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Abstract: Various controll abili ty types are demonstrated for 
a circular membrane with rotationally symmetric initial data and 
boundary control depending on time only. We prove that the set of 
initial states, which can be steered to rest in the criti cal Lime in terval 
(equal to the diameter of the membrane) by means of L 2 -controls 
is dense in the energy space but contains no eigenmode. We also 
show that any initial data from a Sobolev space can be transferred 
to a stationary state. The proof is based on study of exponent ial 
families arising in tbe approach using the method of moments. 
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1. Introduction 

There are various types of controllability known in control theory for distribu ted 
parameter systems (in contrast to systems with finite- dimensional state space). 
Two of them which are used most often are approxim ate controll abili ty (the 



384 S.A . AVDON JN and S.A. IVANO V 

set contains the target space). Two more types a.re also very important for app li­
cations: spectral controllability (or M-- controllabi lity ) and B- controllability. 
In the case of .111- controllability we are able to reach (from the rest) any eigen­
mode of the system, i.e., ./11-controll abili ty is stronger than approximate con­
trollability and, in general, weaker than exact controllability. B - controlla.bility 
is 'the best' type of controllabili ty - the reachable set coincides with the state 
space endowed by a natural metrics. In thi s case we have an isomorphism be­
tween the state and the control with minimal norm which drives the system 
from the rest to this state. 

We used to meet different types of controllabili ty for different types of partial 
differential equations and/ or different kinds of controls. For the paraboli c ty pe 
equations with boundary control, .111 - controllability is intrinsic while for the 
hyperbolic type equations we have exact controll ability orB-controll ability for 
large enough control region and control time (see Russell, I 978, Ba.rdos, Lebeau, 
and Rauch, 1992) or J\1/-controllability, say, for a rectangul ar membrane with 
control on one side of the boundary and time large enough. 

In this paper we present an example of a physical system for which we can 
observe different types of controllability for the sa.rne control type. A circular 
homogeneous membrane is considered and its initial state (u(-, 0) , 1t1.(-, 0)) does 
not depend on the angle variable (is rotationally symmetri c) . The problem is 
to steer the system to the rest at the shortest (cri tical) timeT. equal to t he 
diameter of the membrane by means of the Neumann type boundary control 
f E L2(0,T.). In fact, we have a control problem with one spatial va ri ab le (the 
Bessel equation). Using the Fomier method we reduce the problem Lo a problem 
of moments with respect to an exponential fami ly. 

After a study of the corresponding fami I ies we demonstrate that the system is 
only approximately controll able for the critical time. Particularly, 110 eigemnode 
can be steered to the rest in the time interval [0, T.] . 

There is another situation if we steer the system not to the rest but to a 
stationary state- 'U(-, T.) = const , 'LLt(-, T.) = 0. Tn t hi s case t he system 
turns out to be J\1! - controllable and even U M - controll able: the 11orrn of tbe 
control driving the system to a. stationary state from an eigenmode is uniformly 
estimated by the norm of this eigenmode. 

Moreover, the system is exactly controll able with respect to initial data 
from (smoother) Sobolev classes. On the other hand, the system is not B­
controlla.ble: not all initial data. with finite energy can be steered to a. stat ionary 
state. In other words, the controll able set could not be described in naturals 
terms (Sobolev classes or domains of powers of the corresponding operators) . 
B- controll a.bility takes a pl ace if we expand t he space of control s to s - 112 (0, T.) 
and take the set of rotationally symmetri c initial data from H 112 (rl ) x H - 112 (rl) 
as the state space, see Avdonin, Tvanov and Russell (2000) . 

The wave equation in n X (0, T), where n is a unit ball in m.n (without the 
rotational svmmetry condition on the initial data and control) , was considered 
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that the system with the Neumann type boundary control front L2(un x (0, T)) 
is exactly controllable forT> 2, Graham and Russell ( 1975), and is uot exactly 
controllable for T = 2, Joo (1 991a, b). Our aim is to study the ' c:rit.ici::ll' case of 
T = 2 in detail. 

