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1. Introduction

The magic word that links variational convergence of functionals and conver-
genee of values and solutions of the associated variational problems is “coer-
civity”. Recall that an (extended-real-valued) function f on a topological {e.g.
metric) space X is called coercive if there is an o > inf f such that the a-sublevel
set L.(f) = {z: f(x) < a} is relatively compact. A sequence (f,) is uniformly
coercive if for any a € R there is an n(a) such that L.([f,) is either empty or
relatively compact for each n > nfa).

The two fundamental facts concerning coercivity and convergences are the
following:

Fact 1: a coercive lower semicontinuous function attains its minimal value;
Fact 2: if a sequence (f,) -converging to f is uniformly coercive, then inf f,
converges to infl f and, in case when |inf f| < oc, any sequence (r,,) such that
Julzn) —inf f, — 0 contains a subsequence converging to a minimizer of f.

A natural question is what happens and what can be done i the coercivity
property does not hold. As far as an individual function is concerned, a general
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recipe is to try to construct a coercive relaxation of the function, fmd a mini-
mizer of the latter and then, with the help of this minimizer, try lo recover a
minimizing sequence for the original function.

Much less (if anything) is known about behavior of minimal values and
minimizers of non-uniformly coercive sequences of functions. Simple examples
can be given to show that in the absence of unilorm coercivity the minimal
values do not converge to the minimal value of the I-limit.

Consider for example the problems of minimizing

1
L= _[] e~ gy

over the collection 5(x) of summable functions u(t) whose integrals over [0, 1]
are equal to . It is an easy matter to verify that the functionals I, -converge
in Ly to the function identically equal to one while the minimal value of every
I, on every S(x) is zero. On the other hand, the relaxation of every I, in the
weak topology of L is zero (see Theorem 1 below), and the natural question
is whether and in which sense the functional identically equal to zero can be
considered a sort of a limit of T,

The purpose of the lecture is to discuss the questions in the context of one
of the simplest problem of caleulus of variations.

2. Relaxations, extensions and ['-limits

[ shall begin, however, by recalling some basic definitions and concepts alveady
mentioned in the Introduction.

A reluration of a function f is the greatest lower semicoutinuous function
majorized by F, that is to say, a lower semicontinuous envelope of f:

Slz)=sup{f(z): § < f & 3 continuous}.

The indefinite article has been used since there is always a certain lreedom of
choosing a space and for topology with which the function is considered.

In case when the function is considered on a metric space, a convenient
characterization of the relaxation can be given, namely F is the relaxation of [
if
—~ for any x and for any sequence (x,) converging to z, liminf f(x,) > J(z);
— for any x there is a sequence (z, ) converging to x such that lim sup fzn) <

fz).
We refer to Buttazzo (1989) and Dal Maso (1993) for details.

Along with relaxation we shall use a weaker concept of an extension of the
function introduced in loffe-Tilomirov (1969). Namely, if f is a function on a
metric space X, then a function g on (generally) another metric space ¥ is an
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z € X gln(z)) < f(z) and for any y € Y either g(y) = oo or there is a sequence
(xn) such that x(z,) — y and limsup f(z.) < g(y).

It has to be emphasized that in both definitions the functions are assumed
extended-real-valued and defined on the entire domain space. We shall adliere
to this assumption.

The last definition to be recalled is that of I'-convergence {or epi-convergen-
ce). We shall state the definition only for functions on melric spaces as we do
not need more general settings. A sequence (f,) is said to [-converge to f il
~ for any z and any sequence (z,) — z, liminf f,(z,) > f(z) and;

— for any z there is a sequence () converging to x such that lmsup f.(z,) <
f(z).

This concept is going back to works of Wijsman, Mosco and DeGiorgi of the
1960's and 1970's. We refer the reader to Attouch (1984), Dal Maso (1993) and
(for the finite dimensional case) to Rockafellar and Wets (1997) for details and
more information,

The following simple facts should be mentioned in connection with the del-
initions:

— every sequence has a I-converging subsequence;

— relaxation is the [-limit of the stationary sequence f, = f;
— T-limit is always a lower semicontinuous lunetion;

— extension is not necessarily lower semicontinuous.

3. The class of problems to be considered

These are problems of the lorm:

winimize .’;{u{-]]:ﬁ Jit ult))dt (1}

over all summable R?-valued functions u(-) satisfying

1
A wit)dt = . (2)

With all the simplicity of the formulation this class of problems coutains
optimal control problems with data depending linearly on the state variable
(see loffe and Tihomirov, 1974, §9.3 for details):

minimize f [(a(t)|ult)) 4+ bt, u(t)))di;

- &= A+ B(tu), ueU();
.r{ﬂ} = Ig. .C{l:l =I.

