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Abstract: Various controllability types are demonstrated for
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Introduction

There are various types of controllability known in control theory for distributed
parameter systems (in contrast to systems with finite-dimensional state space).
Two of them which are used most often are approximate controllability (the
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set contains the target space). T'wo more types are also very important for appli-
cations: spectral controllability (or M- controllability ) and B-controllability.
In the case of M-controllability we are able to reach (from the rest) any eigen-
mode of the system, i.e., M-controllability is stronger than approximate con-
trollability and, in general, weaker than exact controllability. B-controllability
is ‘the best’ type of controllability — the reachable set coincides with the state
space endowed by a natural metrics. In this case we have an isomorphism be-
tween the state and the control with minimal norm which drives the system
from the rest to this state.

We used to meet different types of controllability for different types of partial
differential equations and/or different kinds of controls. For the parabolic type
equations with boundary control, M-controllability is intrinsic while for the
hyperbolic type equations we have exact controllability or B-controllability for
large enough control region and control time (see Russell, 1978, Bardos, Lebeau,
and Rauch, 1992) or M-controllability, say, for a rectangular membrane with
control on one side of the boundary and time large enough.

In this paper we present an example of a physical system for which we can
observe different types of controllability for the same control type. A circular
homogeneous membrane is considered and its initial state (u(-.0),1(-.0)) does
not depend on the angle variable (is rotationally symmetric). The problem is
to steer the system to the rest at the shortest (critical) time 7', equal to the
diameter of the membrane by means of the Neumann type boundary control
f € L*(0,T.). In fact, we have a control problem with one spatial variable (the
Bessel equation). Using the Fourier method we reduce the problem to a problem
of moments with respect to an exponential family.

After a study of the corresponding families we demounstrate that the system is
only approximately controllable for the critical time. Particularly, no eigenmode
can be steered to the rest in the time interval [0, 7.].

There is another situation if we steer the system not to the rest but to a
stationary state — u(-,T%) = const , w(-,7%) = 0. In this case the system
turns out to be M-controllable and even UM-controllable: the norm of the
control driving the system to a stationary state from an ecigenmode is uniformly
estimated by the norm of this eigenmode.

Moreover, the system is exactly controllable with respect to initial data
from (smoother) Sobolev classes. On the other hand, the system is not B-
controllable: not all initial data with finite energy can be steered to a stationary
state. In other words, the controllable set could not be described in naturals
terms (Sobolev classes or domains of powers of the corresponding operators).
B-controllability takes a place if we expand the space of controls to H="/2(0,T.)
and take the set of rotationally symmetric initial data from H'/2(Q) x H~'/2(Q)
as the state space, see Avdonin, Ivanov and Russell (2000).

The wave equation in € x (0,7"), where Q is a unit ball in IR™ (without the
rotational symmetry condition on the initial data and control), was considered
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that the system with the Neumann type boundary control from L?(9€) x (0,T))
is exactly controllable for T > 2, Graham and Russell (1975), and is not exactly
controllable for T' = 2, Jo6 (1991a, b). Our aim is to study the ‘critical’ case of
T = 2 in detail.

2. Control problems and moment problems

Let Q = {z = (x1,22)|x} + 23 < 1} be a unit disk, I' = 9, and v be the unit
exterior normal vector to I". Let us consider the initial boundary value problem

wy = Au in Q x (0,7),),
% ]"x(O,T.):f‘ (1)

Ulp=0 =uo, Wli_g=u1 in Q,

with control f. In this case the critical time T}, is equal 2.

Let us introduce the subspace W), of rotationally symmetric functions in
H'(Q) x L2(2) (data with finite energy). We assume that the initial data belong
to erot and take control f independing on the angle variable; let f € L2(0,2).

Denote by G(T') the controllable set, i. e., the set of initial data (up,u;) €
W1 ., which can be steered to zero in the time interval [0, 7' by means of controls
from L2(0,7). Let us introduce the following types of controllability of the
system (1) (see Avdonin and Ivanov, 1995, Ch. 3, for more details).