2. Control problems and moment problems 

Let n = {x = (xl, X2)lxi + x§ < 1} be a unit disk , r = un, and u be the uni t 
exterior normal vector tor. Let us consider t he initial boundary value problem 

{ 
Utt = 8.u in n X (0, T.), 

g~ lr x (o,T.) = f, 
u it=O = 1LQ , Ut lt=O = U1 in !1 , 

with control f. In this case the critical time T. is equal 2. 

( 1) 

Let us introduce the subspace 1iV)c,1, of rotationa ll y sy mmetri c: fu11 ctions in 
H 1 (D) x L2 (!1) (data with finite energy). We assume that the initia l da ta belong 
to lV)ot and take control f independing on tbe angle variable; Jet f E L2 (0, 2). 

Denote by G(T) the controll able set, i. e., the set of ini t ial data (u 0 , ·u1 ) E 
W)ot• which can be steered to zero in the t ime interval [0, T ] by means of controls 
from L2 (0, T). Let us introduce the following types of c:onLroll ability of t he 
sys tem (1) (see Avdonin and Tvanov, 1995, Ch. :3, for more details). 

D EFINITION 1 The system {1) is called W - {or u.ppmxirnatcly) contmllaule ·in 

time T if G(T) is dense in ll'r1ot . 

DEFINITION 2 The system {1) is called M - ( oT spectmlly) controilablc ·in time 
T if for all n = 1,2, ... , the pai-rs (±<po,tpo) and (± iwn- 1 <pn,'Pn) belong to 
G(T), i.e., there exist controls J(:, n = 0, 1, · · · , stee-r·ing the system. with that 
initial data to the rest in the tim e interval [ 0, T] . 

D EFINITION 3 The system {1) is called U M - contmllablc in timeT ·if dis M ­
contro llable and controls J/: can be chosen ·in such a way that their· nonns are 
uniformly bounded. 

DEFINITION 4 The system {1) is called E - {or e:cactly) wnl;m/lo.blc -in t-imeT 

with -respect to a space W C W)ot ~f G(T) contains W. 

DEFINITION 5 The system ( 1) 'is ca lled B - contro llable in t-im.e T 'if G (T) co­

incides with vv;ot' 

The system (1) has stationary states of t he form ·u(-, T) = const , 'tt 1(-, T) = 
0. Therefore it is natura.! to consider controllability to a sta tionary sta te, whieh 
we will ca.ll controllau·ility up to a constant. Denote by G 0 (T) the seL of ini t ial 
data. (uo, ul) E lV)c,t, whi ch can be steered to a stationary stat e in t he t.ime 

, r ...... .,......, • 
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One can introduce the types of controllability up to a constant of the system 
(1) similar to the types introduced above. If we replace the set G(T) by Go(T) 
in the definitions of W - , E-, and B-controllabi li ty we obtain the definition of 
VV - , E- , and B- controllability up to a constant . 

If we replace zero terminal state by a. stat ionary sta te in tbe definitions of 
M - and UM-controllabi li ty we obtain the M - and UM- cont.roll a.bility up to a 
constant . 

Regularity of the sol ution of the initial boundary value problem ( 1) is de­
scribed by the following theorem. 

THEOREM 1 The problem {1 ) has a uniqv.e solu.t·ion u such that 

(u(·, t), Ut(-, t)) E C ([0 , T], W)ot). 

The main resul t of the paper reads as follows. 

THEOREM 2 {i) The system {1) is H1-contTollable in T = 2, lmt not M ­
controllable. MoTeoveT, it is impossible to steeT to the Test any initial data of 
the foTm 

(2) 

{ii) The system {1) is U M - contmllable up to a constant in T = 2. i. c .. any 
initial data of the foTm {2) can be steeTed to a stationaTy state by mean.s of 
contTo ls with unifoTmly bounded noTms. 

{iii) The system {1) is not E-contmllable up to a constant ·in T = 2 with 
Tespect to the space W!ot. 

