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1. Introduction

This paper concerns the controlled system

%(My)(t) + Ly(t) = Bu(t), t € (0,T) .

(My)(0) = Myo
in a Hilbert space H.

Here M : D(M)CH — H and L : D(L)CH — H are linear, closed and
densely defined operators, and U (the controller space) is a Hilbert space with
the norm denoted |- |y and scalar product (-, ). The norm of H will be denoted
by | - | and the scalar product by (-,-). The controller u is taken in L?(0,7 : U)
and the solution y € L?(0,T : H) is considered in the following weak sense

T T
/0 (y(t),M‘tp’(t)—L"go(r.))dt+/u (Bu(t), o(t))dt + (Myo, 2(0)) =0 (2)

for all ¢ € C'([0,T); D(M*)) N C([0,T); D(L*)) such that ¢(T) = 0.
{
Here yo € D(M), ¢’ = (Tt(p and M*, L* are the duals of M and L.
¢

This equation was extensively studied in the last years (sce, e.g., Carroll,
Showalter, 1976, Favini, Yagi, 1999, and the references given there) but there
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1995, Sviridyuk, Efremov, 1995). Here we shall study several control problems
having (1) as state, and the first one is the convex Bolza control problem

i
Minimize / (9(Cy(t)) + h(u(t)))dt subject to (1) (3)
0

where the functions g and h satisfy the following condition
(i) g: Z — R, h: U — R are lower semicontinuous. convex and C &
L(H,Z).
Here Z is a Hilbert space with the norm | - |z and scalar product (-,-)z.

The main difficulty with problem P is that the state equation is singular and
so the standard methods of treating convex control problems (see, e.g.. Barbu,
Precupanu, 1986, Lions, 1968) are not applicable in this situation. This problem
will be studied in Sections 2 and 3 with main emphasis on existence and the
maximum principle.

In Sections 4 and 5 a linear quadratic control problem will be studied in the
framework of strong solutions to the state system (1).

In Section 6 a related problem pertaining the null controllability of the de-
generate parabolic equations with internal and boundary control will be studied.

2. Assumptions and formulation of results
We shall denote by A : D(A)YCL*(0,T; H) — L*(0,7; H) the linear operator
defined by

Ay=f iff (1)

T 7 i
/ (y, M*¢' — L*p)dt +/ (fop)dt =0 (5)
40 0

for all ¢ € C'([0,T); D(M*)) N C([0,T]; D(L*)) such that ¢(T") = 0. Clearly, A
is closed and densely defined. This means that y is a weak solution to (1) with
the right hand side f and the initial value yy = 0.

The dual operator A* is given by

Ap=f if 6)
g T
| ety + wyie = [ Gy 7)
0 40
for all % € C([0, T}; D(L)), M+ € C'([0,T}; H), Mt(0) = 0.

This means that

—M "% +L*p= fin (0,7)
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in the sense of vectorial distributions. It is easily seen that the operator (6) is

indeed the dual of A, i.e.,
(Ay,p) = (y, A"p), Vy € D(A), pe D(A") (8)

where (-, -) is the scalar product of L?(0,T; H).
The assumptions of Section 1 will be in effect everywhere in the sequel. In
addition the following hypotheses will be used:
(il) There is K € L(Z, H) such that the operator A = A+ KC has closed
range in L*(0,T; H) and its kernel N(Ay) is finite dimensional.
(i) There is F € L(H,U) such that Ap = A+ BF has closed range in
L2(0,T; H) and the kernel N(A%) of its adjoint is finite dimensional.
(Here we have denoted again by KC (respectively BF) the realization of IKC
(respectively BF) in L?(0,T; H).)
(iv) g(z) > wo|z|% +Ci, Vz € Z, h(u) 2 wi|uffy + Co, Yue U

where wg,wy > 0.
(v) There are ay, ) > 0, and as, 3y € R such that

9(z) < ai)z|% + @z, Vz € Z, h(u) < Bilul + B2, Yu e U.
Now we are ready to formulate the main results of this section.

THEOREM 2.1. Assume that hypotheses (i),(ii),(iv) are satisfied and that yo €
D(L). Then problem (P) has at least one optimal pair (y*,u*). If Z = H and
C = I then for each yo € H there exists an optimal pair under assumptions (i),
(iv) only.

THEOREM 2.2. Under assumptions (i),(iii),(v) the pair (y*,u*) € L? ((J T; H)x
x L2(0,T;U) is optimal in problem (P) if nnd only if there are n,p € L*(0.T; H)
such that

A'p+n=0 (9)

n(t) € C*9g(y* (1)), a.e. t € (0,7) (10)
u*(t) € Oh*(B*p(t)), a.e. t € (0,7). (11)

Here dg : Z — 2% is the subdifferential of g and 9h* : U — 2V is the

subdifferential of the conjugate function h* of h (see, e.g., Barbu, Precupanu,
1986).

