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1. Introduction

The notion of contingent derivative of a set-valued mapping plays an important
role in vector optimization. For instance, contingent derivative is used to for-
mmlate optimality conditions for vector optimization problems with set-valued
maps (cg. Corley, 1988, Luc, 1989), and to study sensitivity (eg. Tanino, 1988a,
b, Sawaragi, Nakayama and Tanino, 1985, Shi, 1993).

To derive sufficient and necessary optimality conditions Jahn and Rauh
(1997) introduced the notion of contingent epiderivative of a set-valued map. In
the present paper we give an alternative definition of contingent epiderivative
and present some of its applications. In Section 2, we introduce the concept of
contingent epiderivative and investigate its properties. In Section 3, we formu-
late necessary optimality conditions for Benson’s proper minimality and suffi-
cient optimality conditions for minimality for a set-valued optimization probleimn.

In Section 4, we exploit the contingent epiderivative to study sensitivity of a
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2. Contingent epiderivative of set-valued mappings

In this section we give a definition of contingent epiderivative for set-valued
mappings.

Let X and Y be real normed spaces, and let F: X — Y be a set-valued
mapping. The domain and graph of F' are defined by

dom(F) := {z € X | F(x) # 0},
gr(F) == {(z,y) e X xY | y € F(x)}.

DEFINITION 1 (Aubin and Frankowska (1990)) Let A be a nonempty set of
X and u € cl(A) (closure of A) a given element. The contingent cone T4 (u) is
defined by

Ta(u)={veX| liI}lliéIlf h™lda (u+ hv) = 0},

where dy(u) = llelg [lw — v||. Equivalently, v € Ta(u) if and only if there exist
v

sequences {h,} of positive real numbers and {v,} C X with h, — 0, v, — v
such that

U+ hpvn € A, foralln > 1.

Clearly, Ta(z) is a closed cone, and if A is a convex set, then Ty(z) is a
closed convex cone (sce Aubin and Frankowska, 1990).

DEFINITION 2 (Aubin and Frankowska (1990)) Let F: X — Y be a set-
valued map, and let (%,7) € gr(F). A set-valued map DF(z,5): X — Y whose
graph equals the contingent cone to the graph of F at (Z,7), i.e.

gr(DF(.’E‘, ?})) . fllnsl'(ar")("‘:"! J):

15 called the contingent derivative of F at (z,7).

It is well known that the concept of contingent derivative is a natural exten-
sion of tangency and plays an important role in set-valued analysis (see Aubin
and Frankowska, 1990). This concept has been used in set-valued optimiza-
tion to formulate optimality conditions (Corley, 1988, Luc, 1989) and to study
sensitivity analysis (see Tanino, 1988a, b and Shi, 1993).

In order to generalize classical optimality conditions, a concept of contin-
gent epiderivative has been introduced by Aubin (1981) (sce also Aubin and
Frankowska, 1990) for extended real-valued functions. This concept has been
used by Penot (1997) to study sensitivity in optimization. In a very recent
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Let K be a closed convex cone of Y and let F: X — Y be a set-valued map.
The set

epi(F) := {(z,y) € X xY | y € F(z) + K}
is called the epigraph of F.
DEFINITION 3 (Jahn and Rauh (1997)) Let (z,y) € gr(F). A single-valued
map D F(z,y): X — Y whose epigraph equals the contingent cone to the epi-
graph of I at (z,y), i.e.

epi(D F(x,y)) = Tepicr) (2, 4),
is called contingent epiderivative of F' at (x,y).

This concept has been used in Jahn and Rauh (1997) to formulate optimality

conditions for set-valued optimization problems. However, even for a simple set-
valued map, this epiderivative may not exist.

EXAMPLE 1 Let X = R"Y = R? K = R%. Define a set-valued mapping as
follows

Flz)={ =8 R |§+E<a%, #0<z<]
3 0, ife<lorz>1.

Let 7o = 1,30 = (-, -2).