{iv) The system {1} is E -contmllable up to a constant in T = 2 with Tespect 
to the mtationally symmetTic initial data jTorn H 312+"(fl) x H 1/2+s(n) (loT any 
E > 0) . 

(v) If theTe exists a contm l dT·iving the system {1) in time T = 2 to a given 
state ( OT to a given state up to a stationaTy state), then this control is ·nniqtte. 

Let us rewrite the problem (1) as an initial boundary value problem for the 

Bessel equation. Set wo(T) = uo(x,y), w1(T) = H 1 (x,y), T := \ /r) + y2 . Then 
for w(T, t) = u(x, y, t) we have 

{ Wtt = Wrr + ~wr ; 0 < r < ] , 0 < t < 2, 
~~· lr=l = f, 0 < t < 2, 

w lt=O = Wo , Wt lt=O = W] , 

(3) 

We will use the following information concerning the 'ellip ti cal part' of th is 
problem. The operator 

1 0 
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with the boundary condition <p1 
( 1) = 0 is a selfadjoint operator in the weighted 

Hilbert space L;(o , 1) consisting of functions <p(1·) such that J
0

1 
rJ<p(r)i2dr < oo . 

It is known (see, e.g., Bateman and Erdelyi, 1953, Ch. 7; ·w atson, 1944) that 
the eigenfrequencies of this operator, wn, are nonnegative zeros of the derivative 
of the zero-order Bessel fun ction J0 (z) and the eigenfunctions are J0 (w.,r) for 
n f. 0 and constant for n = 0. Th e normal i7.ed eigenfun ctions are 

J2Jo(wnr) c, 
'Pn(r) = JJo(wn)J , n = 1, 2, ... , wo = 0, <po(r) = v 2. 

Let the initial data. w0 , w1 be represented in the form 

00 00 

(4) 
n =O n =O 

and 

00 

Ja8J 2 + J a~J 2 + l:)Ja~wnl 2 + J a.~1 J 2 ) < 00 . (5) 
n = l 

In terms of the original problem (!), the conditions (4), (5) correspond to 
uo E H 1 (fl), Ul E L 2 (fl) . 

We will solve the control problem using the method of mom ents (see Russell , 
1978; Avdonin and Ivanov, 1995) . For positi ve integer n we set w_n := - wn , 
'P -n := 'Pn and introduce the sequence 

0. 0 J k?L ck := 1.wkalkl + alkl ' E . 

Let us also introduce the exponential fami ly 

E := {ek}kE7L U {eg}, e~o := <pk(1) ei"''1 , eg := -<p0 (!)t ; 

a nd denote the family { ek} kE7L = E\ { e8} by Eo. 

(6) 

Two problems of moments may be connected with these exponential famili es. 
The first problem is related to the fa mil y E : 

and the second one - to the famil y [ 0 : 

c~ = -(!, ek)u(o,:r) , ;, E ?L . 

(7) 

(8) 

PROPOSITION 1 (i) The initial state (4) of the india[ bo·nndn:ry ·uaht.c pToblem 
(3) can be steered to the zero state 'in the hme ·interval [0, T] 'if and only 'if the 
moment problem (7) has a solut·ion f E £ 2 (0, T), 

(ii) The initial state (4) of the initial boundary value problem (:J) can be 
steered to a stationary state in the t-ime inteTval [0, T ] if and onl:l! if the moment 
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This proposition can be proved in a standard way (see, e.g. , Russell , 1 978; 
Avdonin and Ivanov, 1995, Ch. 3,5) . Using the Fourier method we find the 
solution of the problem (3) in the form of a series 

00 

w(x, t) = L an(t)<pn(x). 
n =O 

If we introduce the coefficients ck ( t) 

Ck(t) := iwkaJkJ(t) + aJkJ (t) , k E 7L, 

then from (3) we obtain the equalities 

Ck(t) = c~eiw•t + J~ 4?n(l)f(r)eiwk(r-t) dr, 

ao(t) =a8+abt+ f~<po(l)f(r)(t-r)dr. 

which imply the problems of moments (7) and (8). 

