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1. Introduction 

This paper concerns the controlled system 

d 
dt (My)(t) + Ly(t) = Bu(t), t E (0, T) 

(My)(O) = Myo 

in a Hi lbert space H. 

(I) 

HereM : D(M) c H ---> H and L: D(L)CH ---> Hare linear, closed and 
densely defined operators, and U (the controller space) is a Hilber t space with 
the norm denoted l·lu and scalar product(-, ·)u. The norm of H wi ll be denoted 
by 1·1 and the scalar product by(-, ·). The controller u is takeu in L2 (0, T: U) 
and the solu tion y E L2(0, T: H) is considered in the following weak sense 

1T(y(t), M* y/(t) - L* tp(t))dt + 1 T(Bv.(t) , tp(t))dt + (My0 , tp(O)) = 0 (2) 

for all 'P E C1([0, T] ; D(M*)) n C( [O, T] ; D(L*)) such tha t tp(T) = 0. 
d 

Here Yo E D(M) , tp' = dt'P and M* ,L* are the duals of lVI and L. 

This equation was extensively st udied in the las t years (see, e.g., Carroll , 
Showalter, 1976, Favini, Yap;i, 1999, and the references given there) but there 
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1995, Sviridyuk, Efremov, ] 995). Here we shall study severa l control problems 
having (1) as state, and the first one is the convex Bolza control problcrn 

Minimize l T(g(Cy(t)) + h(u(t )))dt subject to ( 1) (3) 

where the functions g and h satisfy the following condi t ion 
(i) g : Z ----+ R, h : U ----> R are lower sern:icont-inv.ov.s. cm1:ucJ; and C E 

L(H,Z). 
Here Z is a Hilbert space with the norm l ·lz and scalar product (-, ·)z . 

The main difficulty with problem Pis th at the state e(j na tion is singul ar and 
so the standard methods of treating convex control pro blems (see, e. g. , Barbu, 
Precupanu , 1986, Lions, 1968) are not a ppli cable in this situation. This problem 
will be studied in Sections 2 and 3 wit h main emphasis on existence and the 
maximum principle. 

In Sections 4 and 5 a linear quadrati c control problem will be stmli cd in the 
framework of strong solutions to the state system (I) . 

In Section 6 a related problem pertaining the null controllabili ty of t l1 e de­
generate parabolic equations with intern al and boundary control will be studied. 

2. Assumptions and formulation of results 

We shall denote by A: D(A) c £2 (0, T ; H ) ----+ L2 (0, T; H) t he linear operator 
defined by 

Ay = f iff ( 4) 

T T 
( (y,M* r.p'-L*r.p) dt +1 (f , r.p) dt = O 

.!a o 
(5) 

for all r.p E C1 ([0, T] ; D(M*)) n C([O, T] ; D(L*)) such th a t. r.p(T ) = 0. Clearl y, A 
is closed and densely defin ed. This mea ns that y is a weak solu t ion to (1) wit l1 
the right hand side f and the initi al value :IJo = 0. 

The dual operator A • is given by 

A*p = f iff (6) 

r(p, (M'IjJ )' + L'ljJ )dt = ~· T(f , ·tj;)dt 
lo . o 

(7) 

for a ll 'ljJ E C( [O, T ]; D(L)), !Vhf; E C 1 ([0, T ]; H ), M 't/;(0) =: 0. 
This means that 

-M*~~ + L*p = fin (O,T) 
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in the sense of vectorial distribut.ions. Tt is easil y seen tha t t.hc operator (G) is 
indeed the dual of A, i. e., 

(Ay,p) = (y,A*p), \/y E D(A), p E D(A*) (8) 

where(- ,·) is the scalar product of £ 2 (0, T: H) . 
The assumptions of Section 1 will be in efrect everywhere in the sequel. Tn 

addition the following hypotheses wi ll be 11secl: 
(ii) There is J( E L(Z, H) such that the operator AK = A+ KC has closed 

range in £2 (0, T ; H) and its kernel N(AK) is find c rhmens·ionaL 
(iii) There is F E L(H, U) such that A p = A+ BF has clo!>ed m n.ge in 

£ 2 (0, T ; H) and the kernel N(AF) of i.ts adjoint i.s finit e di.rr tensi.onal. 
(Here we have denoted again by KC (respectively BF) the reali zat ion of KC 
(respectively BF) in £ 2 (0 , T ; H) .) 
(iv) g( z ) ~ wo[z[~ + cl, \jz E Z, h(u) ~ W J [ ·u. [~ + C2, 'V'II E u 

where wo, w1 > 0. 
(v) There are cq ,/31 ~ 0, and a 2,/32 E R such that 

g(z ) :S: a 1 [ z[~ + a2, 'Vz E Z, h(u) :S: fJ1 [v.flr + fh, \/u E U. 
Now we are ready to formul ate the main results of thi s scc:Lion. 

THEOREM 2.1. Assume that hypotheses (i),( ii),( iv) n:rc sat-isfied and that Yo E 

D (L) . Then problem (P) has at least one opl'irnal pa·ir (y*,u*) . ff Z = H o:nd 
C = I then for each y0 E H there eJ:·ists ll'/1. optimal pair under rt.ssv.mphons (i), 
(iv) only. 

THEOREM 2.2. Under assumptions (i), (iii ) ,(v) the pair (y* , ·n*) E £ 2 (0, T; H ) x 
x£2 (0, T ; U) is optimal in problem (P) if and only if there are TJ, J! E L2 (0. T ; H) 
such that 

A *p + ry=O 

ry(t) E C*8g(y*(t)), a. e. t E (0, T) 

u*(t) E 8h*(B*p(t)), a. e. t E (0, T). 

(9) 

( I 0) 

( II ) 

Here 8g : Z __., 22 is Lhe subdifferen tia l of g a mi oh* : U ----> '2 ° is t he 
subdift'crential of the conjugate function h* of h (see, e.g ., Bar b tt , Prccupaltll, 
] 986). 