(Here (-|-) stands for the inner product). Moreover, the resulis to be discussed
can be extended to cases when integration is performed over a complete metric
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We shall study the problem under fairly nou-restrictive assumptions on f,
namely:

(A1) f is a nonnegative extended-real-valued function on [0,1] x RY;
(Az) f(t,u(t)) is Lebesgue measurable if so is u(t):
(Asz) there is a summable T(t) such that f(¢,%(t)) is summable.

The natural space to consider the problem is, of course, LY, the Lebesgue
space of all summable R¥-valued functions on [0,1]. According to the well-
known compactness criterium going back to de la Vallée—Poussin, the functional
Iy is coercive in the weak topology of L{ (coercivity in the normn topology is
of little interest) if and only if there is a function ¢(z) (on BY) growing to
infinity superlinearly (that is, (¢(z)/||z]|]) — oc when |z|| — oc) such that
f(t.z) = () for all x € R? for almost every £. On the other hand, to guarantee
that I is lower semicontinuous with respect to the weak topology we have to
require that f be convex as a function of u.

If the integrand fails to have these two properties (superlinear growth and
convexity), a coercive relaxation of the functional can be constructed in a dif-
ferent space, namely in the space M of all R?-valued Radon measures on [0, 1),
if we consider every u(.) & Lf as a density of an absolutely continuous measure
and set for a v € M7

1( %), if v is absolutely contimous;
Je(v) = ;(E) if 15 absolutely continuous;

oo, otherwise.

The relaxation theorem for Jy proved by the end of the 1980s and associ-
ated wainly with the names of Ambrosio, Bouchitté, Buttazzo, De Giorgl and
Valadier (see Buttazzo, 1989, for details) is stated as follows:

Let ™ stand for the recession function of a closed convex function ¢ on RY:

w(h) = !I_if&t‘l:p{x + th)
(for = € dom f).

THEOREM 1 Assume (A;)-(As). Then the relaxation of Jy in the weak-star
topology of M is

To(v) = Jy(va) +fnl y“(t, -‘%)mu,lm,

where g(t.u) is the pointwise supremum of functions (a(t)|u) + b(2), such that
alt) 15 continuous, b{t) s measurable and (a(f)|u) + b{t) < f(t.w) for all u
almmost everywhere on [0, 1].

Here v, and w, stand for the absolutely continuous and the singular parts of
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limiting behavior of [y rapid escillation leading to convexification (as, say, with
e (1) = shgn(sin met}) for the Bolea integrand f{f.u) = I[l—u?}g] and blowing up
trajectories in the absence of superlinear growth leading to singularities in the
limiting measure (as say with w,(t) = min{m. =} in the case of the integrand
flt.u) = t*u* suggested by Weierstrass)

The functional .7, is coercive (with vespect Lo the weak-star topology) if and
only il there are a positive o and a summable 3(1) such that ¢(f. «) > afjull+3(1).
Theorem 1, however, is valid without any a priori restrictions on the rate of
wrowth of f.

4. Extension via duality

A certain inconvenience of the quoted relaxation theorem comes from Lhe fact
that it does not offer any constructive procedure to calculate the integrand g.
Examples show {e.g. Butiazzo, 1939) that even in simple situations this requires
substantial effort.

In this section 1 shall describe a theory developed in loffe and Tihomirov
(1969, 1974), almost 20 years prior to the proal of the relaxation theorem which,
however, remained largely unknown due to political situation in the former
Soviet Union rather than for any scientific reason. The theory allows to obiain
an easily caleulable extension of Iy in the same space M? which, although not
being lower semicontinuous, do have minimizers in the coercive case (and even
under a somewhat weaker assumption). Moreover, the minimizing measures
whose existence is provided by the theory have very simple structure, with the
singular parls consisting of at most d jumps {that is, they are SBV-functions in
the wodern terminology).

Consider the value function of {1).(2):

1
V() = inf {I;(u()) f u(t) dt =z }.
1]
This is a convex function on B, its Fenchel conjugate being
1
V() =supl(ole) = Vi) = [ (L)
x 1]

where [ is the Fenchel conjugate of [ with respect to w, and consequently, its
second conjugate is

V(a) = sup ((vl) - j} ) dt).

In particular, if x € ri(dom V'), then, of course, V{x) = V() and 8V (x) # 0,
that is there is a p, such that

TAF.N ¢ NF®S L] f [ )
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DeFINITION 1 A point ¢ € [0,1] is called p-ordinary il f*(t.p) 5 summable
in a neighborhood of ¢ (of course we speak about a neighborhood in [0, 1]!).
Otherwise ¢ is called p-exiruordinary.