DEeFINITION 1 The system (1) is called W~ (or approzimately) controllable in
time T if G(T) is dense in W ,.
DEFINITION 2 The system (1) is called M~ ( or spectrally) controllable n time
T if for all n = 1,2,..., the pairs (£go. o) and (£iw, ™ '@n,0n) belong to
G(T), i.e., there exist controls ff, n = 0,1, -+, steering the system with that

initial data to the rest in the time interval [0, 7]

DEFINITION 3 The system (1) 1s called UM - controllable in time T if it is M
controllable and controls fni can be chosen in such a way that their norms are
uniformly bounded.

DEFINITION 4 The system (1) is called E- (or exactly) controllable in time T
with respect to a space W ¢ W', if G(T) contains W.

rot

DEFINITION 5 The system (1) is called B- controllable in time T if G(T") co-

incides with W),.

The system (1) has stationary states of the form u(-,T) = const . (-, 1) =
0. Therefore it is natural to consider controllability to a stationary state, which
we will call controllability up to a constant. Denote by Go(T) the set of initial
data (uo,u1) € W, ,, which can be steered to a stationary state in the time
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One can introduce the types of controllability up to a constant of the system
(1) similar to the types introduced above. If we replace the set G(T") by Go(T')
in the definitions of W-, E-, and B-controllability we obtain the definition of
W-, E-, and B-controllability up to a constant .

If we replace zero terminal state by a stationary state in the definitions of
M- and UM-controllability we obtain the M- and UM-controllability up to a
constant .

Regularity of the solution of the initial boundary value problem (1) is de-
scribed by the following theorem.

THEOREM 1 The problem (1) has a unique solution u such that
(u(+ ), u(1) € C ([0,T), Wyo) -
The main result of the paper reads as follows.

THEOREM 2 (i) The system (1) is W —controllable in T' = 2. but not M-
controllable. Moreover, it is impossible to steer to the rest any initial data of
the form

(u01u1)=(:téwﬂ_lipnu(aoﬂ)! :"1:1:2!"'3‘ (2)

(it) The system (1) is UM —controllable up to o constant in T = 2. 1. e.. any
initial data of the form (2) can be steered to a stationary state by means of
controls with uniformly bounded norms.

(iii) The system (I) is not E-controllable up to a constant in T = 2 with
respect to the space W', .

(iv) The system (1) is E-controllable up to a constant in T = 2 with respect
to the rotationally symmetric initial data from H‘VHS(Q) X H'ﬂ""(Q) (for any
e>0).

(v) If there exists a control driving the system (1) in time T = 2 to a given
state (or to a given state up to a stationary state), then this control is unique.

Let us rewrite the problem (1) as an initial bt)undaly value problem for the

Bessel equation. Set wo(r) = ug(z,y), wi(r) = u(2,y), r := /& +y%. Then
for w(r,t) = u(z,y,t) we have

Wyt = Wepr + w,, 0<i<d, 0t

a f= ‘
S|, =1 0<t<2, (3)
wlt-"-@ = Wo, wt|t=0 = w,

We will use the following information concerning the ‘elliptical part’ of this
problem. The operator

1
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with the boundary condition ¢’(1) = 0 is a selfadjoint operator in the weighted
Hilbert space L2(0, 1) consisting of functions ¢(r) such that fol rlo(r)|2dr < oo.
It is known (see, e.g., Bateman and Erdelyi, 1953, Ch. 7; Watson, 1944) that
the eigenfrequencies of this operator, w,, are nonnegative zeros of the derivative
of the zero-order Bessel function J{(z) and the eigenfunctions are Jy(w,r) for
n # 0 and constant for n = 0. The normalized eigenfunctions are

_ \/§J0(wnr)
#n() = 7w

Let the initial data wg, wy be represented in the form

”=],2,..., u}()':oY 900(7"):\/5'

o0 e}

wo(r) = »_ahen(r), wi(r) =Y aken(r) (4)
n=0 n=0
and
o0
|ag? + lag® + Y (ladwal® + |an[?) < oo, (5)
n=1

In terms of the original problem (1), the conditions (4), (5) correspond to
ug € HY(Q), w1 € L3(Q).