(9) 

(I 0) 

(I 1) 

Solvability of a moment problem depends on 'geometrical ' properties of the 
corresponding exponential famili es and we introduce an hierarchy of types of 
the 'linear independence'. Let 2 := {.;n} be a family of elements in a Hilbert 
space 7-i. 

DEFINITION 6 The family 2 is Hi - linearly independent (we write 2 E (W) ) if 
there exists no nonzero sequence {an} E £2 such that for any element f E 7-i 
satisfying I:n I(!, .;nh-d2 < oo, the series I:n an(!, .;n)'H converges to zero. 

Note that if 'Fourier coefficients' a = { (!, .;n)rd belong to £2 for all f E 7-i , W ­
linear independence means: for any a = {an} E £2 such that the se'("i es I:n an.;n 
weekly converges to zero in 7-i, we have a= 0. 

DEFINITION 7 The family 2 is minimal (we write 2 E (.!VI)) if any element .;n 
does not belong to the closure of the span of the remaining elements: 

If the family is minimal, then there exists the un ique biorthogona.l family 
2' = {.;~} E V2, such that 

(.;~,.;m) = o: 
( o: is the Kronecker delta). 

DEFINITION 8 The family 2 is *-uniform minimal (we write 2 E (U .!VI)) if 
2 E (.!VI) and norms of biorthogonal elements are uniformly bounded. 

Tf PlPmPnt,; nf :=: :uR almost normalized. liEn II ::=:: ]. then *-uniform minima.lity 
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DEFINITION 9 The family 3 is said to be an £ - basis (we write 3 E (LB)) if 3 
forms a Riesz basis in the clos11.re of 'its span. 

Now we are able to formulate the statement connecting the properties of 
exponential families with the types of controllability (Avdonin nnd Ivanov, 
1995, Ch. 3). 

PROPOSITION 2 (i) The system (1) is T"\f - controllable (W - controllable 11.p to a 
constant) if and only if E E (W) (correspondingly, Eo E (W) ). 

(ii) The system ( 1) is M - controllable (M - controllable v.p to a constant) if 
and only if E E (M) (Eo E (M)). 

(iii) The system (1) is U M -controllable (U M - controllable 11.p to a constant) 
if and only if E E (UM) (Eo E (UM)). 

(iv) The system (1) is B - controllable (B - controllable v.p to a constant) if 
and only if E E (LB) (Eo E (LB)). 

3. Exponential families 

It is more convenient for us to preserve notations E and Eo for families 

C' • { } U { 0} . iw,.t 0 . t· c.. .= ek kEZ e0 , ek .= e , e0 .= ., 

and Eo: = {ek}kEZ· Since factors 1Pn (1) have the absolute va lue v'2, t hi s does 
not change the properties of the families under consideration . 

THEOREM 3 Families E and Eo possess the following proper-ties. 
(i) The family E is complete in L2 (0, 2) and E tJ. (M). 
(ii) The family E0 is complete and min·imal in L2 (0, 2) , and Eo tf. (LB). 
(iii) The family E0 may be presented as a 11.nion of two £ - basis famili es. 
(iv) E E (W). 
(v) E0 E (U M). 

PROOF of Theorem 3. Let us recall the clennition of the generatiug funct ion 
(GF) of an exponential family. This notion plays an important role in the 
theory of nonharmonic Fourier series and was introduced for the first time in 
Levin (1961) (see also Avdonin and ]vanov, 1995, Khrushchev, Nikol'ski i and 
Pavlov, 1981). The GF of the exponential family {eivd} is an ent ire function 
of the Cartwright class with zero vk 's . .i\ II entire functions of th is class with the 
same zeros are distinguished by the factor ea+b z and the GF of the family E 

F(z) = zlb(z) 

is selected by the condition that its indicator diagram is the segment [·i, - ·i] of the 
imaginary axis. The function F(z) is an odd function and in a sector [argz[ < 1r 

the following asymptotics is well known (Bateman and Erdelyi, 1953, Cb . 7): 

{2; 
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We will also use the asymptotics of J0(z), 

Jb'( z) =- {2 cos(z -K/4) + O (z - 312), y;-; (13) 

which is obtained from the asymptotics of J0 by differentiat ion. Positive zeros, 
Wn , of J0 ( z) satisfy the relation 

Wn=(n+~)K+O (~) , n = J, 2, .... 