The system (J ), (9), ( I 0), (1 J) is the Eul er - Lagrange opt im a lity sy:;!e rn for 
problem (3). 
Example 1. Consider the optimal control problem 

Minimize j~ (g(x , y(x , t)) + h(.1:, 11.( :r , t)) )d:r; dt s1tbject to (12) 
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(x,t)EQ~Dx(O , T) (] 4) 

(dy)(x, 0) = d( x)yo(x) , x E D; y = 0 in E = CJD x (0, T) 

Here Dis a bounded and open subset of Rn with smooth boundary, dE L 1 (D), 
d 2 0 a.e. in D, a E L00 (D) and m E L00 (Q). Equat ion (13) occurs in the 
description of certain diffusion processes (see Carroll, Showalter , 1976, and th e 
references given there) as well as in the theory of the Markov stochastic processes 
(the Wentzell problem). 'Equation (13) is of t he form (1) where H = U = L2 (D), 
L = -£1, D(L) = HJ(rl) n H 2(rl), (My)( x) = d( x) y(x:) , D(M) = {y E L2 (rl); 
dyE L2 (D)} , (Bu)(x:) = 1n(x)'U(x) , n.e. x E n. Jt is readily seen that if a 2 0, 
a .e. inn then the corresponding opera tor A: D(A)cL2 (Q)----> L2 (Q) defined 
by (4), (5) has closed range in L2 (Q) . Tndeed if Ayn = f" then in (5) we take 
cp to be the solution to the boundary value problem (see Lemma 6. 1 below) 

dept + l1cp = Yn in Q 

dcp(x, 0) = 0; cp = 0 in E. 

This yields 

ly~ (x,t)dx :S; C hlfn(x,t)IIYn( a:, t)ichdt, Vn. 

Hence {yn} is bounded in L 2 (Q) and this cl early implies t hat R(A ) is closed. 
Thus if one assumes that 3,\ E R such that 

a(x) + Am(x) 2 0, a .e. x E [2 

then assumption (iii) is sati sfied with 

(Fy)(x) = ->-y(x ), a .e . . T E rl , y E L2(rl). 

The functions g: Qx R ----> R, h: Qx R ----> R arc convex and cont inuous in y 
and ·u , measurable in x, and satisfy the conditions 

woy2 +CJ :S;g(x,y) :S;a1y2 +o:2, a.e. x Erl,yER 

W]U
2 + c2 :::; h(x , u) :::; fJJ1t 2 + (32, a .e. X E n, 'll E R 

where wo,wl,al, fJl > 0. 

(I 5) 

Then, assumptions (i), (ii ), (iv) are sati s fi ed. We may apply Th eorems 2.1, 
2.2 to conclude that problem (12) has at least one solutio n. Moreover , every 
optimal pair (y*, u*) is characterized by the Eul er- Lagra.nge system 

d(x)pt(x, t) + L1p(x, t)- a( x)p( :u, t) E oy .r;(x:, y*(x, t )) in Q 
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Example 2. Consider the control system goverued by the degenera.te wave 
equation 

(d(x)yt(X , t))t- 6y(x, t) = 'lt(x, t), 

y(x, 0) = Yo(x), (dyt)( x, 0) = cl(x)y, (.T), 

y = O 

where dE L00 (D), d ~ 0, a.e. in D. 
We may rewri te (16) as 

(x , t) E Q 
xED 

in I; 

!!:_~I' ( y(t) ) + L ( y(t) ) = ( 0 ) , dt m z(t) z (t) u(t) t E (O, T) 

M ( ; ) (0) = M ( ;~ ) 

Assumption (iii) is satisfted with 

F ( ; ) = - z , V ( ; ) E H. 

Indeed by the equation 

we see that 

l i'Vv(x, t)l 2 dx + f z2 dJ;rlt::; c j .(I'Vfii'Vvl + lz.r;l)rlxrtt 
n J Q ·Q 

which clearly implies that R(A + BF) is closed in L2 (0, T; HJ(S2) xL2 (0.)). 
Hence, Theorems 2.1 and 2.2 are appli cabl e for the cost fullc:t.ional 

h (g(x , y(x, t), Yt(x, t)) + h(x, u( :~: , t ) ))d:r dt 

where g and h satisfy condit ions of th e form (14). 
Example 3. (The Sobolev equa tion ) 

d 
dt (I + 6)y - 6y = (Bu)(:r , t) HI Q 

((I+ 6 )y)(x, 0) =(I + 6)yo(x) , :~; E 0. 

(16) 

( 17) 
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Here B E L(U, L2 (fl)) where U is a real Hilbert space (t he controller space). 
We are in the general situation presented above where H = L2 (D), A = -.6, 
D(A) = HJ(D) n H 2(D) and My = (I+ .6)y, D(M) = HJ(D) n H2 (D). It is 
readily seen that in this case the corresponding operator A has closed rauge 
in L2 (0, T; L2 (D)) and N(A*) = {0} = N(A). (We refer the reader to Carroll , 
Showalter, 1976, Favini, Yagi, 1999, and Sviridyuk, 1995, for physical examples 
and a treatment of such an equation.) 

3. Proofs of Theorems 2.1 and 2.2 

Proof of Theorem 2.1. We may equivalent ly write problem (3) as 

min {1T(g(C(yo + z)) + h(u))dt; A z = Bu + Lyo, 

u E L2(0,T;H) , z E L2(0,T;H)}. 

Let {zn, un} be a minimizing sequence for (19), i.e., 

d ~ 1T(g(C(yo + Zn) ) + h(un))dt ~ d + ~ 
where dis the infimum in (19) . We have 

A KZn =Bun+ KCzn + Lyo 

where K and AK are defined as in assumption (ii). 

(1 9) 

(20) 

We may write Zn = z~ + z; where z; E N(AK) and z~ E R(A[( ). (By as­
sumption (ii), L2 (0,T;H) = N(AK)EBR(Ai().) SinceA[(1 

E L(R(Ard,R(Aj()) 
it follows by assumption (iii) that 

iz,l,i ~ C3 , Vn. (21) 

Moreover, z; = z~ +z~ where z~ E R(C*) an d z;, E N(C). We have denoted by 
C the realization of C in the space N(AK )CL2 (0, T ; H). Since N(Ag) is finite 
dimensional we have 

and so 

lz; l ~ C4, Vn 

because { Cz; = Cz~} is bounded in L2 (0, T; H) by the assumption s of Theorem 
2.1. We have also 

AK(z,l. + z; ) =Bun+ KC( z,l. + z~) + Lyo. 