We will solve the control problem using the method of moments (see Russell,
1978; Avdonin and Ivanov, 1995). For positive integer n we set w_, = —wp,
©_n = p, and introduce the sequence

A = iwka?kl + a|]k.| , kel. (6)
Let us also introduce the exponential family
£ = {er} ez UL{ed) e = prl(1)e™*, ef 1= —wo(1)t;

and denote the family {ex}, .z = E\{ef} by &.
Two problems of moments may be connected with these exponential families.
The first problem is related to the family & :

Cg =—(f, 6k)L2(0,T)» ke Z, 08 = —(f, (38)1,2(0,7') (7)
and the second one — to the family &:
ch = —(frex) L2001y, k€ Z. (8)

PROPOSITION 1 (i) The initial state (4) of the initial boundary value problem
(8) can be steered to the zero state in the time interval [0, T if and only if the
moment problem (7) has a solution f € L*(0,T).

(it) The initial state (4) of the wnitial boundary value problem (3) can be
steered to a stationary state in the time interval [0, T) if and only if the moment
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This proposition can be proved in a standard way (see, e.g., Russell, 1978;
Avdonin and Ivanov, 1995, Ch. 3,5). Using the Fourier method we find the
solution of the problem (3) in the form of a series

w(z,t) = Y an(t)pn(@). (9)
n=0

If we introduce the coefficients ¢ (t)
ck(t) = dwra(t) +ap(t), k€ Z, (10)

then from (3) we obtain the equalities
ck(t) = Qe+t + f; on(1)f()e 7= dr,
ao(t) = af + ajt + fof eo(1) f(T)(t — 7)dr.

which imply the problems of moments (7) and (8).

Solvability of a moment problem depends on ‘geometrical’ properties of the
corresponding exponential families and we introduce an hierarchy of types of
the ‘linear independence’. Let Z := {&£,} be a family of elements in a Hilbert
space H.

DEFINITION 6 The family = is W - linearly independent (we write = € (W)) if
there ezists no nonzero sequence {a,} € €* such that for any element f € H
satisfying 3, |(f,&n)m|? < 00, the series Y, an(f, &) converges to zero.

Note that if ‘Fourier coefficients’ a = {(f, &, )%} belong to (2 for all f € H, W-
linear independence means: for any a = {an} € £? such that the series ) an&,
weekly converges to zero in H. we have a = 0.

DEFINITION 7 The family Z is minimal (we write Z € (M)) if any element &,
does not belong to the closure of the span of the remaining elements:

e VY &y

m#n

If the family is minimal, then there exists the unique biorthogonal family
' = {¢.} € VE, such that

(6ns&m) = o7
(61" is the Kronecker delta).

DEFINITION 8 The family Z is x-uniform minimal (we write £ € (UM)) f
E € (M) and norms of biorthogonal elements are uniformly bounded.

Tf slements nf = are almost normalized. 1€, 1] = 1. then »-uniform minimality
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DEFINITION 9 The family = is said to be an L-basis (we write = € (LB)) if =
forms a Riesz basis in the closure of its span.

Now we are able to formulate the statement connecting the properties of
exponential families with the types of controllability (Avdonin and Ivanov,

1995, Ch. 3).

PROPOSITION 2 (i) The system (1) is W -controllable (W -controllable up to a
constant) if and only if € € (W) (correspondingly, & € (W)).

(ii) The system (1) is M -controllable (M -controllable up to a constant) if
and only if €€ (M) (€ € (M)).

(iit) The system (1) is UM -controllable (U M —controllable up to a constant)
if and only if £ € (UM) (Eo € (UM)).