The system (1), (9), (10), (11) is the Euler-Lagrange optimality system for
problem (3).
Example 1. Consider the optimal control problem

Minimize / (9(z,y(@, 1)) + h(x,u(z, t))de dt subject to (12)
Q
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(z,t) € Q = Qx(0,T) (14)

(dy)(:c,-{}) = d(z)yo(z). TEQ y=0inL= aNx(0,7)

Here  is a bounded and open subset of R™ with smooth boundary, d € L'($),
d > 0ae in§, a € L®(2) and m € L=(Q). Equation (13) occurs in the
description of certain diffusion processes (see Carroll, Showalter, 1976, and the
references given thére) as well as in the theory of the Markov stochastic processes
(the Wentzell problem). ‘Equation (13) is of the form (1) where H = U = L*(9),
L =-A, D(L) = H{(Q) N H3(Q), (My)(z) = d(2)y(z), D(M) = {y € L*(Q);
dy € L*(Q)}, (Bu)(x) = m(z)u(x), a.e. a2 € Q. It is readily seen that if a« > 0,
a.e. in Q then the corresponding operator A : D(A)CL3*(Q) — L*(Q) defined
by (4), (5) has closed range in L?(Q). Indeed if Ay, = f, then in (5) we take
@ to be the solution to the boundary value problem (see Lemma 6.1 below)

dp+Ap =y, inQ

dp(z,0) =0; ¢ =0in X.
This yields

/yﬁ(:v, tydz < C/ | fr (@, )|y (2, t)|d2dt, Yn.

o} Q

Hence {y,} is bounded in L%(Q) and this clearly implies that R(A) is closed.
Thus if one assumes that 3\ € R such that

a(z) + Am(z) 20, ae z€
then assumption (iii) is satisfied with

(Fy)(z) = —Xy(z), ae z €, ye L)

The functions g : QxR — R, h : QxR — R are convex and continuous in y
and w, measurable in x, and satisfy the conditions

woy? + Cy < g(z,y) < oy +az, ae zEQyER
wud +Cy < h(z,u) < 5 W + By, ae. zeQuER (15)
where wg,wy, ap, G > 0.
Then, assumptions (i), (ii), (iv) are satisfied. We may apply Theorems 2.1,

2.2 to conclude that problem (12) has at least one solution. Moreover, every
optimal pair (y*,u*) is characterized by the Euler-Lagrange system

d(z)p(z,t) + Ap(z,t) — a(z)p(z,t) € Oyg(x,y™(x,t)) in Q
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Example 2. Consider the control system governed by the degenerate wave

equation

(d(z)y(z, 1)) = Ay(z,t) = ulz,1),
y(@,0) = yo(2), (dy)(=,0) = d(x)y ().
y=0

where d € L*(Q), d > 0, a.e. in (L
We may rewrite (16) as

i (40 )++(50) = ()

M( 4 )(U):M( i )
z Z1
in H = H}(Q)xL*(Q), U = L*(Q) where
10 o =1 B
i 1 A A B

Assumption (iil) is satisfied with

P(2)=-s v(2)en

Indeed by the equation

avan(2)-(})

we see that

(r.t)eQ
ref
in % (16)

t€(0,T)

0
(e

/|Vy($‘t)]2d3; +]zzrl:1.'dt < C'/(|Vf||Vy| + |zg|)da dt
o Q Jo

which clearly implies that R(A + BF) is closed in L*(0.T; H} ()% L?(Q)).
Hence, Theorems 2.1 and 2.2 are applicable for the cost functional

/(g(:r. y(z,t), y(z, 1) + Wz, w(a. t)))dedt
Q

where g and h satisfy conditions of the form (14).

Example 3. (The Sobolev equation)

di(1+ Ay — Ay = (Bu)(z,t) in Q

((I+ 8)y)(@,0) = (I + A)yo(a).  w€Q
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Here B € L(U,L?(Q2)) where U is a real Hilbert space (the controller space).
We are in the general situation presented above where H = L%(Q2), 4 = —A,
D(A) = H}(Q) N H*(Q) and My = (I + A)y, D(M) = H}(Q) N H*(Q). 1t is
readily seen that in this case the corresponding operator A has closed range
in L2(0,T; L?(2)) and N(A*) = {0} = N(A). (We refer the reader to Carroll,
Showalter, 1976, Favini, Yagi, 1999, and Sviridyuk, 1995, for physical examples
and a treatment of such an equation.)

3. Proofs of Theorems 2.1 and 2.2

Proof of Theorem 2.1. We may equivalently write problem (3) as

min {/ Yo + z)) + h(u))dt; Az = Bu+ Lyo,
u€ L2(0, T;H), z € L*(0,T; H)}. (19)

Let {z,,u,} be a minimizing sequence for (19), i.e

x 1
d S/ (Q(C(yl:l + zn)) + h-('ﬂ."))dt S d + — (20)
0 n

where d is the infimum in (19). We have
Agzy, = Bu, + KCz, + Lyg

where K and Ag are defined as in assumption (ii).

We may write z, = z} + z2 where 22 € N(Ag) and 2} € R(A}). (By as-
sumption (ii), L2(0,T; H) = N(Ax)®R(A}).) Since Ay' € L(R(Ak). R(A}))
it follows by assumption (iii) that

25| < Cs, Vn. (21)

Moreover, 22 = z3 + 23 where z} € R(C*) and 2! € N(C). We have denoted by
C the realization of C in the space N (A )C Lz((], T; H). Since N(Ay) is finite
dimensional we have

N(Ax) = N(C) ® R(C*),
and so
|z3] < Cy, Vn

because {C22 = 6‘23} is bounded in L2(0,T'; H) by the assumptions of Theorem
2.1. We have also

Ag(z) +22) = Bu, + KC(2} + 23) + Lys.
Let
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u, — u* weakly in L2(0,T;U).
Since Ay is closed we have
A(z*) = Bu* + Ly

while by (20) we see that

7
/ (9(Clyo + 2*) + h(u*))dt = d
0

because the convex integrand is weakly lower semicontinuous.
Hence {y* = z* + yo,u"} is optimal. Assume now that Z = H and C = I.
Let (yn,u,) be a minimizing sequence for problem (3). We have as above

i
d S] (g(yn) + hiu,))dt < d+ 3
0 T

and since the map u — y (y is a weak solution to (1)) has closed graph in
(L*(0,T;U)x L?*(0,T; H)),, we infer by assumption (iv) that

(Yns ) — (y*,u*) weakly in L?(0,T; H)xL*(0,T;U).
where (y*,u*) is an optimal pair of (3). This completes the proof. O
Proof of Theorem 2.2.

