1 = proxag, (Un + Apn), (ALG)
where w = prox,(u) is the unique point where the function | - —ul|* + ¢(.)

reaches its minimum. We will prove that if (g, ), and (h,), are two sequences
in ['y(H), Mosco-converging, respectively, to g and h and if the sequence (i),
converges to u in H, then the sequence (u,), built in the algorithm (ALG)
converges to some critical point u of f = g — h. Notice that Lemaire (1988)
proved a similar result, assuming that the sequence (g, )n decreases to g and that
the sequence (h,,), increases to h. We recall that a sequence (i, ), increases
(resp. decreases) to a function ¢ if:

Vn €N, Vz € H : pn(z) < @ni1(2) (resp. wni1(z) < pn(z)).
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THEOREM 5.1 Let (un), be the sequence defined by the algorithm (ALG). As-
sume that the following conditions are verified:

1. For every n € N, h,, is nonnegative.

2. The sequence (h},)n is strongly diagonal-coercive in H.

3. The sequences (gn)n and (hy)n are Mosco-converging respectively to g
and h.

4. The sequence (u,), converges to w in H.

Then u is a critical point of f.

Proof. Because p, belongs to dh,(u,), Fenchel’s equality implies that:

hn(uﬂ.) + h;(pn) = (Tha;Pu)-

Because h,(u,) > 0, we have:

h"(pn)
lI7all

for every p, # 0. Because the sequence (u,), is supposed to be convergent, the
inequality (4) and the hypothesis 2. imply that (p,), is bounded in H. Let
(Ps(n))n be a subsequence *-weakly convergent to some p in H. We have:

ha(Pn) < (s pn) < lunll lIpnll = == < lunll, (4)

I b M
Us(n) — UsyPs(n) — Py /in = M.

Using Theorem 4.3 and the definition of the graph-convergence, we thus
prove that p belongs to dh(u). Next we claim that p also belongs to dg(u).
According to the algorithm (ALG), we have:

Us(n)4+1 = Jé\gs(“ (us(n) F )\ps(n)) = {I T /\ags(n})—](us(n} o Aps(n)) ( )
U - Uu +1 5
A4 VUs(n) = “{('IE‘L“X__SE)““ +ps(n) € 893(11)(“3(71)-!—1)'

We have
Il Il

Ug(n) = UyUg(n)4+1 — U,

and according to (5), (vs(q))n weakly converges to p. Because (gn)n, Mosco-
converges to g, we deduce, following Theorem 4.3 and the definition of the
graph-convergence, that p belongs to dg(u). This completes the proof. o

REMARK 5.2 The condition 1. is, in fact, not restrictive. Indeed, according to
Proposition 2.4, every D.C. function admits a normal decomposition (g, h), with
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6. Approximation of the solution of semilinear elliptic
problems '

In this paragraph, the algorithm (ALG) is used for the approximation of the
critical points of the function f, defined on H = L?(Q2) by f = g — h, with:

: 2 A PR 1
glu) = {{EAWM d:c-/ﬂkud.m if we Hy(),

+00 otherwise (6)
h.(u) —] /g;j('!:, 'U.(.'L‘)) d.T.'.

where £ is an open, smooth and bounded subset of RN (N > 1), k belongs to
L*(Q) and j: Q@ x R — R is such that, for almost every z €

r— j(x,7) is convex, lsc, proper,

j(z,r) < e(2)|r|?, with ¢ € L=(Q), (7)
min j(x,r) = 5(z,0) = 0.

rERJ( ) =3j(2,0)

We observe that f is D.C. on L*(£2), because g and h belong to I'g(L*(9)),
Brézis (1992). We then define the sequences (g, ), and (hy)n by:

. gn(u) = g(u)
Yu € L*(Q): ha(u) = / n(z, w(z)) dz, &
Q

where j,(xz,-) is the Yoshida-approximation of j(x,-). Notice that (j.(z,-)).
increases to j(x,-) and satisfies

¥n vgn(z,r) € 4lzir), %(z,r) < n.

We know that: dh,(u) = ji, (-, u), Brézis (1992). Let us recall that:

w e H2(Q)N HY ()

%w —Aw -k =—u,

w = prozyg(u) = (I + Adg) ™ (u) & {
A

in the distributional sense. The (ALG) algorithm becomes in this case:
Given uy € L*(9),
find Un41 € HQ(Q) n Hé(ﬂ) H (ALG].)
1

: 1
‘)_“uu+l = A'”rr|+l - J:}('! urt) + X”'l +k,
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THEOREM 6.1 The sequence (uy)n defined by the algorithm (ALG1) admits a
subsequence (Ug(n))n which converges to some critical point u of f. Moreover,
u s a solution of:

{ —Au(z) € Bz, u(z)) + k(z), inQ (P)
u € H3(Q) N HY(Q),

where 3(x,-) is the marimal monotone graph in R such that 0 € f(z,0) and
dj(z,r) = B(z,1).