Let 
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1Ln ----> u* weakly in L2 (0 , T; U). 

Since AI< is closed we have 

A(z*) = Bu* + Lyo 

while by (20) we see that 

laT(g(C(yo + z*) + h(u*))dt = d 

because the convex integrand is weakly lower semieontinuous. 
Hence {y* = z* + y0 , u*} is optimal. Assume now that Z = H and C = I. 

Let (yn, un) be a minimizing sequence for problem (3). Vle have as above 

and since the map u ____, y (y is a weak solu tion to (1)) has dosed graph in 
(L2 (0, T; U) xL2 (0, T; H) )w we infer by assumption (iv) tha t 

(Yn ,un) ____, (y*,u*) weakly in L2(0,T ;H) x L2(0,T;U), 

where (y*, u*) is an optimal pair of (3) . This completes the pmof. 

Proof of Theorem 2.2. 

Let (y*, u*) be optimal. Consider the approxim ating control probl em 

subject to 

d 
dt My+ Ly = Bu + v; (My)(O) = My0 

Here g" is the regularization of g, i. e., 

{ 
lz- ej~ } g"(z ) = inf 

2
E z + g(B); () E Z, E > 0 . 

• 

(22) 

(23) 

We recall (see, e.g. , Barbu , Precupauu , 198G) tha t .Cfc: is convex, Fn§c:het difl'er-
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By Theorem 2.1 and its proof it follows that (22) has a solut-ion (:ye: , 'lL e: , v":). 
We have 

1T ] 1·T (ge(C(ye: + .Az)) + h(u10 + .Au))dt + _:____ (l ·u10 + .Av. - <t* lf;+ 
0 2 0 

+lYe: + .Az- y* l2 )dt + ~E: 1Tive + .A(Az- Bu) l2dt :2: 

T T ·T 

:2:1 (ge(Cye) + h(ue))dt + ~1 (l ·ue- 1/.*l lr + lYe: - y*l 2 )dt + 2
1c.fo lvel2dt , 

V.A > 0, Vz E D(A) , 

because y10 + .Az is a weak solution to 

d 
dt My+ Ly = B-u10 + Ve: + .AAz , (My)(O) = M y0 . 

This yields 

1T((C*"Vg10 (Cy 10 ), z) + h'(<t10 , u))clt + 1 T(1L e: - <t*, u)udt+ 

+ ((Yc: - y* , z )dt + ~ ((Az, v10 )dt - ~ ( T(Bn , ve: )dt 
Jo c}o c./o (24) 

for all z E D(A) ,u E L2 (0 ,T;U). (Here h' is the dircct.iona.l deri va tive of h.) 
1 . 

We set Pc: = -vc: and take u = 0 m (3.6). vVe get 
E: 

(Az,pe:) + 1 T(C*"Vge:(Cye: ) + Ye: - y*, z )rlt = 0, Vz E D(A ). 

Hence, Pe: E D(A*) and 

-A*p" = C*V gc: (Cy c: ) + Yc: - y*. 

Then by (24) we have 

1T(h'(ue;, u) - (u, B*pc: + u* - uc)u )dt :2: 0 

for all u E L2 (0, T; U). This yields 

B*pc; + u*- Uc; E oh('uc; ), a.. e. in (0 , T ). 

On the other hand, we have 

1 T(gc: (Cyc: ) + h(uc:))dt + ~1T(IYe: - y*l2 + lue:- <t* l ?~ )cit+ 

1 rT _ rT _ ' - . , . I * " .. - rTf {,---, *' . I I *" _u 

(25) 

(26) 

(27) 

(()0\ 
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Selecting a subsequence we may assume that 

u10 ~ 1/, weakly in 1 2 (0, T; U) 

Yo ~ y weakly in 1 2 (0, T; H ) (29) 

where (y, u) satisfy the system (1). 
Then by (29) we see that (the convex in tegrand is weakly lower sernicontinuous) 

foT(g( CY) +h.( u) )dt+ 

+ lim sup(-
2

1 
f (IYc: _Y*I 2 + i1t"-u*l~r + ~ lvc l 2 )dt) c~o Jo "-

:S fo(g(Cy*) + h(u*) )dt. 

Since (y*, u*) is optimal in (3) we conclude that 

U 10 ~ u* strongly in 1 2 (0, T; U) 

Yc ~ y* strongly in 1 2 (0, T ; H ) 

v" ~ 0 strongly in 1 2 (0 , T ; H) . 

Next, by (26) and assumption (ii ) we see that 

foTiB*p" i ~ dt :S C4, Vt E (0 , T) . 

and we may rewrite (25) as 

-(AF )*p" = C*\l g"(y") + Yc - y* - F* B *p". 

Since the right hand side of (33) is bonndecl in 1 2 (0 , T; H), we have 

1 2 
Pc = Pc + Pc 

where p~ E N(Ap) and 

fo riP!i 2dt :S Cs, Vc: > 0. 

On the other hand , by (33) we may write 

p; = p~ + p~ 
where B*p~ = 0 and IP~ I P (O,T; H) :S CG . 

(The restriction of B* to N(Ap) has closed range.) \11/e have therefore 

(30) 

(31) 

(32) 

(33) 

(34) 
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and {qc = p; + p;} is bounded in L2 (0, T ; H ). Then we may pass to the limi t 
in (26), (35) to get (9) as claimed. 

The sufficiency of the system (9), (1 0), (1 1) for optimality follows in a stan­
dard way (see, e.g., Barbu, Precupanu, 1986, Chap. IV) from the definition of 
8g, 8h* and the duality equality (8) . 

4. Strong solutions to degenerate differential equations 

In this section we outline some results on degenerate differential equations and 
their solutions in a special but important case. 

Here H denotes a (complex) Hilbert space with inner product(-, ·) aud norm 
II · 11. We are given two closed linear operators L, M from H into itself, with 
domain V( L) and V( M), respectively, such that 

V(L) ~ V(M), 0 E p(L) . (36) 

Given f E L2 (0 , T; H), u0 E V(L), when T > 0 is fixed, we define a solution 11. 

to the initial value problem 

d 
dt (Mu)(t) + Lu(t) = f(t), 0 < t < T, 

(Mu)(O) = Muo, 

(37) 

(38) 

as an element u of L2 (0, T; V(L)), such that Mu E H 1 (0, T; H), the equation 
(37) holds almost everywhere on (0, T) and (38) is satisfied . 