Let (y*,u*) be optimal. Consider the approximating control problem

P P
min {./0 (9(Cy(t)) + h(u(t)))dt + %/0 [u(t) — u* ()% dt+

{ 2 | T )
e R b B ol = dt ¢
w5 ) WO -y oPac [P } (22)
subject to
d g
EMy + Ly = Bu+v; (My)(0) = My (23)

Here g is the regularization of g, i.e.,
t-z

g:(z) = inf {]_z_—?ﬂ_z +g(0);, 86€Z > ﬂ}.

We recall (see, e.g., Barbu, Precupanu, 1986) that g- is convex. Fréchet differ-
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By Theorem 2.1 and its proof it follows that (22) has a solution (y.,u-, v:).
We have

T 1
/0 (9e(C(ye + A2)) + h(ue + Au))dt + -2/0

"
(Jue + Au — u*|3+
2 i 7 2
+lye + Az —y*|%)dt + 5;/ [ve + AM(Az — Bu)|*dt >
0
T

i 1 7 3
G =
=g

£

T
1
> [ (0u(Cv) + )it + 5 [
0 2Jo
YA >0, Vz € D(A),
because . + Az is a weak solution to
iMy + Ly = Bu, +ve + Mz, (My)(0) = Myy.

dt
This yields

T T
/ ((C*Vge(Cye), 2) + h' (e, u))dt +/ (ue —u*,u)pdt+
0 0

T 1 [T | T
+/ (ye — y*, z)dt + _,/ (Az, ve )dt — —[ (Bu, v )dt (24)
0 £Jo £Jo
for all z € D(A),u € L?(0,T;U). (Here h’ is the dircctional derivative of h.)
We set p. = Evg and take v = 0 in (3.6). We get
T
(Az, pe) +/ (C*Vge(Cye) +ye —y*,2)dt =0, Yz€ D(A).
0

Hence, p. € D(A*) and
—A*pe = C*"Vge(Cye) +ve — ¥". (25)
Then by (24) we have

T
| ) = B+ — ot 20
0

for all w € L2(0,T;U). This yields
B*p. +u* —u. € Oh(u:), a.e. in (0.7). (26)

On the other hand, we have

T 1 i 5
/0 (9¢(Cye) + h(ue))dt + 5[0 (lye = ¥ 1> + Jue —w* [} )dt+ (27)

1A, . 7.

!T
¢ o aey AR L L O T { fv &N . 17 AN 12 Ffaaoy
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Selecting a subsequence we may assume that

ue — @ weakly in L?(0,T;U)
Ye — ¢ weaklyin L?(0,T;H) (29)

where (7, %) satisfy the system (1).
Then by (29) we see that (the convex integrand is weakly lower semicontinuous)

T
A@Wm+mmm+

17 .
+ lim sup <—/( Ye—y*|? + [ue—u* + —l'vglz)dt,)
e—0 2 0 &

T
S/(g(C'y*)+/l(1L*))dt. (30)
0

Since (y*,u*) is optimal in (3) we conclude that

ue — u* strongly in L2(0,7;U)
ye — y* strongly in L2(0,7; H)
ve — 0 strongly in L*(0,T; H). (31)

Next, by (26) and assumption (ii) we see that

AﬂBﬁHﬁuSC%VMMQT) (32)
and we may rewrite (25) as

—(Ap)*Pe = C*Vge(ye) + ye — y* — F*B*pe. (33)
Since the right hand side of (33) is bounded in L?(0,7T; H), we have

Pe = pi + 1}

where p? € N(A}) and

T
/J@ngc& Ve > 0. (34)
0

On the other hand, by (33) we may write
P =pi+p:

where B*p? = 0 and |p3|2(0,7.11) < C.
(The restriction of B* to N(A}) has closed range.) We have therefore
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and {ge = p! + p?} is bounded in L?(0,T; H). Then we may pass to the limit
in (26), (35) to get (9) as claimed.

The sufficiency of the system (9), (10), (11) for optimality follows in a stan-
dard way (see, e.g., Barbu, Precupanu, 1986, Chap. 1V) from the definition of
dg, dh* and the duality equality (8).

4. Strong solutions to degenerate differential equations

In this section we outline some results on degenerate differential equations and
their solutions in a special but important case.

Here H denotes a (complex) Hilbert space with inner product (-, -) and norm
[[-]l. We are given two closed linear operators L, M [rom H into itself, with
domain D(L) and D(M), respectively, such that

D(L) € D(M), 0 € p(L). (36)

Given f € L?(0,7; H), ug € D(L), when 7 > 0 is fixed, we define a solution u
to the initial value problem

%(Mu)(t) + Lu(t) = f(t), 0< t <, (37)
(Mu)(0) = Muy, (38)

as an element u of L%(0,7;D(L)), such that Mw € H'(0,7; H), the equation
(37) holds almost everywhere on (0,7) and (38) is satisfied.

System (37), (38) has had a wide treatment in the literature and we quote
Sviridyuk and Efremov (1995) for arguments related to ours. Here we extend
the method developed in the monograph by Favini and Yagi (1999) for solutions
in C[0, 7; H] to solutions in L2(0,7; H).