2 2
T{!pi(F)(mD»yU) = {(37:?}) € Rl x R2 | y= (El:‘g?)v gl +£2 z _\/5'1:}'

It is easy to show that the contingent epiderivative D'F(xo,1) does not
erist.

In what follows we shall give another definition of contingent epiderivative
for a set-valued map. Since no confusion arises, we use the same name as in
Jalin and Rauh (1997).

Let A be a subset of ¥ and K C Y be a closed convex pointed cone.

A point ag € A is a minimal point ( an efficient point) of A with respect to
K (sce Jahn, 1986), ap € MinA, if

(A—ap)N(-K)={0}.
Define (F + K)(x) = F(z) + K, for z € X.

DEFINITION 4 Let (z,y) € gr(F). We say that the set-valued map Dy F(z,y): X —
Y defined by
Dy F(z,y)(u) := MinD(F + K)(z,y)(u),

is the contingent epiderivative of F' at (z,y).
The set-valued map F is said to be contingently epidifferentiable at (z,y) if
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The idea of Definition 4 is based on Definition 6.1.2 in Aubin and Frankowska
(1990). Independently, this definition was also iutroduced in Chen and Jalm
(1998).

Clearly, if the contingent epiderivative D' F(z,y) cxists, by noting that
epi(F) = gr(F + K), we obtain

D'F(z,y)(u) + I = D(F + K)(z,y)(u), for u € dom(D(F + K)(x,y)).
Hence
Dy F(x,y)(u) = D' F(z,y)(u).
EXAMPLE 2 Let us consider Example 1 again. It 1s clear that
Dy F(x0,50)(w) = {y = (&1,&) € B* | & + & = —V2u}.
Let (2,y) € gr(F). By Proposition 2.1 of Tanino (1988a), we have
DF(z,y)(u) + K C D(I + K)(2,y)(u), for all u € X. (1)

By similar arguments as those used in the proof of Proposition 2.1 of Tanino
(1988a), we can also prove that

D(F + K)(2,y)(u) + K = D(F + K)(2,y)(u), for all v € X.
PROPOSITION 1 Let (#,3) € gr(I7). If K has a compact base, then

Dy F (3, 9)(u) € MinDF(E,5)(u), for allu € X. (2)
Proof. Since I has a compact base, by Theorem 2.1 of Tanino (1988a),

DiF(z,y)(u) € DF(z,y)(u), for all u € X. (3)
iIrom (1) and (3) it follows that

Dy F(x,y)(u) C Min(DF(x,y)(u) + K) = MinDF (2, y)(u), for all u € X.

|

DEFINITION 5 A set-valued map F: X — Y is K-convex if the epigraph of F' is
convez, i.e. for all 1,29 € X and X € [0,1],

AF(2q) 4+ (1 = A)F(x2) C F(Azy + (1 = A)xg) + K.

If Fis K-convex, D(F+I)(x,y)(-) is clearly a closed couvex process, D(F+
) (2, y)(u) is closed and convex for cach v € domn(D(F + K)(=x,y)), and D(F +
K)(2,1)(0) is a closed convex cone.

PROPOSITION 2 Let : X — Y be a I -convex set-valued map and lel (x,7) €
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(i) For every A>0 andu € X,
ADy F (3, 5)(u) = Dy F(, 5)(Mu);
0 € D1 F(%,9)(0);
(iii) #f epi(DF(2,%)) = Tepi(r)(Z,7), then for every uy,us € X,
Dy F(%,5)(u1) + D1 F(Z,7)(u) C D1F(Z,7) (w1 + u2) + K
(i'\’) ff ppI(DIF(’?s?})) il Tcepi(F)(f"s :"})? then
epi(DF(Z,7)) C epi(D1F(Z,7)),
and the converse inclusion holds if K has a compact base. Consequently,
Dy F(%,7)(u) = MinDF (%, §)(u), for all u € dom(D(F + K)(Z,7)).

Proof. (i) and (iii) are proved in Chen and Jahn (1998).
(ii) Assume on the contrary that 0 € Dy F(z,7)(0). Then there exists k €
K\ {0} with

—k € D(F + K)(z,7)(0).