System (37), (38) has had a wide treatment in the li t erature and we quote 
Sviridyuk and Efremov ( 1995) for arguments related to ours. Here we extend 
the method developed in the monograph by Favini and Yagi (1999) for solu tions 
in C[O, T; H] to solutions in L2 (0, T; H). 

To this end we shall assume that A = 0 is a polar singularity of the resolvent 
(.A+ T)-1 , where T = M L -t( E L(H)) , so that 

c 
II(.A + T)- 1 IIC(H) = IIL(.AL + M) - l IIL'.(H) ::=; I.Aim' 0 < I.A I ::=;co , (39) 

where m is an integer ~ 1. Of course, (39) reads equivalently 

IIL(f.LM + L)-1 llc(H) :::; Clf.llm-l , l~t l ~ c:() 1

• 

Then it is well known that the representation H = N(Tm) EB R(T"'·) holds, so 
that if P denotes the project ion operator onto N(Tm ), then P commutes with 
T and system (37), (38) splits into the couple of problems 

d 
rlt T1Pv(t) + Pv(t) = P f(t) , 0 < t < T, 
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and 

:t T2(1 - P)v(t) + (.1 - P)v(t) = (1 - P)f (t), 0 < t < T, 

T2(l - P)v(O) = T2(.l - P)vo, 

407 

( 42) 

( 43) 

where T1 denotes the restriction ofT to N(Tm) and T2 is the restriction ofT 
to R(Tm); the new unknown v(t) is clearly v(t) = Lu(t) and Lu0 = v0 . 

An important fact should be observed, namely that T2 has a bounded inverse 
(in L(R(Tm)) and thus necessarily each solution (1 - P)v(t) to (42) , (43) has a 
derivative and in fact it satisfies 

i.e. , 

T2 :t (1 - P)v(t) + (l- P)v(t) = (.1 - P )f(t), 

(1 - P)v(O) = (1 - P)vo, 

:t (1 - P)v(t) + T2-
1(l- P)v(t) = T2-

1 (1 - P)f(t), 

(1 - P)v(O) = (1 - P)vo . 

Moreover, (1 - P)v(t) is given by 

t (1 - P)v(t) = e -tT2-
1 

(1 - P)vo + Jo e- (t-s )T2-
1
T2-

1 (.1 - P)f(s)cls. 

for all f E L2 (0, T; H). 
Concerning the system (40), (41) , we observe that T1m = 0, and hence it 

is easily seen that the unique solution to ( 40) is guaranteed by the assumption 
that f E Hm-l (0, T; H) and is given by 

m-l 

Pv(t) = L_(-l)lT{PJUl(t). 
j =O 

Furthermore, Pv(t) satisfies ( 41) if and only if 

m-2 

L (-1 )JT{+l jUl(o) = T Pvo = T1 Pvo, m ;::: 2. 
j =O 

Therefore, if m = 1 (this is the case of .A = 0 a simple pole for ( z + T) -l) , then 

v(t) = Pf(t) + e-tT2-
1 
(1- P)v0 +lot e- (t- s )T2-

1
T

2
- 1 (1 - P)f(s)cls , 

and only f E L2 (0, T; H) is needed . Notice that 
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If m 2: 2, assumption f E Hm- 1(0 ,T;H) assures that Tu(t) has a 1irnit as 
t-----+ 0. However , iff E H'(;'- 1 (0,T:H), where 

H0- 1(0, T; H) = {.f E H m- J (0, T; H ); J(j)(O) = 0, j = 0, I, ... , m - 2} 

then Tv(t) converges to 12(1 - P)v0 E R(Tm+ l) = R(T'"'). Observe t hat if 
vo E R(Tm) then T2(L- P)vo = T(1 - P)vo = Tvo . 

In any case, t he solution u to (37) is unique and it. is given by 

m - 1 

u(t) = L(-1)jL- 1T{Pj (j l(t)+L- 1e- 112-
1
(1·- P )v0+ 

j =O 

+ 1t L - l e- (t -s )72-ly2- l ( l - P)f(s)ds. 

Clearly, iff E Hm(o , T; H) , then ·n is more regular , iu the sense tha t ·u E 
H 1 (0, T; V(M)), and equation (37) holds in the stronger sense 

du 
M dt + Lu(t) = j(t) , 0 < t < T ( 44) 

almost everywhere on (0 , T). Since rn 2: I , ·n is strongly continuous a t. t = 0, so 
that 

m- 1 

u(O) = L ( - 1)1 L - 1Tf P f(j)(O) + L- 1 (1 - P)vo. 
j =O 

Therefore, iff E H0 (0, T; H), then the Cauchy problem (44),( '15) , where 

u(O) = ·uo, ( Lj 5) 

1 . da ") 
has a unique solution 11 E H (0, T, H) , -l E L~(o, T ; D(fvf)) provided that 

ct 
Luo E R(Tm). 

It is readily seen that also the problem 

M!~ (t)- Lu(t) = j (t), 0 < t < T, 

a .e. in (0 , T), with 

u(T) = u E H 

admits a solution u E H 1 (0 , T; H) , diu E £ 2 (0 , T; V(M)) if 
ct 

f E H;"(O, T; H ) = {.f E Hm(o, T; H ); jUl (T) = 0, j = 0, . .. , ·,n - I} 

( 47) 
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5. The linear quadratic optimal control problem 

The analysis of Section 4 concerning equation (37) clarifies the difference be­
tween the case when z = 0 is a simple pole or a higher order pol e for Lh e resolvent 
(z+T) - 1 . 