(iv) The system (1) is B-controllable (B-controllable up to a constant) if
and only if € € (LB) (& € (LB)).

3. Exponential families

It is more convenient for us to preserve notations £ and & for families

€:={ex} ez Ule) e =", ef:=t;

and & := {ex},z. Since factors ¢, (1) have the absolute value V2, this does
not change the properties of the families under consideration.

THEOREM 3 Families £ and & possess the following properties.
(i) The family € is complete in L%(0,2) and € ¢ (M).
(ii) The family £y is complete and minimal in L*(0,2), and & ¢ (LB).
(1) The family &y may be presented as a union of two L-basis families.
(i) € € (W).
(v) & € (UM).

Proor of Theorem 3. Let us recall the definition of the generating function
(GF) of an exponential family. This notion plays an important role in the
theory of nonharmonic Fourier series and was introduced for the first time in
Levin (1961) (see also Avdonin and lvanov, 1995, Khrushchev, Nikol'skii and
Pavlov, 1981). The GF of the exponential family {e'*!} is an entire function
of the Cartwright class with zero vx’s. All entire functions of this class with the
same zeros are distinguished by the factor e**** and the GF of the family £

F(z) = 2J5(2)
is selected by the condition that its indicator diagram is the segment [i, —] of the

imaginary axis. The function F(z) is an odd function and in a sector |argz| <
the following asymptotics is well known (Bateman and Erdelyi, 1953, Ch. 7):

(95
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We will also use the asymptotics of J(z),

JoE) = —\/gcos(z —m/4) + O(z73/2), (13)

which is obtained from the asymptotics of Jjj by differentiation. Positive zeros,
wn, of Jj(2) satisfy the relation

w11=(n+l)ﬂ+o(l) ﬂ:lz, (Jl)
4 mn

From (12) we have

/*“’lf(_ﬁ)ﬁ_

w 1+z2

L

and so € is not minimal in L?(0,2), Paley and Wiener (1934), Sedletskii (1982).
(Note that the GF of £ has one double zero at the point z = 0. The theory
of exponential families such that their generating functions have multiple zeros
is presented in Sedletskii (1982) and Avdonin and Ivanov (1995), Sec. 11.4. In
our case all results we need can be obtained basing on the thenr) of generating

functions with simple zeros).
(ii) The GF of the family & is

Fo(2) = Jo(2)

and hence (see (12))

[TIEEE

Jow 1+22

that proves minimality of & in L2(0,2). Since the GF Fy does not belong to
L?(0,2), we have completeness of &, Levinson (1910).

On the other hand, (12) implies that | Fy|? does not satisfy the Muckenhoupt
condition on straight lines parallel to the real axis (it is a well know fact, com-
plete proof can be found in Avdonin and Ivanov, 1995, Sec. 11.3.4). Therefore,
the family & does not form a Riesz basis in L*(0,2), Khrushchev, Nikol’skii
and Pavlov (1981), Avdonin and Tvanov (1995).

(iii) We present £ as a union

E=E_UE&,, €. = {ep}rcor & =1 hazo Y {({3}‘
The family
£, U{emt Iy, (15)

forms a Riesz basis in L%(0,2). Indeed, the family
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forms an orthogonal basis. The family
{extizo U {em R/}, g (16)

is a (‘small’) perturbation of this basis (see (14)) and in view of Avdonin and
Ivanov (1995), (Ch.2, Sec. 4.2, statements 2.4.13, 2.4.14), forms a Riesz basis.
Hence, the GF of this family, say ®(z), satisfies the Muckenhoupt condition on
straight lines parallel to the real axis (it is casy to check that &(z) < 1). Re-
placing in the family (16) the exponential e="3™/4 with k = —1 by the function
t we obtain the family with the GIF

Po(2) 1= 8(&) g

which satisfies the condition |®(z)| =< |®(z)| on lines parallel to the real axis.
Therefore, the Muckenhoupt condition is also valid for ®y(z) and the corre-
sponding family (15) forms a Riesz basis. Hence the family £, forms an L-basis
in L2(0,2) as a part of the basis family.