From (12) we have 

J+oo !F(x) l2 -
2 - oo, 

_ 00 1 +X 

( 1 4) 

and so E is not minimal in L2 (0, 2), Paley and Wiener (J 934), Sedletskii (1 982). 
(Note that the GF of E has one double zero at the point z = 0. The theory 
of exponential families such that their generating fu nctions have multip le zeros 
is presented in Sedletskii (J 982) and A vclonin and Ivanov (1995), Sec:. T J. 4. ln 
our case all results we need can be obtained bas ing on the t heory of generating 
functions with simple zeros). 

(ii) The GF of the famil y E0 is 

Fo( z) = Jb( z) 

and hence (see (12)) 

J+oo IFo( xW 
2 < oo , 

_ 00 1 +X 

that proves minimality of E0 in L2 (0 , 2) . Since t.he GF 1<0 does not belong to 
L 2 (0 , 2) , we have completeness of E, Levinson (19·10). 

On the other hand , (1 2) implies that !Fol 2 does not. sat isfy the Muckenhoupt 
condition on straight lines pa rall el to t he real axis (it is a well know fact , com­

plete proof can be found in A vclonin and Ivanov , 1995, Sec. Tl .3.4). Therefore, 
the family E0 does not form a Riesz basis in L2 (0, 2), Khrushchev, Nikol'skii 
and Pavlov (1981), Avdonin and Tva.nov (1995). 

(iii) We present E as a. union 

E = L U E+, L := {ek}k<O, E+ := {ek}k :2:0 U {e8 }. 

The family 

c U {eirr(n+ l /4)t } c,+ n<-1 · ( 15) 

forms a. Riesz basis in L2 (0, 2). Tndeecl, t he family 
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forms an orthogonal basis. The family 

{ekh::=:o U {ei7r(k+l/4)th<o (16) 

is a ('small') perturbation of this basis (see (14)) and in view of Avdonin and 
Ivanov (1995), (Ch.2, Sec. 4.2 , statements 2.4.13 , 2.4.1<1) , forms a Riesz basis. 
Hence, the GF of this family, say if>( z), sat isfies the Muckenhoupt condition on 
straight lines paraJlel to the real axis (it is easy to check that ct>( z) ::=:: I). Re­
placing in the family (16) the exponenti al e- i3"t/ 4 with k = -1 by t.l1 e function 
t we obtain the family with the GP 

z 
<I>o(z) := <I>(z) 

3
/ , z+ 4 

which satisfies the condition I<I>o(z)l ::=:: I<P(z)l on lines para llel to the real ax is. 
Therefore, the Muckenhoupt condition is also valid for <l>o(z) and the corre­
sponding family (15) forms a Riesz basis. Hence the famil y E+ form s an £ - basis 
in L2 (0, 2) as a part of the basis family. 

Similarly, E_ is a part of the basis family E_ U {ei7r( n - l/4l1} n<:O · 

(iv) Now we are able to prove W-linear independence of E. Suppose that for 
some sequence { ck} k EZ E £2 

L Ck ek + c8e8 = 0 weekly in L2
. 

kEZ 

(17) 

If cg = 0, then all ck vanish. Indeed, Eo E (W) and (I 7) with c:8 = 0 impli es 
ck = 0 for all k. We suppose now that c8 f. 0 and obtain a contradiction. 