Therefore we shall describe two different , although related, optimal control 
problems. 

vVe begin with the case where m ~ 2. Here we have, as above, three real 
Hilbert spaces H, U, Z with norms II · II H , II · llu ,II · II z, respectively, and corre­
sponding inner products (, ) H , (,) u, (,) z . We assume that the closed linear 
operators M, Lin H satisfy the same assumptions as in Section 4 with m ~ 2, 
T E lv:IL -l , B E £(U, H), C E £(H, Z), Nq E £ (U) is a self- adjoin t positive 
definite operator for q = 0, ... , m- 1. Finally, let U be a closed convex subset 
of H[;'- 1 (0, T; U) and let f E H~'- 1 (0, T; H ), Yo E D(L), yo(-) E L2 (0, T; H) . We 
shall consider the initial- value problem in L2 (0, T; H ) 

d 
dt(My) = -Ly + f + B tt, 0 < t < T, (48) 

My(O) = Myo (= T:ro), (49) 

where tt E U. We know from Section Ll that (48), (49) has a unique solution 
y = y(u). Define the cost functional 

J(u) = 1riC(y(u)(t) - Yo(t)) l1 dt + 
1

~ 1 r (Nqu(q)(t) , ·n(q)( t )) u dt . 
0 q= O 0 

Then the optimal control problem consists in finding n * E U such that 

J(u*) = inf J(u). 
uEU 

(50) 

We have 

THEOREM 5.1. Under the above hypotheses there exists a tmiq1te optimal contr'Ol 
u* E U for (48), (49) , (50). 

Proof. First of all , we observe that the bracket 
m-1 r 

[u,v] = 2:.1 (Nqu(q)(t),v(q)(t)) u dt 
q= O 0 

is a continuous bilinear coercive form on H[;·- 1 (0 , T; U). 
Moreover, since B induces a. cont inuous operator from H0"- 1 (0, T; U) into 

H[;' - 1(0, T; H) and f E H[;'- 1(0 , T; H) , the mapping ·u ---+ y(·u) , where accord­
ing to Section 4, with the same notation , 

m -1 

y( u)(t) = L ( - 1 )j L - l T/ P(f(j) (t) + Hu(j) (t)) + L - I e- tT2-' xo+ 
j=O 

n \ I 1' I _ \ , n f \\ r 
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is continuous from H'f!'- 1 (0, r; U) into L 2 (0, r ; H). 
The functions 

1r( u, v) = (C[y( u) - y(O)], C[y(v) - y(O )J) z + [u, v], 

P(u) = (C[yo(-) - y(O)], C[y(u)- y(O)J) z, 

where Z = L2 (0, r; Z) , are well defined and it is readily seen that 

J(u) = 1r(u,u)- 2£(u) + IIC[yo(-) - y(O)]II~ · 

is continuous and coercive which concludes the proof. • 
Remark 5.1 A similar technique was used in the paper by Sviridyuk and 

Efremov (1995). 
Let us discuss the case of m = 1. Then we know that for all f E £ 2 (0, r; H) 

and any Yo E V(L), the solution y = y(11) to (48), (49) exists and it is given by 

y(t) = y(u)(t) = L- 1P[f(t ) + B1t(t)] + L _, e - tr 2-
1 
(1- P)Ly0+ 

+ 1t L-le-(t-s)T2-
1
T

2
- 1(1 - P)[f(s) + B11(s)]ds. 

Notice that T(l- P)Lyo = TLyo = Myo. 
Hence, u----) y(u) is a continuous mapping from L2 (0, r; U) into L2 (0, r ; H). 

Take C E L(H; Z), No= N = N* > 0, N E L(U ), y0 (-) E £ 2 (0, r ; H) . At last, 
let U be a closed convex subset of L2 (0, r; U). The cost fun ctional J has then 
the form 

J(u) = (lC(y(u)(t) - Yo(t))l~dt + ( (Nu (t), 'IL(t) )u dt. Jo lo 
Since J(u) = 1r(u, u) - 2£(1!) + II C(yo(·) - y(O))II~ , where n(IL, v) and f ('u) were 
previously defined, with m = 1, we get the following result: 

THEOREM 5.2. Let m = l and let Yo E V(L) . Then, under the above assump­
tions the optimal control problem (5.3) for ( 48), ( 49) has a unique solution. 

Our next step consists in extending the analysis of Lions (1968) to arrive 
at the results close to Theorem 2.1 and Remark 2.3 in Lions (1 968) , pp.J J4-
ll5 . Here the situation is rather more deli cate because there is a possible 
lack of regularity in the solution y( u) and much caution must be used. By 
Lions (1968, Theorem 1.2, p.9) , we know that the optimal control 11. , whose 
existence and uniqueness is guaranteed by Theorem 5. 2, is characteri zed by 
1r(1t, v- u) ;::: P(v- u) for all v E U, and in part icular, if U = £ 2(0, r; U), by 
1r(u, cp) = P(cp) for all cp E £ 2 (0, r ; U). Now 

0 :S 1r(u, v- u) - P(v - u) = (C(y(H)- y(O)) , C(y(v - 11) - y(O) )) z + 
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(C(y(u)- Yo( ·)), C(y(v- ·n) - y(O)) ) z + (Nn, v- u) L2(0,T:l! ) = 

(C(y(u)- Yo( ·)) , C(y(v) - y(u))) z + (N·u, v- u) L2(0 ,T;U ) = 

411 

loT (C*C(y(u)(t)- Yo(t)), y(v)(t) - y(·n)(t) ) H dt + (Nn, V- '11) L2(0,T;U), 

for all v E U. 
Assume the existence of the adjoint state p(u) E L2 (0,T;'D(L*)) n H;(O ,T;H) 
satisfying 

-M* ~~ + L*p = C*C(y(1t)- y0 (-)) , 0 < t < T, 

p(u)(T) = 0. 