Similarly, £_ is a part of the basis family £_ U {e™(»=1/Dt} .

(iv) Now we are able to prove W-linear independence of €. Suppose that for
some sequence {cx}, .z € (*

Z crex +ched = 0 weekly in L2, (17)
kel

If ¢ = 0, then all ¢, vanish. Indeed, & € (W) and (17) with ¢ = 0 implies
¢, = 0 for all k. We suppose now that ¢J # 0 and obtain a contradiction.
To use the theory of analytic functions, we introduce the family

£:= {ek}ez Y {&3Y, & := eilwntidt &0 .— ot

which is the image of £ under the isomorphic in L?(0,2) map (t) — e~t)(t).
Formula (17) implies

> bk + Q) =0 weekly in L2, (18)
keZ

Denote the family biorthogonal to & := £\{&3} by © := {ék}keZ’ Multi-
plying the series (18) in L2(0,2) by 0) we obtain

cQ(€3, 0k) 2 + ¢k =0,
and so
{(€3,6k) 12}z € & (19)
The GF of the family & is



392 S.A. AVDONIN and S.A. IVANOV

where the normalizing factor €** is taken in order that the function Fy [z +1)
belong to the Hardy space H? for the upper half plane. It is known (see, e. g.

Avdonin and Ivanov, 1995, Ch. 2) that the elements 6, may be presented in the
form
. 1 F,
9;; = —‘Jr 0 (f } iy ?
V2r (2 + wy — ) F(—wk + 1)
where F is the Fourier transform. The inverse transform maps the ‘exponential’
&l0,2) to

(20)

et P,

Vor (z+1)%
where P is the orthoprojector from the Hardy space Hi onto the subspace
H? o e?izHQ
4 +
Then, using the unitary property of the Fourier transform, we have
(€8, 0k)L20,2) = (F &, F ' 0k) 2
1 1 1 Fo(2)

- (\/ﬁp(z-{-z’)z’“\/i?(z—l—wk-é) % (~wi +i))Hi.

Since @ € L%(0,2), we can omit the orthoprojector P and with the help of the
Cauchy formula, we derive for the complex conjugated inner products that

- 1 [ Fo(2)
O, €9 = ——] - dz
A S T e T

_ const
wrdg(—wr)”

Taking into account that wy, are zeroes of J'(z) we have from the asymptotics
(12), (13), and (14) that for large |k|

| <V

wrJo" (—wk)

which contradicts (19). Thus, (17) is possible only for zero sequence {cx}, 7.
In view of the statement (iii) this proves IW-linear independence of £.

(v) It is clear that we can estimate elements @, (biorthogonal to the family
5‘0) instead the elements biorthogonal to &g, since these families are connected
by the factor ef. From (20) we have

1641202y = IF"Fells = o /+°°
L?(0,2) lH: = o~ -

The integrand is estimated by
1 ) I
|z — ||z + wp — 32| J5 (—wi)|2 T (@2 + DV2(Ja+ k| +1)2

[Jo(z — )

- : dz.
|2+ wie — 1] Jg (—w) |?
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Standard estimation of the integral leads to the inequality
"9k||%,2(u,2) <1

The theorem is proved. 1

REMARK 1 The theorem tells, in particular, that £ forms both a Bessel and a
Hilbert family, i.e., it is a frame (see Seip, 1995).

REMARK 2 The control problem under consideration gives us the unique (to our
knowledge) example of the ezponential family (£ ) which is not a Riesz basis but
is uniformly minimal and complete.