For every y € D(F + K)(#,7)(0), since D(F + K)(z,7)(0) is a closed convex
cone,

y— ke D(F+ K)(z,5)(0).
Hence

y & MinD(F + K)(%,7)(0).
Thus

DyF(,5)(0) = 0,

a contradiction.
(i\“) If Cpi(DTF(”"_:: ﬂ)) = Tepi(F)(ia ﬂ): from (1), we get

epi(DF(, 7)) C epi( D1 F(%,7))-

The converse inclusion follows from Proposition 1. |
Now we give the conditions ensuring the equality
Cpi(Dl‘F(i: 1})) . Tepi(F) (j':: ﬁ) (4)

LeEMMA 1 (Ha (1994)) Let K have a bounded base. Let F: X — Y be a K-
conver set-valued map and let (Z,7) € gr(F). If there exists a set-valued map
G: X — Y with bounded images such that

Tepi(r) (T, 7) C epi(G),
then (4) holds.
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LEMMA 2 Let K C R" be a closed convex pointed cone, let F: X — R"™ be a
K -convex set-valued map, and let (z,9) € gr(F). If D1 F(2,7)(0) # 0, then (4)
holds.

Proof. From the definition it follows that
D(F + K)(2,9)(u) = Ly, N Topicry (2, %), for all v € dom(D(F + K)(z,)),

where Ly, = {(u,y) € X xY |y € Y'}. Since L, and Topipy (%, 7) are closed and
convex, by Proposition 2.5 of Luc (1989),

07 D(F + K)(%,5)(u) = 0% Ly N Tepi(r) (7, §) = D(F + K)(Z,5)(0).
Since D;F(%,9)(0) # 0, by Proposition 2, 0 € D; F(z,7)(0). Hence
D(F + K)(z,9)(0) n (-K) = {0}.

By Corollary 4.6 of Luc (1989), D(F + K)(%, ) (u) has the domination property,
1.e.,

D(F + K)(z,7)(u) = Dy F(#7)(u) + K.
Thus, (4) holds. [ |

ProprosITION 3 (Shi (1993)) Let K be a closed convex pointed cone in R™.
Let F: R™ — R™ be a K -convex set-valued map and let 7 € int(dom(F)). If 3
is a Benson proper minimal point of F(), then

D(F + K)(Z,7)(u) = DF(z,9)(u) + K, for allue R™.
Consequently,
D F(z,5)(u) = MinDF(%,5)(u), for allue R™.

DEFINITION 6 A set-valued map I': X — Y is said to be upper locally Lipschitz
at wg € X if there exist a neighborhood U of xg and a positive constant M such
that

F(2) C F(xo) + M||z — 20|| By, for all x € U,
where By is the unit ball of the space Y.

PROPOSITION 4 (Tanino (1988a)) Let K C Y have a compact base. Let
F: X — Y be upper locally Lipschitz at # € dom(F). If i is a Benson proper
minimal point of F(7), then

D(F + K)(7,7)(u) = DF(z,5)(u) + K, for allu e X.

Consequently,
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DEFINITION 7 Let F: X — Y be a set-valued mapping defined on a neighborhood
of @ and let y € F(%). I is called directionally compact at (Z,7) in the direction
@ if for every sequence of positive nurnbers h, — 0 and every sequence u, — 1,
any sequence iy, with

J 4 hayn € F(T + hpuy), for eachn
contains a convergent subsequence.

If F is single-valued and Fréchet differentiable at 2, then F' is directionally
compact at z in any direction u.

Following Penot (1984), a sct-valued mapping F: X — Y is called compact
at 7 if for every sequence x, — 7, any sequence y, € F(z,) has a converging
subsequence.

If DF(z,5) is compact at u and F' is psendo-convex at, (#,7) (see Aubin and
Frankowska, 1990), i.c.

j.‘,IF C ('f) ?j) Al TKFF('{?! ?}):

then F is directionally compact at (#,7) in the direction u. Indeed, for every
sequence of positive numbers h,, — 0 and every sequence 1, — u, any sequence
Yn with

Y+ h-n?)'n L2 F‘(% + hruuu): for cach m,y
Since F' is pseudo-convex at (7, 7), we have
Yn € DF(Z, ) (un).