(51) 

(52) 

Notice that (51) yields M* ~~ E L2 (0 , T; H) , but from Section 4 we know that 

more regularity is needed for y(u) to conclude that such a solu tion p('ll.) exists. 
Multiplying bot h sides of (51) by y(v)- y(v.), and taking into account that 

loT ( -Jvf* dpd~L) ' y(v)- y(u)) H dt = 

-loT ( dpd~u) 'M(y(v)- y(1t))) H dt = 

= r I p(u), !!_(My(v)- My(u))) dt Jo \ dt 1-1 

and 

loT (L*p(u), y(v) - y(u) ) H dt =loT (p(1t), L[y(v) - y('u.)]) H dt 

yields 

loT (C*C(y(u)(t) - Yo(t)), y(v)(t)- y(1t)(t) ) H clt = 

=loT ( -M* d:~L) + L*p(u), y(v)(t) - y(u)(t)) 
11 

dt = 

=loT (p(u)(t) , ( :t M + L) (y(v) - y(v.))) fl dt = 

= r (p(ct)(t) , Bv(t) - Bu(t) ) H clt = r (B*p(u)(t) , v(t)- u(t) )u dt = 
lo lo 

= (B*p(u), V- u) L2(0,T;U). 
Therefore, an admissible control ·u satisfying the following sys tern 
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-M* d~~u) + L*p(u) = C*C(y(u)- yo(-)), 0 < t < T, 

My(u)(O) = My0 , p(u)(T) = 0, My(u) E H 1(0, T; H)) , p(u) E H 1 (0, T; H) , 

(B*p(u) + Nu, v- u) £2(0 ,T;U ) ;::: 0, for all v E U, 

is necessarily the unique optimal control for (48) , (49) , (GO). In particular, if 
U = L2 (0, T; U), the last inequality reduces to 1l = - N- 1 B*p, so that we have 
(compare with Theorem 2.2) 

THEOREM 5.3. Let m = 1, U = L2 (0, T; U) . Under the asS'tl'mpt·ions above, if 
the degenerate two- point problem 

:t (My)+ Ly + BN-] B *p = J, 0 < t < T, 

-M* ~~ + L*p = C*C(y- y0 (-)), 0 < t < T 

My(O) = My0 , p(T) = 0, 

(53) 

(54) 

(55) 

has a solution (y, p), y E L2 (0, T; V(L) ), My E H1 (0, T; H ), p E L2 (0, T; V(L *) )n 
H 1 (0, T; H), then u = - N- 1 B*p is the unique optimal control fo r the pmblem 
(48) , (49), (50). 

Now, the system (53) "-' (55) does not seem to be too satisfactory because 
(54) requires more regularity for p (and hence for y) than one expects. Clearly, 
one should like to substitute (54) with the less restrictive differenti al equation 

- :t (M*p) + L*p = C*C(y - y0 (-)) , (56) 

and (55) with the boundary conditions 

My(O) = Myo, M*p(T) = 0. (57) 

In fact we shall exploit the special features due to the presence of a simple pole 
0 for (>.+T)-1, (>.+S)- 1 , where T = ML- 1 , S = M*L*- 1 , to show that if 
the pair (y,p) satisfies the system (53) , (56) , (57), then u = - N-1 B *p is the 
optimal control. 

Let P denote the projection onto N(M L - l) and let Q be the projection 
onto N(M* L*- 1 ). Then (56), (57) reads equivalently 

d-
-dt S(l- Q)q(t) + (1 - Q)q(t) 

Qq(t) 

(1 - Q)C*C(y(t) - Yo(t)) , 

QC*C(y(t ) - Yo(t)) , 

(58) 

(59) 
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on (O,T) where Sis the restriction of S to R(S) and q(t) = L*p(t ). Since S bas 
a bounded inverse '§-l E £(R(S)) , equation (58) takes the form 

d -
- dt (1 - Q)q(t) + s-1 (1 - Q)q(t) = 

= s-1(1- Q)C*C(y(t) - Yo(t)) , 0 < t < T 

so that (58), (59), (60) guarantee that in fact 

S :t (1 - Q)q(t) + q(t) = C*C(y(t) - y0(t)) 

holds. Therefore, 

0 ::::; 1r( U, V - U) - f( V - 1L) = 

=for (C*C[y(u)(t) - Yo(t) ], y(v )(t)- y(n)(t) ) H dt+ 

+ (Nu, v- u) U(O,r ;U) = 

=for ( -S :t (1 - Q)q(u)(t), y(v)(t) - y(u)(t)) H dt+ 

+for (p(u)(t) , L*[y(v)(t)- y(1t)(t)]) H clt+ 

+ (Nu, v- u) U(O ,r ;U ) . 

Moreover, 

for ( -S :t (1 - Q)q(1t)(t) , y(v)(t) - y(u)(t)) H dt = 

= - r I ~(1 - Q)q(u)(t), L - 1 M[y(v)(t) - y(u)(t)J) dt, h \& H 

(1- Q)q(u)(T) = 0, and there exists the lim(l - Q)q(u)(t) . This yields 
t-o 

for ( - S :t (1 - Q)q(u)(t), y(v)(t) - y(u)(t)) H dt = 

=for ( L*- 1(1- Q)q(u)(t), :t M[y(v)(t)- y(u)(t)]) H dt = 

(60) 

=for ( L*-1 (1 - Q)q(u)(t), :tML- 1(1 - P)[Ly(v)(t)- Ly(v.)(t)J) H dt = 

= r I L* - 1 (1 - Q)q(u)(t), M L -l .:£(1 - P)[Ly(v)(t) - Ly(1t)(t) J) dt = 
lo \ dt H 

D \ T [., ( •. \1+\ .. .f ... \ I 4-\ l \ -1+ 
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= loT ( M* L* - 1q(1L)(t), L - I :t (J - P)L [y(v)(t)- y('u)(t) ]) H dt = 

=loT (p( u)(t), :t M L - 1 L [y(v )(t) - y(1L)(t) ]) H dt = 

= loT (p(u)(t), :tM[y(v)(t) - y(u)(t)J) H dt . 

It follows that 

0 ~ 1r(u, v- u) - l!(v - u) = 

=loT (p( u)(t), ( :t M + L(y(v )(t) - y( 11)(t))) H dt + (Nn , v - n) £ 2(0 ,T; U ) = 

=loT (p(u)(t), B(v(t) - u(t)) ) H dt + (Nv,, v - n) £2 (0 ,r;U ) = 

= (B *p(u) + Nu, v - u) £2(0 ,T;U ) 

for all admissible v E U. 
We can now sta te t he following improvement of Theorem 5.3. 

THEOREM 5 .4. Let A = 0 be a simple pole fo r (A + T ) -I , (A + S)- 1 , wher-e 
T = ML- 1 , S = M *L*- 1 . If the pair- (y ,p) sat·isfi es (53), (56), (57), where 
y0 E V(L) , My E H1 (0 ,T;H), M*p E H 1 (0,T; H ), then u = -N- 1B*p is the 
unique optimal control for (48)rv(50) with U = L2(0, T; U). 