To this end we shall assume that A = 0 is a polar singularity of the resolvent
(A+T)"1, where T = ML~(€ L(H)), so that

@
IO+ T) " Hleemy = ILAAL + M)l gomy < o 0< |\ £ e, (39)

where m is an integer > 1. Of course, (39) reads equivalently
LM + L) M eeay < Clul™ ", ul > &5

Then it is well known that the representation H = N(T™) & R(T™) holds, so
that if P denotes the projection operator onto N(7"), then P commutes with
T and system (37), (38) splits into the couple of problems

%T, Pu(t) + Pu(t) = Pf(t), 0<t<T, (40)
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and
EdZTz(l = Pl(t)+ (1 =-Pl@t)=0-P)f(t), 0<t<T, (42)
T>(1 — P)v(0) = T(1 — P)uy, (43)

where T denotes the restriction of T' to N(IT™) and T3 is the restriction of T’
to R(T™); the new unknown v(t) is clearly v(t) = Lu(t) and Lug = vp.
An important fact should be observed, namely that 75 has a bounded inverse
(in L(R(T™)) and thus necessarily each solution (1 — P)v(t) to (42), (43) has a
derivative and in fact it satisfies
Ty (1 = Polt) + (1 = Plo(t) = (1 ~ P)f (1),

(1= P)o(0) = (1 = P)uo,

S0 = Plu(e) + T3 (1 = Ph(e) = T (1 = P)S(0),

(1= P)v(0) = (1= P)vo

Moreover, (1 — P)v(t) is given by

it

(1 - P)(t) =e T2 (1 - Pug + /0 e~ =T 71 (1 — P)f(s)ds.

for all f € L%(0,7; H).

Concerning the system (40), (41), we observe that 77" = 0, and hence it
is easily seen that the unique solution to (40) is guaranteed by the assumption
that f € H™~1(0,7; H) and is given by

m—1
Z JTJ P f (9 (¢ (t).
=0
Furthermore, Pv(t) satisfies (41) if and only if

m—2
Z ]TJ+1f(J)( 0) = TPvg = Ty Pvy, m > 2.
Jj=0

Therefore, if m = 1 (this is the case of A = 0 a simple pole for (z 4+ T)~"), then

u(t) = Pf(t) + e—tT2_1(1 — P)ug +/te_(t_s)T2~lT2_] (1—P)f(s)ds,

0
and only f € L%(0,7; H) is needed. Notice that
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If m > 2, assumption f € H™ (0, 7: H) assures that Te(t) has a limit as

t —» 0. However, if f € HJ""'(0,7: H), where
HF (0,7 H) = {f € H™'(0,7; H); f90)=0,j=0,1,..., m — 2}

then T'w(t) converges to T>(1 — P)vg € R(T™*') = R(T™). Observe that if
vp € R(T™) then Tu(1 — P)vg = T(1 — P)vg = Tvy.
In any case, the solution u to (37) is unique and it is given by
m=—1 ) : ) P
u(t) = Y (1)L PFO() + L7'e™"TF (1 - Pyug+

J=0
t
+/ L e~ =T T (1 — PYf(s)ds.
0
Clearly, if f € H™(0,7; H), then u is more regular, in the sense that u €
HY(0,7;D(M)), and equation (37) holds in the stronger sense

M% + Lu(t) = f(t), O0<t<T (44)

almost everywhere on (0, 7). Since m > 1, u is strongly continuous at f = 0, so
that

u(0) = mX_j (-1YL7'T{ PfO(0) + L™ (1 - P)uo.

3=0
Therefore, if f € HF*(0,7; H), then the Cauchy problem (44),(45). where

u(0) = wp, (45)

lu 2
has a unique solution v € H'(0,7; H), % € L7(0,7; D(M)) provided that
il

Lug € R(T™).
It is readily seen that also the problem

M%(t) —Lu(t) = f(t), 0<t<r, (46)

a.e. in (0,7), with
u(t)=u€H (47)

I
admits a solution u € H(0,7; H), ‘?;?‘ € L*(0,7: D(M)) if

feH™0,7;H)={f € H™0,;H); f9(r)=0, j=0,...,m—1}
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5. The linear quadratic optimal control problem

The analysis of Section 4 concerning equation (37) clarifies the difference be-
tween the case when z = 0 is a simple pole or a higher order pole for the resolvent
(z+T)™L.

Therefore we shall describe two different. although related, optimal control
problems.

We begin with the case where m > 2. Here we have, as above, three real
Hilbert spaces H,U, Z with norms || - ||y7. | - |l || - | 2, respectively, and corre-
sponding inner products (,);, ()5 1)z . We assume that the closed linear
operators M, L in H satisfy the same assumptions as in Section 4 with m > 2,
T € ML™', B € L(U,H), C € L(H,Z), N, € L(U) is a self-adjoint positive
definite operator for ¢ = 0,...,m — 1. Finally, let i be a closed convex subset
of H*"'(0,7;U) and let f € HJ* "' (0,7; H),yo € D(L),y0(-) € L*(0,7; H). We
shall consider the initial-value problem in L*(0,7; H)

%(My) =—Ly+ f+Bu, 0<t<r, (48)
My(0) = Myo (= Two), (49)

where u € U. We know from Section 4 that (48), (49) has a unique solution
y = y(u). Define the cost functional

m—1

J(w) =/ IC(y(w)(t) — yo(t))|Zdt + Z/ <Nqn('”(1‘.),-u(")(f))trd.t..
0 {J"—U 0 g
Then the optimal control problem consists in finding «* € U such that
"= ; 50
J(u") ngﬂf J(u) (50)

We have
THEOREM 5.1. Under the above hypotheses there exists a unique optimal control
u* € U for (48), (49), (50).