Set
P(t)={peR*: tis p- ordinary).
Then, P(t) is a convex-valued lower semi-continuous mapping with nonempty

values (indeed, by (Ag) (¢, 0) is summable, so 0 € P(t) for every t). Set
P = P(1).
i

Clearly, P is nonempty and coincides with the domain of V.
Let s(¢, ) be the support function of P(t):

s(t,w) = sup (plw).
rEPi)

We define the collection K of measures v € M? with purely discrete singular
parts containing at most o jumps. That is, » € K il and only if

k
Wy = Ew;z,,. ho<d,

=1

where w; € R? and ¢, is the unit mass at 7.
Next we define an extension of I; to MY by

1 k
Ip(v) = Lf%mﬂwﬂm+2}mm¢iuem

=]
o, if e g K.

The verification that I is indeed an extension of [y is not difficult. It is
also clear that Jy(v) 2 T(v) for all v € M™. It can be farther shown that Iy
is coercive if and only if 0 € intP.

Consider the problem

1
minimize Ij(v), s.t. f dv = . (3)
0

THEOREM 2 Assume (A1), (Aa). Suppoese s € vifdom V), Then v is o solulion
of (3) of and only if [ dv = x and there is a p € P such that

(@) 7+ 1 2y =

dis, (1)

it

), a.e. en[0,1]

il

LY wlas. win ¥ Falaa™y g ] p
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5. Sequences: uniformly coercive functionals

In what follows we shall consider the sequences of functionals

I(u() = I, (u()) = [o fult,u(t)) dt

and associated variational problems (1), (2), first under the condition that the
corresponding functionals J,, (¢) are uniformly coercive in the weak-star topology
of M?. The structure of I-limits of such sequences in the weak-star topology was
described in Bouchitté (1987). Under (A;) and (Az), the sequence is uniformly
coercive in the weak-star topology of M if there are a ¢ > 0 and a summable
function pp(t) on [0, 1] such that for every n

faltu) = dlluf + polt), ¥ u € R ae. on [0,1]. (4)

THEOREM 4 Assume thal all integrands [, salisfy (Ay), (Az) and the following
compalibalily hypolheses:

(Ay) there is a T(-) € LY and a summable function p(t) such that for every
1

jll{i-‘ﬁ.{!}}di' 5 .i'.l{.':] [ .

Suppose further that sequence (J,) is uniformly coercive in the weak-star topol-
ogy of M? and U-converges in the same topology to o functional 7. Then, there
are o probability measure ¢ on [0, 1] and o normal convesr integrand g(f, w) with
4™ being lower semicontinuous jointly in (L, w) such that

7= [ o(t2Q)au+ [ o= (1, %D )i

Here v, and v, are absolutely continuous and the singular parts of v with
respect oo,

We recall that g(#,«) is a normal conver inlegrand if it is a normal integrand
and a convex function of u. It is also worth noting that the assumption that J,
[-converge is not very restrictive as (thanks to the fact that bounded sets in A"
are metrizable in the weak-star topology) the restriction of the the functionals
to any bounded set contains a l-converging subsequence.

There is one subtle diference between the relaxation theorem (Theorem 1)
and Theorem 4: while the first offers, though non-constructive, description of
the limiting integrand g(f, u), the second is a pure existence theorem which does
not give any indication of how the integrand of the I-limit can be found.

6. Sequences: the general case

We have already mentioned in the Introduction that the T-limit of the function-
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problems. We shall now describe another type of limiting behavior of the fune-
tionals [,,, which coincides with the I'-convergence in the weak-star topology of
the associated functionals J,, if the sequence is uniformly coercive, and always
generates convergence of the value functions of the problems. The proofs of the
results will appear in the forthcoming paper by loffe and Freddi (2002).

We need some additional notation and definitions. The words “open in-
terval” will be used to refer Lo subintervals of [0, 1] which are mmn in [0, 1],
that is having one of the following forms: [0.1], [0.a). (8,1], (o 3). where
Oca<cl. Set

1
V() = inf{ I, (u(-)) : ]n ull)dt = x};
LA, ul-)) = j;_f,.{l,'u{i}}ldi:
VA, x) = inf{ £, (ul-)) ; [ u(t)dt = x}.
A

If = is a partition of [0,1] by points 0 < 1y < ... < 1 < 1, then we say that
the interval A belongs to 7 if A is either [0, %), or (7, 1), or (i, 75), 1 € i< 7 < L
The diameter of 7 is maxecick(tiyn — ), wherewesel iy = 0 g = L A
sequence () of partitions decreases if every & € 7, belongs to 7,41 Finally,
given a positive Radon measure g on [0, 1], we say that a collection P of open
intervals is p-dense if for every € > 0 and every open interval A thereisa A" e T
such that A’ C A and p(A\A') < e.