Proof. We assert that Theorem 6.1 is a direct consequence of Theorem 4.5.
Indeed, let us prove that the conditions of Theorem 4.5 are satisfied.
1. Because j,(x,r) is nonnegative, h,(u) is non-negative.
2. The sequence (h;,), is strongly diagonal-coercive. In fact, following Brézis
(1992), we have:

Bp) = [ 2@ pale) . )
Because (j,(z,-)), increases to j(x,-), the hypothesis (7), implies that:
mw) 2 d [ s (10)
Q

where d is a nonnegative constant. We then have, thanks to (9) and (10):

h.:';(:ﬂn) — \/!.'Ejn(a:‘p“(x)) dm > d\m
“PJI']LZ 2 i B JQ " .
/[ @

h;(pn)
Ipnll 2 =00 [|PnllL2

:-[—m

3. Because the sequence (h,), is increasing, then it Mosco-converges to h =
sup,, hn,, Attouch (1989).

4. Let us prove that the sequence (uy), admits a subsequence (uy(,))n such
that the sequences (u(n))n and (Ug(n)4+1)n converge in the strong topology
of L?(Q). According to (ALG1), w4 satisfies:

Uns1 € H2(Q) N HY(Q)
1 .
Tl = Dy = T Un + 0 un) + K,

in the distributional sense. We multiply the preceding equation by 1,41 —
Uy, integrate in © and get:

l/(u,,ﬂ —u,,)"’ dx+/ |Vu,,+1|2dm—/v'u“+1 -Vu, dz
Ao Q Q

et [.:-'f... e ai YoAdas A r:..r.‘. . ar YA
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Applying Young’s inequality and the convexity of 7,,, we obtain:

/\/ Unt1 — d:c+ /IVun+1| dw—/kun+1dac

< —/ |Vun|‘d:r—/jn(m,un)dz (11)
2 Jg Q

+/jn(:c,u,,,+1)drc—/ ku, dx.
Q Q

Moreover, the sequence (jn(z,.)), is increasing. Let us define:

\ |
on=3 [ FunP o= [ galua)de— [ ks
2 Q Q Q

We deduce from (11) that the sequence (), is decreasing. According to
the hypothesis (7); and Young’s inequality, we have:

1;
On > —/ |Vun|2d:c—|[c||Leo/(u,,)2dm—c(s)/ k% dz
2 Ja Q Q

—€ /Q(un)2 dz.

Applying Rellich’s Lemma, Brézis (1992), and because ||¢||pe < A1, we
can choose € > 0 in (12) such that:

on > —c(€) / k? dz.
Ja

Adding up, term to term, the quantities given in (11), we obtain:

(12)

n—oo

+oo 1
Z ')T/(un+1 —u,)?dz < g9 — lim o,
n=0 Q

n—00

= lim /(un_H - un)2 dz =0
Q

Let us now prove that the sequence (u,), is bounded in H} (). Because
the sequence (o, ), is decreasing, we have, for every n > 1: o,, < o1, which
implies:

—1—/ |Vun[2da:—/jn(:v, un)dm——/ku,,,dmgal.
2 Ja Q Q

The hypothesis (7); and Young’s inequality imply:
/IV ”|2d < 6+2”;“L /u dz + c(e /A dz + 0. (13)
1

Applying again Rellich’s Lemma and choosing ¢ > 0 such that: a =
A1 —e = |l¢||pe > 0, we obtain, thanks to (13):

/1\74; 12 dm < /\l(ﬁfc\ /1“n”r4—n’\



416 A. YASSINE, N. ALAA, A. ELHILALI ALAQUI

Let (ug(n))n be any subsequence of (u,,)n strongly converging to some u
in L2(2). According to (13), (ts(n)+1)n also converges to w in the strong
topology of L%(2). Consequently, the hypothesis 4. is verified. According
to Theorem 4.5, u is a critical point of f. There exists p in dg(u) NOh(u),
and because: dg(u) = {—Au — k} and Oh(u) = B(-,u), we get:

—Au—Fk € p(-,u)
u € H*(Q) n H ().

w is thus a solution of (I). O
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