Proof. First of all, we observe that the bracket

m—1 .z
[u,v] = q;,jo <Nqu("")(t),'t!“”(i))u dit

is a continuous bilinear coercive form on Hy"~'(0,7;U).

Moreover, since B induces a continuous operator from H(’]“"'([],T; U) into
HPY0,7; H) and f € HP'(0,7; H), the mapping « — y(u), where accord-
ing to Section 4, with the same notation,

m=—1
y@)(t) = Y (=1L T] P(fO ) + Bu(t)) + L' T3 wo+
=0

t
i f r-—l,..—‘l‘.—ﬁ‘T:l!‘l“—lh g% T 7 o S R = DN O 7. i |
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is continuous from Hg*~'(0,7;U) into L?(0.7; H).
The functions

m(u,v) = (Cly(u) - y(0)}, Cly(v) = y(0)}) z + [u,v],
£(u) (Clyo(-) — y(0)], Cly(u) — y(0)]) z ,

where Z = L?(0,7; Z), are well defined and it is readily seen that

J(u) = m(u,u) — 26(u) + [|Clyo(") — y(0)]lI%-

is continuous and coercive which concludes the proof. |
Remark 5.1 A similar technique was used in the paper by Sviridyuk and
Efremov (1995).
Let us discuss the case of m = 1. Then we know that for all f € L2(0,7; H)
and any yo € D(L), the solution y = y(u) to (48), (49) exists and it is given by

y(t) = y(u)(t) = L Pf(t) + Bu(t)] + L~ T2 (1 — P)Lyo+

+/ L_le_(t_s)r,;‘ira-l(] il P)U'(S) + Bu(s)]dS.
0

Notice that T'(1 — P)Lyo = T'Lyo = Myo.

Hence, u — y(u) is a continuous mapping from L?(0,7;U) into L?(0,7; H).
Take C € L(H;Z), No=N = N*>0, N € L(U), yo(-) € L*(0,7; H). At last,
let U be a closed convex subset of L2(0,7;U). The cost functional J has then
the form

J(w) = fu "Cw) () - o) Bdt v " (Nu(t), u(t))y d.

Since J(u) = m(u,u) — 26(u) + ||C(yo(-) — y(0))[|%, where m(u,v) and £(u) were
previously defined, with m = 1, we get the following result:

THEOREM 5.2. Let m = 1 and let yo € D(L). Then, under the above assump-
tions the optimal control problem (5.3) for (48), (49) has a unique solution.

Our next step consists in extending the analysis of Lions (1968) to arrive
at the results close to Theorem 2.1 and Remark 2.3 in Lions (1968), pp.114-
115. Here the situation is rather more delicate because there is a possible
lack of regularity in the solution y(u) and much caution must be used. By
Lions (1968, Theorem 1.2, p.9), we know that the optimal control u, whose
existence and uniqueness is guaranteed by Theorem 5.2, is characterized by
m(u,v —u) > €(v —u) for all v € U, and in particular, if U = L%(0,7;U), by
m(u,p) = £(p) for all p € L2(0,7;U). Now

0 < w(u,v—u)—L(v—u) = (Cly(u) —y(0)),Cly(v —u) — y(0))) z +
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(Cly(w) —30()): Cly(v —u) = y(0))) 2 + (Nu,v = ) 20 vy =
(Cy(w) = yo(), Cly(v) = y(w) z + (N, v = w) p2g vy =
= A(WCWWW%wdmw@X)—MMU>dH%Nu%ﬂquyw

for all v € U.
Assume the existence of the adjoint state p(u) € L?(0,7;D(L*)) N H!(0,7; H)
satisfying

—]\/[*jp-l—L* =C*"C(y(uw) —yo(-)), 0<t<T, (51)
p(u)(r) =0. (52)

d
Notice that (51) yields M*E? € L*(0,7; H), but from Section 4 we know that

more regularity is needed for‘y(u) to conclude that such a solution p(u) exists.
Multiplying both sides of (51) by y(v) — y(u), and taking into account that

/< M*d];(;L)’J(”) —y(’u)>H -
A < )‘UWD>Hdt:
/o< MyU M’U(“))>Hd,t

/ " ol ) — gl g /T<p<u>, Liy(v) - y(u)l) dt
0 0
yields

and

/ (c'c 9o(t)), ¥(0)(£) — y(w) ()} dt =
-[{- M*d’jj‘)w (W )0) - o)D) dt=

H

= [ (s, (G +2) oy stw) -

= | p(a0(@) Bo(®) = Bty dt = [ (B*pla)e).ote) = u(t) o =
Jo
= (B*p(u),v — u)p2¢0.r.v7) -
Therefore, an admissible control w satisfying the following system

d

/AT /7 AN\ y 7/ N ~ -
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MY 4 pepi) = 0 Cly(w) o). 0 <<,

My(u )(0) = Myo, p(u)(r) =0, My(u) € HY0,7; H)), p(u) € H'(0,7; H),
(B*p(w) + Nu,v — )2 -.ipy 2 0, for all v € U,
is necessarily the unique optimal control for (48), (49), (50). In particular, if

U = L%(0,7;U), the last inequality reduces to u = —N~1B*p, so that we have
(compare with Theorem 2.2)

THEOREM 5.3. Let m = 1, U = L*(0,7:U). Under the assumptions above, if
the degenerate two—point problem

;t(My)+Ly+BN Bo=F Q<t< 7 (53)
d

Bl df +L'p=C"C(y—wo()), 0<t <7 (54)

My(0) = Myy, p(T) =0, o

has a solution (y,p), y € L*(0,7;D(L)), My € H'(0,7; H), p € L*(0,7;D(L*))N
HY(0,7; H), then u = —N"'B*p is the unique optimal control for the problem
(48), (49), (50).