Becanse DF(#, ) is compact at u, y, has a converging subsequence.

Consequently,
DiF(z,5)(u) = MinDF(Z, 7)(u).
Proof. In view of (1), it suffices to prove that
D(F + K)(z,y)(u) C DF(z,5)(u) + K.
Let y € D(F + K)(z,9)(u). From the definition, there exist a sequence of
positive munbers h, — 0 and sequences u, — u, y, — y and d,, € K such that

U+ hotyn — dy € F(3 + hpuy), for all n.

By our assumption, ¥, — d,/h, contains a convergent subsequence. Without
loss of generality, we may assume that y, —d, /h, converges to some element .
Hence yy € DF(z,9)(u) and d,,/h, — y — 1y € K. Thus, y € DF(z,7)(u) + K.
=



382 E.M. BEDNARCZUK and W. SONG

3. Optimality conditions in set-valued optimization

Let X and Y be real normed spaces, let A be a nonempty subset of X, and let
K be a convex and pointed cone of Y. Let F: A — Y be a set-valued map.
Consider a set-valued optimization problem:
min F(x). (5)

DEFINITION 8 (a) A pair (Z,7) with T € A and § € F(Z) is called a minimal

solution of (5) if § is a minimal point of the set F(A) = UyeaF(z), i.e
(F(A) - ) N (-K) = {0}.

(b) A pair (z,5) with T € A and § € F(T) is called a Benson proper minimal
solution of (5) if §j is a Benson proper minimal point of the set F(A) =
UzeaF(x), i.e

clfcone(F(A) + K — )] N (-K) = {0}.

Optimality conditions in set-valued optimization have been given by Corley
(1988) and Luc (1989) with the aid of contingent derivatives, and by Jahn and
Rauh (1997) with the aid of their concept of contingent epiderivative.

We present a necessary optimality condition for proper minimal solution
of problem (5) by using the notion of contingent cpiderivative introduced in
previous section. We also give a sufficient condition for minimal solution of
problem (5) under convexity assumption. For weak minimizers, sufficient and
necessary conditions were given in Chen and Jahn (1998).

THEOREM 1 Suppose that K has a weakly compact base and F(A)+ K is convex
or K has a compact base. If (%,7) is a Benson proper minimal solution of (5),
then

DiF(Z,9)(z—2)N (=K \ {0}) =0, for all x € A
Proof. Since (Z,7) is a Benson proper minimal solution of (5), we have
clfcone(F(A) + K — )] N (=K) = {0}.

By our assumptions and Theorem 1 in Dauer and Saleh (1993), there exists a
closed convex pointed cone S such that K\ {0} C int S and

cllcone(F(A) + K — )] N (—=int S) = 0.
Assume that there exists 27 € A such that
Dy F(#,§)(@1 — #) N (=K \ {0})

contains an clement v. Then there exist sequences {z,} C A, {v,} C Y and
{hn} of positive real numbers with z,, — =) — Z, v, — v and h,, — 0 such that
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Hence
Tn = § + hnvy — ky € F(Z + hpy), for k, € K.
Since v € —K \ {0} C —intS, there exists N such that
hyv, € —intS, for alln > N.
Since intS + K \ {0} C intS,
Yn —J € —intS.
Hence (Z,7) is not a proper minimal solution of (5). |

Under some additional assumptions, we obtain the following sufficient con-
ditions.

THEOREM 2 Let A be conver and let F: A — Y be K-convex. Lel & € A and
i € F(z) with epi(DyF(z,y)) =T, i(F) (7, 9). If

epi
DiF(E,g)(z—-2)N (=K \{0}) =0, forallx € A,
then (Z,%) is a minimal solution of (5).
Proof. Since F is K-convex,
F(z) -y C D(F+ K)(&,9)(x — %), for all z € A.
In view of the equality
epi(Dy (%, 7)) = Tepi(r) (7, 7),
we have

F(z) -5 C DiF(z,9)(x — %) + K, for all z € A.