To use the theory of analytic functions, we introduce the family 

c._{ - } {-0} - ·- i (w;+i)t -o._ - t c.- .- ek kEZ U e0 , ek .- e , e0 .- e t , 

which is the image of E under the isomorphi c in L2 (0, 2) map t/; (t) f-t c- 17/J(t). 
Formula (1 7) implies 

L ckek + c8e8 = 0 weekly in L 2
. 

kEZ 

(I 8) 

Denote the family biorthogonal to Eo := E\ { e8} by e := { ek} kEZ. Multi­

plying the series (18) in L2 (0, 2) by ek we obtain 

and so 

0 - 2 {(e0 , ek)u hEz E e . ( 19) 

The GF of the family Eo is 
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where the normalizing factor eiz is taken in order that the function F0 j(z + i) 
belong to the Hardy space H! for the upper half plane. It is known (see, e. g. 
Avdonin and Ivanov, 1995, Ch. 2) that the elements ek may be presented in the 
form 

(jk = -:F-1- Fa(~) 
~ (z + Wk- i)F~( -wk + i) ' 

(20) 

where :F is the Fourier transform. The inverse transform maps the 'exponential' 
e8l(o,2) to 

:;::-1-0 1 p 1 
ea = ~ (z + i)2, 

where P is the orthoprojector from the Hardy space H! onto the subspace 
H! 8 e2izH!. 

Then, using the unitary property of the Fourier transform, we have 

(e8 , iJk)£2(0,2) = (:F- 1 eg,:F- 1 iJk)H~ 

= (-1-P 1 __ 1_. Fa(~) ) 
~ (z + i) 2

' ~ (z + wk - i)F~( - wk + i) H 2 
+ 

Since ek E L2(0, 2) , we can omit the orthoprojector P and with the help of the 
Cauchy formula, we derive for the complex conjugated inner products that 

- ] l +oo Fo(z) (e e0 ) 2 - _ _:___ dz 
k, 0 L (0,2)- 2 ( ')2( ·) ;:;,,( ·) 

7r -oo z- ~ z + Wk - ~ r 0 -wk + 2 
const 

wkJ/:f( -wk)' 

Taking into account that Wk are zeroes of J' ( z) we have from the asymptotics 
(12), (13), and (14) that for large lkl 

I 
1 1::::1/JikT 

wkJo"( -wk) 

which contradicts (19) . Thus, (17) is possible only for zero sequence {ck} kE Z· 
In view of the statement (iii) this proves W -linear independence of [. 

(v) It is clear that we can estimate elements ek (biorthogonal to the family 
E0 ) instead the elements biorthogonal to [ 0 , since these famili es are connected 
by the factor et. From (20) we have 

- 2 - 1- 2 1 ;·+oo IJb(x- i)IZ 
IIBk li £2(02) = II:F Bk ii H2 = -2 I + ·12IJ"( )12 dx . ' + 7r _ 00 x Wk - ~ 0 -wk 

The integrand is estimated by 

1 lkl 
lx - illx + wk- ii 2IJ/:f(-wk)l 2 -< (x2 + 1)112(lx + kl + 1)2 · 
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Standard estimation of the integral leads to the inequality 
- 2 

IIBkiiP(0,2)--< 1. 

The theorem is proved. 

393 

• 
REMARK 1 The theorem tells, in particular, that E forms both a Bessel and a 
Hilbert family , i.e., it is a frame (see Seip. 1995). 

REMARK 2 The control problem under consideration gives us the unique (to our 
knowledge) example of the exponential family (Eo) which is not a Riesz basis but 
is uniformly minimal and complete. 

4. Proof of the main theorem 

PROOF of Theorem 1. First, we prove that for each t the state ( u(-, t), Ut(-, t)) is 
in W/ot· In view of the presentation of the solution (9), formulas (10) and (11), 
we see that this is true, if { ck ( t)} E J12 . Since E is a union of two £-basis families 
(Theorem 3 (iii)), the moment problem (7) gives this inclusion. Continuity in t 
can be proved in the standard way (see, e.g., Avdonin and Ivanov, 1995, Ch. 3). 
The theorem is proved. • 

PROOF of Theorem 2. (i) W-controllability of the system (1) follows from 
Proposition 1 (i), 2 (i), and W-linear independence of E (Theorem 3 (iv)). 
Propositions 1 (i), 2 (ii) and non-minimality of E (Theorem 3 (i)) imply lack of 
M -controllability. 