Now, the system (53)~(55) does not seem to be too satisfactory because
(54) requires more regularity for p (and hence for y) than one expects. Clearly,
one should like to substitute (54) with the less restrictive differential equation

d * - akd
—M'p) +Lp=C"Cly —5()), (56)
and (55) with the boundary conditions

My(0) = Myo, M*p(t) = 0. (57)

In fact we shall exploit the special features due to the presence of a simple pole
0 for A+T)1, (\+S)~1, where T = ML™', S = M*L*"', to show that if
the pair (y,p) satisfies the system (53), (56), (57), then u = —N~'B*p is the
optimal control.

Let P denote the projection onto N(ML™') and let Q be the projection
onto N(M*L*~1). Then (56), (57) reads equivalently

_%5(1 - Q)g(t) + (1 — Q)a(t)
Qq(t)

(1 =Q)C*C(y(t) — vo(t)), (58)
QC*C(y(t) — wol(t)), (59)
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on (0,7) where S is the restriction of S to R(S) and ¢(t) = L*p(t). Since S has
a bounded inverse S~ € L(R(S)), equation (58) takes the form

Q)+ 57 (1 - Q)(t) =

dt
=511 - Q)C*Cy(t) — wo(1)),0 <t <7 (60)
so that (58), (59), (60) guarantee that in fact

521 - @)qlt) + qlt) = C*Cly(t) — volt))

dt
holds. Therefore,
0 <m(u,v—u)—~€(v—u)=

- /0 " Cly)(t) — 3o (0, y(0)(8) — y(w) (1)) i+
+{Nu,v — ) p2 -0y =

= d
= [(-s%0 - Quweso)0 - y<u><t>>Hdt+

N / (o)), L [y (o) (8) — y(a) (8)]) s i+
0
+ {(Nu,v =) p20,r07) -

Moreover,
/ T<—si<1 — Q)qw)(®), yw)(E) - y(u)(t>> B
0 H
--[ <dm—Q)q(u)(t),L‘lM[y(«u)(t)—y<fu><t>]> i,
0

E H

(1 = Q)q(u)(7) =0, and there exists the lil"I(l)(] = @Q)q(u)(t). This yields

i d
/ <‘Sa<1 — Q)alw)(t), y(w)(t) - y<u><t>>H =

171 = Quw)®), Mo = (0] e =

H

L41(1 ~ Qla(u) (1), ML~ (1 = P){Ly(w)(t) - Ly(u)(m> dt =
- H

<L*-1<1 - QWO S ML~ Py()(e) - Ly(u)(tn> b=
/

d

5
—/ A*T*=1(1 _ O\Nala\ 4+ T—1 1 DN T laulaiNTEN .,/..\/m\ s
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:/OT<M*L*—-IQ(H)&), L_'&c_tt,(] — P)L[y(v)(t) — y(u)(a‘.)]> dt =

H

" 2 e v —ylu =
= [} {pw0. Gz yto) ~sel) e
= [[ (s, SMb@O - y01) at

H
It follows that

0<n(u,v—u)—Llv—u)=

4 d .
:/0 <p(u)(t), (EM + L(y(v)(t) — y(-u.)(t)]) dt + (Nu,v = w120, riy =

H
=]0 (p(u)(t), B(v(t) — u(t))) gy dt + (Nu,v — “)1;2(0'1:1»') =
= (B*p(u) + Nu,v — U)L!(O‘T;U)

for all admissible v € Y.
We can now state the following improvement of Theorem 5.3.

THEOREM 5.4, Let A = 0 be a simple pole for (A + T)~', (A + S)~!, where
T = ML™', S = M*L*"'. If the pair (y,p) satisfies (53), (56), (57), where
Yo € D(L), My € H'(0,7;H), M*p € H'(0,7; H), then w = —N"'B*p is the
unique optimal control for (48)~(50) with U = L*(0,7;U).

The solvability of (53), (56), (57) will be considered elsewhere.
Example 5.1 We can illustrate the last result with a simple but enlightening
example. We are required to minimize

J(u,v) = /OT{:cu)? +y(t)? + ult) +v(t)*}dt

over u,v € L?(0,7), under the constraints

0=—z(t) —v()+ f(t),0<t < T,
y'(t) = —y(t) +u(t),0 <t <,
y(0) =0.
Here f € L?(0,7) is given. We take H = L%(0,7)xL?(0,7) = L%(0,7; R?),

O B R ()

Clearly, J(u,v) :/OT{[(f(t) — (1)) + v(t)*] + [y(t)* + u(t)’]}dt > 2 /{;T{v(f)? -

f®)u(t) +f(t)2/2]dt > % [Tf(i)zdt takes its minimum in (0, f/2) = (i.v) and
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On the other hand, the system (53), (56), (57) can be written as

d|{0 0 & | i 0 -1 p f(t)

E[OlHy}__[y}_{—lo {CI%[O RS

d|l0 0 p| D z

210 C1E]=-12]+ 5 ] o<t<n

y(0) = q(1) =0,

ie.,
O=—-z—p+f(t), O0<t<rT, (61)
Yy =-y—gq, 0<t<rT, (62)
0=-p+2z, 0<t<T, (63)
—¢ =—-q+y, 0<t<T. (64)

The two point boundary value problem (62), (64) has the unique trivial solution
y(t) = q(t) = 0. This yields z(t) = p(t) = f(t)/2 and

_ o 10 ~1 p | _
(’U,,’U) =-B (pa q) = [ 1 0 } I: q :' = (Oﬁ f/2)
is the optimal control, as desired.