4. Proof of the main theorem

PROOF of Theorem 1. First, we prove that for each ¢ the state (u(:,t),u(+,t)) is
in W ,. In view of the presentation of the solution (9), formulas (10) and (11),
we see that this is true, if {cx(t)} € £2. Since € is a union of two L-basis families
(Theorem 3 (iii)), the moment problem (7) gives this inclusion. Continuity in #
can be proved in the standard way (see, e.g., Avdonin and Ivanov, 1995, Ch. 3).
The theorem is proved. u

Proor of Theorem 2. (i) W-controllability of the system (1) follows from
Proposition 1 (i), 2 (i), and W-linear independence of £ (Theorem 3 (iv)).
Propositions 1 (i), 2 (ii) and non-minimality of £ (Theorem 3 (i)) imply lack of
M-controllability.

The last part of the statement (i) is also the consequence of non-minimality
of £. Let us suppose that the initial data have the form (2) and we are able
to steer this state to the rest. Then there exists a solution f of the moment
problem (7) for the sequence c) = 26%  (or ¢ = 26%) and a = 0. Hence
f is orthogonal to all remaining elements ey, k # n (or k # —n) and €. It
is impossible, since the exponential family £ preserves completeness when we
remove an arbitrary element. For & = £\{¢} this was proved above, and the
proof is valid for all exponentials.

(i) This fact follows from the uniform minimality of & (Theorem 3 (v)).

(iif) In view of Theorem 1, in our case E-controllability coincides with B-
controllability, which does not take place by Theorem 3 (ii) and Propositions 2
(iv).

(iv) Let (uo,u1) € H3?¢(Q) x HY/?+%(Q), for some ¢ > 0. Then for
coefficients ¢ (connected with coefficients in (4) by (6)) we have

D e Pluox [+ < co.

Denote the family biorthogonal to & by © := {8;},.7. A formal solution
of the moment problem (8) is given by

F&) = cok(t)
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and if this series converges weakly, then it presents the ‘real’ solution of the
moment problem.

In view of the uniform minimality of &, this series converges even in L2~
norm:

1D R0l < D 1RMl6kll < D IRl =D Rk /24| |k~1/27¢| < oo,

(v) The uniqueness of the control follows (see the moment problems) from
the completeness of both families £ and & (Theorem 3 (i),(ii)).
The theorem is proved. |

REMARK 3 Note that in the proof of E-controllability we used very rough esti-
mates and the ‘Sobolev’ orders 3/2+ €, 1/2 + £ of the exact controllable space
are not sharp.

REMARK 4 We see that the reachable (up to o constant) set of the system
does not coincide with — and is dense in the rotationally symmetric subspace of
H' ()% L%(Q2), and contains the rotationally symmetric subspace of H3/*+%(Q)x
H'/2%€(Q). In some sense, the control space L? is not intrinsic for the system.
In Avdonin, Ivanov and Russell (2000) it has been proved that the system is
B-controllable for the control space H='/2(0,2) and the rotationally symmetric
initial data from H'/?(Q) x H~'/2(Q). It means that the map
state (=initial data) — control

is a bounded one-to-one correspondence for these spaces. Formally, it is easy
to find such map for any control space endowing the controllable space by the
norm of the control, which steers the system from the given state to the rest.
The point is that if a system is not B-controllable such approach may lead to
norms, which have not a ‘natural’ description (see, e.g., Harauz, 1988, Lebeau,
1992). In contrast to such cases, the control systems with basis of exponential

families (B-controllable systems) have proper descriptions, Avdonin. Ivanov,
and Russell (2000).

REMARK 5 It is interesting to compare our problem with the problem for a
reqular string. Let us consider Neumann boundary conditions and L?-control
acting at one end point during the critical time — double optical length of the
string. In this case (for a reqular string) it 1s known thai

(i) the reachable set is a subspace of the energy space of codimension 1. in
particular, the system is not approximately controllable,

(i) the system is B-controllable up to a constant (up to a stationary state).

REMARK 6 The situation changes drastically if we take control time T longer
than the critical T, = 2. Then our system ( (1) or (3)) is B-controllable and
the set of controls driving the system from the given state to the rest has infinite
dimension.

This work was supported in part by the Russian Foundation for Basic Re-
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