The solvability of (53) , (56) , (57) will be considered elsewhere. 
Example 5.1 We can illustrate the last resul t wi th a simple but enlightening 
example. We are required to minimi ze 

J(u, v ) = loT{ x(t) 2 + y( t)2 + u(t) 2 + v(t) 2 }dt 

over u , v E L2 (0, T), under t he constraints 

0 = -x(t)- v(t) + f(t), 0 < t < T, 

y'(t) = - y(t) + u(t) , 0 < t < T, 

y(O) = 0. 

Here f E L2(0,T) is given. We take H = L2(0,T) x L2(0,T ) = L2 (0 ,T;R2
), 

M = [ ~ ~ ] , L = N = [ ~ ~ ] = C, B = [ ~ ~J ] . 

Clearly, J(u, v) = lor{[(f(t) - v(t) )2 + v(t )2
] + [y(t)2 + u(t) 2 ]}dt ;::: 2 lor[v( t)2

-

]r 
f(t) v(t) + f(t) 2 / 2]dt ;::: i/n f(t) 2dt takes its minimum in (0, f / 2) = (·u, 1! ) and 



Control of degenerate differential systems 

On the other hand, the system (53) , (56), (57) can be written as 

:t [ ~ ~ ] [ ~ ] = - [ ~ ] - [ ~] ~] ] [ ~ ] + [ jg) ] , 0 < t < T, 

-:t [ ~ ~ ] [ ~ ] = - [ ~ ] + [ ~ ] , 0 < t < T , 

y(O) = q(T) = 0, 

i.e ., 

0 = -x- p + f(t) , 0 < t < T, 

I y = - y- q, 

0 = -p+x, 

-q' = -q+y, 

0 < t < T, 

0 < t < T , 

0 < t < T. 

(61) 

(62) 

(63) 

(64) 

The two point boundary value problem (62) , (64) has the unique t ri vial solution 
y(t) = q(t) = 0. This yields x (t) = p(t) = f(t)/2 and 

(u,v) = - B*(p,q) = [ ~ ~l] [ ~] = (O,f/2) 

is the optimal control, as desired. 

Example 5.2 Let D c Rn , u 2: 2, be a bounded domain of Rn with a smooth 
boundary an. In the cylinder Dx (O,T) consider the initial boundary value 
problem 

a at (.Ao - 6)y = aD..y - f3 D.. 2y - f + 'll , 

(.Ao- D..)y(x,O) = (.Ao- D..)yo(x), X E n, 

y(x , t) = D..y(x , t) = 0, (x, t) E anx (0, T) , 

where .A0 is the first negative eigenvalue of the Laplacian 6, with Dirichlet 
boundary conditions, a, f3 > 0, f E L2 (D x (0 , T)) is given, y0 E HJ (D) n H 2 (D) 
is the given initial condition, and 1t E L2 (Dx (0, T)) is the control. Simil ar 
equations model the. evolution of a free surface of a filt ered fluid. The spectral 
properties of the involved operators are described in Sviridyuk and Efremov 
(1995), where a precise representation of the pencil (.AM +L)- 1 is also given. Of 
course, here L , Mare the operators in L2 (D) = H associated with -aD.+ {36 2 

and .A0 - 6, respectively. Then , D(L) = {'u E H2 (D) : n E Hl\(n) , 6.11, E 
H{j(D) n H 2 (D)}, V(M) = HJ(D) n H 2 (D). 

By Sviridyuk and Efremov (1995) , p.1888, one sees that .A = 0 is a simple pole 
for L(.AL + M)- 1. Therefore, Theorems 5.2 and 5.4 work for th e cost fun ctional 

J(u) = (ly(t)l7.2ro,dt + (l1t(t )i7 2fmdt. 
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6. Null controllability of the degenerate heat equation 

Consider the controlled system (see ( 1 3)) 

(dy)t(x, t)- D.y(x, t) = m(x)'LL(x , t), 

(dy)(x, 0) = d(x)yo(x), 

(x,t) E Q = f2 x(O,T) 

xED 

y = 0 in ~' (65) 

where d E C 2(0), d(x) 2' 0, 'Vx E f2 and m is the chara.cLeristic fu nction of an 
open subset w c n. As usuall y, f2 is an open and bounded subset of nn with a 
smooth boundary em. 

The existence result below is well known (see, e.g., Barbu , Favin.i, Romanelli, 
1996). However, we recall it for convenience. 

LEMMA 6.1. Let Yo E H6(f2). Then equat-ion (6. 1) has 11 ·u.n'iqu.e weak solution 
y E L 2(0, T ; H6(D)) which satisfies 

(dy)t E L2 (0, T; H - 1 (f2)), dy E C([O, T]; L2 (f2)). 

Jj'U E W 1•2 ([0,T];L2 (f2)) then 

(dy)t E L2 (Q) , y E L2(0, T; HJ(D) n H 2 (r2 )) 

and vd y E C([O, T]; L2 (r2)). 

Proof. One approximates (65) by 

((d +E:)Y)t-Doy = nw, m Q 
(d + E:)y(x, 0) = (d + E:)yo(x), x E f2; y = 0 in ~ 

which has a. unique solution Yo E H 2• 1 ( Q). 
vVe have the apriori estimates 

hl\ly"(x, tWdx dt + k(cl(x) + E:)y:(x,t)d.r ::::; 

::::; C (l (d(x) + E:) )y6 (x) dx + fo m·n2dx clt) . 

Then, one obtains the desired result letting E: tend to zero in (67) . 

(66) 

(67) 

(68) 

If 'U E W 1•2 ([0 , T]; L 2 (r2) ) then, multiplyin g (67) by Yt and !:::, y, we obtaiu 
the estimate 

hiD-Yc:l 2dx dt + l d(:r) I'V:uc:(x, t)l 2dx ::::; 

::::; C (ll\lyol
2
dx + ll ull~n2( [0,Tl;P(Q))) 
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THEOREM 6.1. For each y0 E H(\(12) thenc: iii n E L2 (Q) .such 1;/ud 

(dyu)(x, T) = 0, a. e. X En 
where yu ·is the solu.t·ion to ( 65). 