Example 5.2 Let Q C R™, u > 2, be a bounded domain of R™ with a smooth
boundary 9Q. In the cylinder Q2x(0,7) consider the initial boundary value
problem

9 2
E()‘O - Ay =aly - A%y~ f+u,
(Ao — A)y(z,0) = (Ag — A)yo(z), = € Q,

y(@,t) = Ay(w,t) = 0, (2,1) € A (0,7),

where Ao is the first negative eigenvalue of the Laplacian A, with Dirichlet
boundary conditions, a, 8 > 0, f € L2(2x(0,7)) is given, yo € H} () N H*()
is the given initial condition, and v € L?(©2x(0,7)) is the control. Similar
equations model the_evolution of a free surface of a filtered fluid. The spectral
properties of the involved operators are described in Sviridyuk and Efremov
(1995), where a precise representation of the pencil (AM +L)~" is also given. Of
course, here L, M are the operators in L?(Q) = H associated with —aA + 3A?
and Ao — A, respectively. Then, D(L) = {u € H*(Q) : v € H}(Q), Au €
H(Q) N H*(Q)}, D(M) = Hg(Q) N H*(Q).

By Sviridyuk and Efremov (1995), p.1888, one sees that A = 0 is a simple pole
for L(AL + M)~!. Therefore, Theorems 5.2 and 5.4 work for the cost functional

J(u) = / |y(t)|%210\dt+ / l'U«(tH%?/n\dt-
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6. Null controllability of the degenerate heat equation

Consider the controlled system (see (13))

(dy)i(z,t) — Ay(z,t) = m(z)u(z, t), (z,t) € @ = Qx(0,T)
(dy)(z,0) = d(x)yo(2), z €N
y=0 in X, (65)

where d € C%(Q), d(x) >0, Y2 € Q and m is the characteristic function of an
open subset w C Q. As usually, Q is an open and bounded subset of R" with a
smooth boundary 91).

The existence result below is well known (see, e.g., Barbu, Favini, Romanelli,
1996). However, we recall it for convenience.

LEMMA 6.1. Let yo € HL(S2). Then equation (6.1) has a unique weak solution
y € L(0,T; H}(R)) which satisfies

(dy). € L*(0,T; H™'(Q)), dy € C(0,T}; L*(Q)). (66)
If u e Wh2([0,T); L2()) then

(dy). € L*(Q), y € L*(0,T; Hg () N H*(2))
and Vd y € C([0,T); L*(Q)).
Proof. One approximates (65) by

((d4+e)y)y—Ay=mu, iIn Q
(d+ &)y(z,0) = (d + &)yo(x). z€d y=0inX (67)

which has a unique solution y. € H*'(Q).
We have the apriori estimates

f |Vye(z,t)*da dt + /(rﬂ(:c) + &)y (a, t)da <
Q /0

<C ([n(d(:.',) +€))ya(2)dz +/ mu’da dt) ; (68)

Q

Then, one obtains the desired result letting £ tend to zero in (67).
If w € WH2([0,T); L3(52)) then, multiplying (67) by y; and Ay, we obtain
the estimate

/[Ayelzdzd,t +/d(x)|V1E(:t:,t)|2d3: <
Q Q

L0 (];}lvydzdﬂ? + H“Hf\:l-ﬂ[o.’r;:ﬁ(@)))
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THEOREM 6.1. For each yo € H{(Q) there is w € L*(Q) such thal
(dy*)(z,T) =0, a e x€1) (G9)
where y* is the solution to (65).
This theorem ressembles some recent results on the null internal controlla-
bility of the heat equation (see Fursikov, Imanuvilov, 1996, Lebeau. Robbiano,

1995). In particular, we derive by Theorem 6.1 the boundary controllability of
equation (65).

THEOREM 6.2. Let yo € H}(Q). Then there is v € L*(3) such that the solution
Yy to equation
(dy)i(@,t) — Ay(@,t) =0 in Q
(dy)(z,0) = d(x)yo(z) in Q
y=v in X (70)
satisfies (dy?)(z,T) =0 a.e. x € €.

Proof of Theorem 6.2. Let Q be an open set such that 0CQ and set w = ﬁ\ﬁ
Q QX(O T) We shall apply Theorem 6.1 on Q where yo and d are 5111Lab]y
extended to €. Accordingly, there are y and u € L"(Q) such that (dy)(z,T) =
a.e. x € f). Then the restriction y of § to @ satisfies (6.5) with v = y0(y). (Hcrc
0 is the trace of § € L*(0,T: H}(Q)) to 90cQ.) This completes the proof of
Theorem 6.2. i
In order to prove Theorem 6.1 we need a Carleman’s type estimate for the
solutions to homogeneous equation

(d@)y) —Ay=0 in Q (7
y=0 on X. (
Let woCCw and let ¥ € C2(Q2) be such that
P(x) >0, Yo € Q, Yo =0. |V(2)| > 0, Yo € Qp = 2\ wo.