If

DiF(@,g)(z —3)N(-K\{0}) =0, forall z € A,
then

(D1 F(z,9)(z — %)+ K] N (=K \ {0}) = 0, for all z € A.
Hence

[F(z) - 7] 0 (=K \ {0}) = 0, for all z € A.
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4. Sensitivity analysis

In this section, we consider a family of parametrized vector optimization prob-
lems. Let ® be a set-valued map from a normed space W to Y, where W is the
parameter space. The set-valued map P: W — Y defined by

P(w) = Min®(w), for every w € W
is called the perturbation map.

Sensitivity analysis concerns differentiability properties of the perturbation
map P(-). For vector optimization problems, contingent derivatives of P has
been investigated in eg. Tanino (1988a, b), Sawaragi, Nakayama and Tanino
(1985) and Shi (1993).

Below we present some sensitivity results by using the notion of contingent
epiderivative introduced in Section 2.

DEFINITION 9 We say that © has domination properly near w if there exists a
neighborhood U of w such that

O(w) C P(w)+ K, for allw e U.

THEOREM 3 Suppose that K has a compact base and ¢ has domination property
near w. Let jj € P(w). Then

D P(w,§)(u) C MinD®(w,j)(u), for allu e U, (6)
and the converse inclusion holds if, in addition,
epi(DT(I)(ﬂ’: ?})) = Tcpi(ﬁ') ('ti), !})

Proof. Since P(w) C ®(w) and ® has the domination property near @, there
exists a neighborhood U of @ such that

(w)+ K = P(w) + K, for all we U.
Hence
D(® + K)(w,7)(u) = D(P + K)(w, y)(u), for all u € U.
Thus
Dy P(w,y)(u) = Dy®(w, g)(u). (7)

By Proposition 1, we get (6). The converse inclusion follows from Proposition
2 (iv). |

As a consequence of Theorem 3 and Lemma 2, we obtain the following result.

COROLLARY 1 Let K C R" be a closed convex pointed cone, let &: W — R™ be
a K -convex set-valued map with domination property near w, and let i € P(w).

If D1®(w,7)(0) # 0, then
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COROLLARY 2 Let I{ C R"™ be a closed convex pointed cone, let ®: R™ — R"
be a K -convex set-valued map such that ®(w) + K is closed (or ®(w) is closed
and convez) for w near w € int(dom(®)), and let § be a Benson proper minimal
point of ®(w). Then

Dy P(w,y)(u) = MinD®(w, j)(u), for allue R™.

Proof. By the assumptions and by Lemmas 4.3, 4.4 of Tanino (1988b), ®(w)

has domination property for w near w. By Proposition 3 and formula (7), we

get the conclusion. ]
By Proposition 4, 5 we obtain the following results.

COROLLARY 3 Let K C Y have a compact base and let &:W — Y be upper
locally Lipschitz al w € dom(®) and have domination property near w. If 3 is
a Benson proper minimal point of ®(w), then

D P(w, ) (u) = MinD®(w, §)(u), for allu € W.

COROLLARY 4 Let &: W — Y have domination property near w and let § €
P(w). If ® is directionally compact at (w,y) in the direction u, then

D P(w, 5)(u) = MinD®(w, i) (u).

Note. After we had finished this paper, we got a copy of manuscript of Chen
and Jahn (1998) where the authors give the definition of generalized contingent
epiderivative which coincides with the definition of contingent epiderivative we
propose. We decided to submit our paper in its present form because our presen-
tation differs from that of Chen and Jahn (1998) in many aspects. In our paper
some results are stronger (eg. the statement below Definition 4 is stronger
than Theorem 4 of Chen and Jahn, 1998) and some additional properties of
the contingent epiderivative are proved. As original and new applications we
give necessary optimality conditions for Benson’s proper minimality, sufficient
conditions for minimality, and we study sensitivity of parametrized vector opti-
mization problems.
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