417 

(60) 

This theorem ressembles some recent results on tbe nu ll i11temal r·ontrolla­
bility of the heat equation (see Pursikov , Jrnanuvilov , 19%, Lebeau, Hobbiano, 
1995). In particular, we derive by Theorern G.! the boundary conirollabil ity of 
equation (65). 

THEOREM 6.2. Let y0 E Hi\(D) . Then there is v E L2(L;) s·uch that the solution 

Yv to equation 

(dy)t(x, t)- 6.y(x, t) = 0 ·in Q 
(dy)(x, 0) = d(:~:)yo(x) ·in n 

y =v in I; (70) 

satisfies (dyV)(x , T) = 0 a. e. :r En. 
Proof of Theorem 6.2. Let 0 be a n open set such that ncfi and set w = 0\0, 
Q = Ox(O,T). We shall apply Theorem G.l on Q where Yo and dare suitably 

extended to 0. Accordingly, there are yand :U E L2 (Q) such that (clY)(x, T) = 0 
a.e. x En. Then the restriction y of !J to Q satisfi es (G .5) with v = !'o(Y). (Here 

'"Yo is the trace of y E £ 2 (0, T; Hd (12)) to Dncn.) This completes the proof of 
Theorem 6.2. • 

In order to prove Theorem G. ·1 we need a Carl ern an's type estimate for the 
solutions to homogeneous equation 

(d(x)y)t- 6.y = 0 iu Q 
y = 0 on I;. 

Let w0 c cw and let 'lj; E C2 (0) be such that 

·tj;(x) > 0, 'r:/x En, 'l/;lan = 0, j'V·Ij;(:r)l > 0, 'r:/:r E Do= n \ Wo. 

(71) 

(72) 

The existence of such a functio n ·lj; h<1 S been proved i 11 Fu rsi kov, I manu vi lov 
(1996). We set 

e>-1/, (x) e ·' ·~· ( :,;) _ c2-' llu·llqn> 

cp(x,t) = t(T-t)' o(x,t) = t(T - t) 

where A > 0. The proof of Lemma 6.2 below is essentia ll y the same as ihat of 
Lemma 1.2 in Furs ikov, Tm a nuvilov ('1996) ami so it wil l be omi t.tccl. 

LEMMA 6.2. There ex·ists s0, Ao > 0 s1tch lhut for s 2 s0 and A 2 /\o we have 

j. (e28o:(cp- 1 (dy)z + cp3 y2 + <pj'V:1;j 2 )d:ult :::; cj' y 2 e2so- c/rh dt (7:3) 
Q ~ 
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COROLLARY 6.1. There is C independent of y s·u.ch that 

(74) 

for each solution y to 70. 

Proof. By (70) we see that the function t _, 1 d(1·) y2 (:z:, t)cl:r is decreasing. 
n 

Hence 

l d(x)y2(x, T)dx:::; l d(x )y2(1:, t)rl:r::::; 

:::; Ct l e 2so:(x,t)y2 (:r, t)rlx, Vt E (0, T). 

Integrating on (a, a+c:) where 0 < a < a+c: < T and using Carleman 's estimate 
(73) we obtain (74) as claimed. • 
Proof of Theorem 6.1. Consider the optimal control problel)J 

Minimize k 1L
2dx dt + ±l d(x)y 2 (:r, T)d:r subject to (65). (75) 

It is readily seen that (75) has a unique sol ution (yA, nA)· Moreover , it satisfies 
the equations 

U>.(x, t) = m(x)p>.(x, t )a.e.(x , t) E Q 
(dp>.)t + 6.p>. = 0 in Q 

(dp>.)(x, T) = - ±dy>.(x, T) in Sl 

and therefore 

kmp~(x, t)dxdt = 

= l d(x)(p>.(x, T)y>.(x, T ) - p,\(x, O)yA(:r, O))dx. 

(76) 

(77) 

(78) 

This is obvious if d > 0 inTI because as meutionecl earlier , in this c<Jse P>.,YA E 
H 2•1(Q). In t he general case we replace (75) by 

Minimize 1 u2dxdt + ±l d"y 2 (x, T)clx subject to (G7). 
Q 0 

(79) 
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Let (ye, 1te) be t he corresponding solut ion to (79) 8nd le t 1/ be t he solu tiou 
to t he dual system 

de(rl) t +~PC = 0 in Q 
1 

de(x)p"(x , T) = - ):, cl<(:r)ye(J: , T) in Q 

p€ = 0 Ill I: . 

We have 

mpe = ·u e , a. e. in Q. 

By (80) we see that 

( (u<)2dxdt + ±j. do- (:r:)(:t/f(.1, T)1Lr: :S 
.JQ n 

/' lj' :S 11
2 dx dt + ):, rle (x) (:i/)2 (:1:, T)d:r 

· Q n 

(80) 

for any ·u E L 2 (Q) where f/ is t he solntio11 to (Ci7). T his i lli pli cs tJwt, 011 a 
subsequence, 

n c: -> ·n,\ weakly in L2 (Q) 

Yo- -> Y>-weaklyin L2 (0 ,T;H6(12)) 

jd;ye -> Vdy\ strongly in C ([O, T]: L2 (D.) ). 

(See Lemma G.l.) 
Similarly for the solu t ions p" to (80) . Since (76) is obvi ously s; Jt isfi cd for y" 

and p< we get it for Y\ a nd P>- by le tti ng E Lend to zero. 
Now by (75), (76) we have 

j. ·mp~dx dt + ±j" d(:r )y~ (:r, T)rl:r = { r!(:r)p\ (:r , O):y0 (:r)cl. t: . 
Q n ./n 

By es timate (73) we see that 

1 u~dxdt + ±l cl( :t:)y~(x , T)cl.?:::::; C, VA > 0. 
Q n 

T hus on a subsequence, again denoted A, 

·u,\ -> ·n* weakly in L 2 (Q) 

Vdy\(-,T) -> 0 stroJ 1gly in L2 (12 )) . 

Letting A ien cl to zero in t he equat iOJJ s 

(8 1) 
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and recalling the estimate (68) we infer that 

Y>- -------. y* weakly in L2 (0, T; H6 (12)) 

V. l3AIUW a11d :\. FAVINI 

where y* is the solution to (65) for tl = u*. By (81) it is also clear that 
(dy)(x, T) = 0, a .. e. X En. This completes the proof. • 
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