-]
s =
—

The existence of such a function ¢ has been proved in Fursikov, hnanuvilov
(1996). We set
A(z) M) _ 2AEl g,
e ¢ ‘
":L‘,f- e e alz.t) = - :
plt)=qr—y o@b) HT — 1)
where A > 0. The proof of Lemma 6.2 below is essentially the same as that of
Lemma 1.2 in Fursikov, Imanuvilov (1996) and so it will be omitted.

LEMMA 6.2. There exists sg, Ag > 0 such that for s > sy and XA > Ny we have

/(82” Ydy)i + ¢’y + 2l VylP)dedt < C :t;"f' o dt (73)
Qu
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COROLLARY 6.1. There is C independent of y such that
/ d(z)y*(z,T)dx < C ] y2dx dt (74)
a Qu
for each solution y to 70.

Proof. By (70) we see that the function t — [d(;r)y?(.r.r.)d:r is decreasing.
Ja

Hence
/ d(2)y?(z,T)dz < f d(z)y*(z, t)dz <
4] 1
o ¢ f e2@y2( t)da, Vi € (0,T).
9]

Integrating on (a, a+€) where 0 < a < a+¢ < T' and using Carleman’s estimate
(73) we obtain (74) as claimed. &
Proof of Theorem 6.1. Consider the optimal control probley,

Minimize /

1 ;
wlde dt + X/d(:ﬂ)y‘! (2, T)dw subject to (65). (75)
Q

Q

It is readily seen that (75) has a unique solution (yx, ). Moreover, it satisfies
the equations

uy(z,t) = m(z)py(2,t)ae(z,t) € Q (76)
(dpa)e +Apy =0in Q (77)
(dpa)@T) = ~3dya (2, 7) in 2

and therefore
/mpi(:c, t)dw dt =
Q
=Ld(:ﬂ)(p;(3:, Tya(z, T) — pa(z,0)ya(w,0))dz. (78)

This is obvious if d > 0 in { because as mentioned earlier, in this case py,yy €
H*'(Q). In the general case we replace (75) by

1
Minimize/wazrixdt + X/deyz(.v,i{")d;r subject to (6G7). (79)
Q Q
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Let (y¢,u®) be the corresponding solution to (79) and let p® be the solution
to the dual system

d:(p* ) +Ap =0 in Q
de()p (@, T) = =3 el T) 0 Q
F=0 in % (80)

We have

mpt =, ac. in Q.
By (80) we see that

/Q (u Pt -+ 5 [ delo)ly P T <
£ / Rdwdt + % /S;(ls(ar)(;ff)lz(:ﬁ. T)da:

JQ

for any v € L%(Q) where 7° is the solution to (67). This implies that, on a
subsequence,

we — uy weakly in L?(Q)

ye — ya weakly in L2(0,77 H} ()

Vdey® —  Vdyy strongly in C([0,T]; L*(2)).
(See Lemma 6.1.)
Similarly for the solutions p® to (80). Since (76) is obviously satislied for y®

and p® we get it for yy and py by letting = tend to zero.
Now by (75), (76) we have

/ mp/z\d;l: dt + —/ d(z)y3 (z, T)dx = / d(a)pa(a, 0)yola)de.
Q Ao Ja
By estimate (73) we see that

- Ly 1
/ uidedt + T/ d(z)y3(z, T)dx < C, YA > 0.
Q Ao

Thus on a subsequence, again denoted A,
wy — u* weakly in L*(Q)
\/;Zy,\(-,T) — 0 strongly in L*(Q)). (81)
Letting A tend to zero in the equations

(dyx)e — Ayx = muy in Q
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and recalling the estimate (68) we infer that
Y — y* weakly in L*(0,T; Hj(Q2))

where y* is the solution to (65) for « = w*. By (81) it is also clear that
(dy)(z,T) =0, a.e. z € Q. This completes the proof. |

References

BarBu, V., PrREcUPANU, T. (1986) Converity and Optimization in Banach
Spaces. D. Reidel, Dordrecht.

BarBu, V., Favini, A., ROMANELLI, S. (1996) Degenerate evolution equa-
tions and regularity of their associated semigroups. Funk. Elkvacioj, 39,
421-448.

CarroLr, R.W., SHowALTER, R.E. (19076) Singuler and Degenerate Cauchy
Problems. Academic Press, New York.

Favini, A., Yacl, A. (1999) Degenerate Differential in Banach Spaces. M.
Dekker, New York.

Fursikov, A.V., ImanuviLov, O.Yu. (1996) Controllability of Evolution
Equations. Lecture Notes Series 34, RIM. Seoul University Korea.
LeBEAU, G., RoBBIANO, L. (1995) Controle exact de I'équation de la chaleur.

Comm. P.D.E. 20, 335-356.

Lions, J.L. (1968) Contrdle optimal des systémes gowvernés par des équations
auz dérivées partielles. Dunod, Paris,.

Lions, J.L. (1989) Controllabilité exacte. perturbations et stabilisation de sys-
témes distribués. Masson, Paris.

SVIRIDYUK, G.A. (1995) Linear equations of Sobolev type and strongly conti-
nuous semigroups of solving operators with kernels. Russian Acad. Dokl
Math., 50, 137-142,

SvIRIDYUK, G.A., EFREMOV, A.A. (1995) Optimal control of Sobolev type
linear equations with relatively p-sectorial operators. Diff. Uravnenia,
31, 1912-1916 (English translation, Diff. Eqns. 31, (1995), 1882-1890.