THEOREM 5 Lel (f,) be o sequence of dntegrands salisfiing (A ), (Aa) and
{Aq). Then there are a probubility measure poon [0,1], @ normal conver in-
tegrand g(t,u) on [0,1] x BY, a lower semi-continuous conver-valued mapping
P(t) and o subsequence ng of tndices such et for the functionals

1 1
el e
ww = [ o(Ge ) [ o(e ek
i, i, )
H{ﬁ,b‘}—L;;(Ld—“)dﬂ+LH(I.M):E[ML

and the value functions of the corresponding variational prollems

1
Viz) = 'mf{':-"f{!.r:l ; / du:;r.'};
o
Vi, z)= i!lf{?‘f{&,v] : f di = ;r}
A

{u) the value functions V,, (4,-) T-converge to V**(A,-) for every & of
p-dense collection of open subintervals of [0,1);
(b) if a sequence (v;) C M? converges to v in the weak-star topology, then

v diml T daah = B0
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(¢) for any v € M? there is a decreasing sequence (7,,,) of partitions of [0, 1],
with diameters going to zero, by points which are not atowns of either p or v and
a sequence (v;) C M? such that

limsup J, (v) < H(w):
j—oo
and for any A belonging fo one of the partitions, the sequence Vi (A,-) I'-
converge to V**(A,-) and

lim f duj:] do.
I Ja A

Here, as in the preceding section, s{f, w) stands for the support function of
P(t) and as in Theorem 4, v, and v, are absolutely continuous and the singular
parts of ¢ with respect to .

This is the condition (c) that does not allow the type of convergence of 1,
considered in the theorem to reach up to the real I-convergence. However, if
the original sequence of the functionals is uniformly coercive, in fact under a
somewhat weaker condition in the spirit of Theorem 3, (¢) reduces to the supre-
mumn inequality in the definition of the I-convergence. Moreover the lollowing
convergence and existenee theorem holds true.

THEOREM 6 Assume in addition that there we a § € B, anr > 0 and «
sequence (py) of nonnegutive functions with uniformly bounded imtegrals such
that for every n

fult,u) 2 (glu) = pult)  a.e.,
provided |lg = gl < r. Then

(a) the conclusion of Theorem § holds with H being actually the I'-limil of
in the weak-slar lopology;
{b) Jor every x € ri{dom V') the problem

Jn

i

1
minimize M), s.l..f dv =z
L1

has o solution belonging do K with jumps af points which are points of continuity
of ju.

7. Constructions

I conelude by adding a brief deseription of the constructions of the objects whose

existence is stated in Theorem 5.

T.1. Denote by A the collection of all open subsets of [0, 1] (open with respect
to [0,1]'). Let us call an extended-real-valued function S(p, E) on B x A a
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to pon Od(S(p,-)) for every p € I1 and define for such p the function (¢, p) as
the density of S(p,-) with respect to g if £ € Od (S(p.-)) and infinity otherwise.
Then we sei

d41

(o) =inf {3 aigplt,pi) : pi €L, Y i =1, 3 aipi =}

and finally define g as the Fenchel conjugate of ¢ with respect to the second
argument:

alt,u) = m;p(limu} — (b, p)).

We finally note that although g is not uniquely defined. as soon as it is
chosen, the integrand g is fully determined.

7.4. Example
Consider the integrands (defined on [0, 1] x R)

0, 'ITUEI.EIL'I,
(an(t)/2)Ja?, ' <t <L,

Assume that ag,(t) > 0 for all % and t. Then

f,;l{i..‘c:lz

ifo<t<n?,
{'2:1,.{!}} Ipl2, ifn"t<igl,

where 8gy is the indicator of zero, that is the function equal zero al zero and
infinity outside. Asswming that b, (¢) = (a,(8))~" /2 are summable and converge
weakly in Ly to some bt), we get

|»I* s B
Su(p, A) = T_Lb“{”df“ ifo,n~jnA=0orp=0,
o ife,n~)nA#dand p#0.

falt.p) =

It is an casy matter to see that 5,(., A) I'-converge to

Sip, A) = Ilf'i‘{”fﬂ if0E A orp=10,
o3, if0€ A and p # 0.

(Recall that 0 ¢ A means thal either A = (a.3) or A = (e, 1] with o > 0 in
either case.)
Therefore

[ TE L I{U}. ifi=0
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Finally

Cfo, ift=0,
W)=\ 5y, iLFO,

so that v € dom™ only il the singular part of ¢ is a Dirac mesure at zero:
vy = Azg and therefore dv = u(t)dt + Azg for some u(-) € Ly. Thus

1
H(v) = fu bt u(t)]? de.

Inn particular, Vizx) = 0 and for any = € R the measure solving the problem of
winimizing H(r) subject to the condition [dv = is & = zeq.

As to the M, and the corvesponding variational problems. it is quite clear
that all ¥, are identically equal to zero and the solutions of the problems

_Jzfn, f0£t<a"),
u,.{f.}—{& ifn~t<t<]

converge (weak-star in the space of measures) to &,
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