The last part of the statement (i) is also the consequence of non-minimality 
of E. Let us suppose that the initial data have the form (2) and we are able 
to steer this state to the rest. Then there exists a solution f of the moment 
problem (7) for the sequence c~ = 26~n (or c~ = 26~) and ag = 0. Hence 
f is orthogonal to all remaining elements ek, k =/=- n (or k =/=- -n) and eg. It 
is impossible, since the exponential family E preserves completeness when we 
remove an arbitrary element. For Eo = E\ { t} this was proved above, and the 
proof is valid for all exponentials. 

(ii) This fact follows from the uniform minimality of Eo (Theorem 3 ( v)). 
(iii) In view of Theorem 1, in our case £-controllability coincides with B­

controllability, which does not take place by Theorem 3 (ii) and Propositions 2 
(iv). 

(iv) Let (u0 , ul) E H 312+"(D) x H 112+2 (D), for some E > 0. Then for 
coefficients c~ (connected with coefficients in (4) by (6)) we have 

L Jc~J2JwkJl+2e < oo. 

Denote the family biorthogona.l to Eo by 8 := { Bk} kEZ. A formal solution 
of the moment problem (8) is given by 
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and if this series converges weakly, then it presents the 'real' solution of the 
moment problem. 

In view of the uniform minimality of Eo, this series converges even in L2-

norm: 

II L c~th l l :S L l c~IIIBkll -< L ic~ l = L l c~e12+e l l k - 1 12 -el < oo. 
(v) The uniqueness of the control follows (see the moment problems) from 

the completeness of both families E and Eo (Theorem 3 (i),(ii)). 
The theorem is proved . • 

REMARK 3 Note that in the proof of £-controllability we used very rough esti­
mates and the 'Sobolev ' orders 3/ 2 + E, 1/ 2 + E of the exact contmllable space 
are not sharp. 

REMARK 4 W e see that the reachable (up to a constant) set of the system 
does not coincide with - and is dense in the rotationally symmetric subspace of 
H 1 (D) xL2 (D), and contains the rotationally symmetric subspace of H 312+< (D) x 
H 112+e(D). In some sense, the control space L2 ·is not intrinsic fo r the system . 
In Avdonin, Ivanov and Russell {2000) it has been proved that the system is 
B -controllable for the control space s - 112 (0, 2) and the mtationally symmetric 
initial data from H 112 (D) x s - 112 (D) . It m eans that the map 

state {=initial data) r--+ contm l 
is a bounded one- to- one correspondence for these spaces . Formally, it is easy 
to find such map for any control space endowing the controllable space by the 
norm of the control, which steers the system from the given state to the rest. 
The point is that if a system is not B - controllable such approach may lead to 
norms, which have not a 'natural ' description {see, e.g., Haraux, 1988, Lebeau, 
1992). In contrast to such cases, the control systems with basis of exponential 
families (B-controllable systems) have proper descripti.ons, Avdonin, Ivanov, 
and Russell {2000) . 

REMARK 5 It is interesting to compare our pmblem with the problem for a 
regular string. Let us consider Neumann boundary conditions and L 2 -control 
acting at one end point during the critical time - doub le optical length of the 
string. In this case (for a regular string) it is known that 

(i) the reachable set is a subspace of the energy space of codimension 1, in 
particular, the system is not approximately controllable, 

{ii) the system is B-controllable up to a constant (up to a stationary state). 

REMARK 6 The situation changes drastically if we take contml time T longer 
than the critical T* = 2. Then our system ( {1) or {3)) is B - controllable and 
the set of controls driving the system from the given state to the rest has infinite 
dimension. 
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