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Abstract: Assuming that interest rate shocks are proportional 
to their values plus one, we prove in Theorem 1 the existence of and 
construct a portfolio Z* with the highest convexity in the class of 
portfolios that solve the immunization problem to meet the liability 
to pay C dollars J( years from now. Z* appears to be a barbell strat
egy with two zero-coupon bonds with the shortest and the longest 
maturities. This intuitively clear result has been obtained here in a 
rigorous way by means of the K-T conditions. In addition, we show 
that our result is strictly related to the problem of maximization 
of the unanticipated rate of return on a portfolio solving the above 
immunization problem (Theorem 2). Two more results concerning 
the unanticipated return after J( years are provided with proofs. 
An example illustrating the role of convexity in maximization of the 
unanticipated return is included. Despite the fact that there exists 
a pretty vast literature on bond portfolio strategies, the present pa
per offers a new methodological approach to this area (see Ingersoll, 
Skelton, Weil, 1978). 

Keywords: convexity, immunization, J(- T conditions, unan
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1. Introduction 

By the basic immunization problem we mean here the problem of finding the 
least expensive bond portfolio that ensures meeting a single liability of C dol
lars to be paid K years from now, irrespective of unknown shocks ht in spot 
rates Yt (y1 --+ Yt + ht) · Here J( may be any number between the shortest to 
and the longest (tn) bond maturity. It is well known (see the pioneering work 
of Macaulay, 1938, Redington, 1952, and Fisher, 1971), that any bond portfo
lio with duration of K years and an appropriate investment value, solves this 
problem in the simplest case when the YTM curve is flat (Yt = y) and ht = h, 
where t varies over all instants t0 , t 1 , ... , tn when currently available bonds pay 
cou ons for all such t s ot rates J are derived from current bond rices . 
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In Zaremba (1995, Theorems 4 and 5) we solved this problem assuming that 
shifts ht in spot rates Yt were expected to be roportional to their values plus 
1, i.e., 

ht 

1 + Yt 

hto 

1 + Yto 
(1) 

We proved that any bond portfolio Z that (i) dominates, Zaremba (1995, 
Definition 4), a real or imaginary zero- coupon bond 0 maturing I< years from 
now with the only payment of C dollars and such that (ii) the investment value of 
Z is not smaller than that of the bond 0, solves th·~ basic immunization problem 
and vice versa. We also demonstrated that bond portfolios which dominate 
the bond 0 are exactly those whose durations are equal to I<, Zaremba (1995, 
Theorem 6) . 

In this paper we prove the existence and then construct (Theorem 1) a 
portfolio Z* with the highest convexity in the class of portfolios that solve the 
basic immunization problem. Z* appears to be a barbell strategy based upon 
two zero- coupon bonds with the shortest and the longest maturities. This result 
is interesting not only in itself but should be of interest to all those whose goal 
is to maximize the unanticipated rate of return on a portfolio solving the basic 
immunization problem due to unknown proportional shifts in spot rates that 
take place instantly after the bond portfolio is acquired. 

In fact, the actual unanticipated return on a portfolio Z solving the basic 
immunization problem differs only very little from that given by the formula 
(11). It means that the maximum return given by (11), which we derive in 
Theorem 2, is very close to the actual maximum unanticipated return due to 
proportional shifts in spot rates. In Theorem 3 we suppose that no other changes 
in the spot rates will take place in the period of K years, to give a formula for 
the resulting return on Z* after I< years. 

2. Duration and convexity for bond portfolios 

We will recall now some notions and facts introduced and shown in Zaremba 
(1995) . By a bond A one understands a financial instrument paying coupons 
of Ct dollars t years from now, t = to, t 1 , ... , tn, with t0 (tn) being the maturity 
of a shortest (longest) bond; for a concrete bond, some or even most of Ct 's 
are equal to zero. Treasury bills with maturitie~; less than 1 year are treated 
as (zero-coupon) bonds. Thus, a bond A can be identified with a sequence of 
coupons 

The investment value of a bond A is therefore equal to 

(2) 
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Since a bond portfolio Z = ( z1 , X2, ... , Xr) is a collection of Xi copies of 
bonds oi, the investment value of z is defined to be the sum of the investment 
value of all bonds Oi present in portfolio Z. It is also well known that the 
duration of a bond Om is given by ihe formula 

D(Om) = L:txr', x~n = c;n(1 +Yt)-t/Pm, (3) 

where Pm is the investment value of the bond Om generating the coupons 

c;~', cr:, ... , c;:~, 
so that x;, are the weights of coupons qn. Thus, duration is the average of 
the dates on which cash flows are promised, where those dates having the larger 
current values of the cash flows receive the greater weight. Accordingly, the 
duration of a portfolio Z = ( x 1 , x 2 , ..• , Xr) is understood in the same fashion, 
that is, 

t = tn r r 

D(Z) = L t · L q"(1 + Yt)-tjP*, P* = L Pm. (4) 
t=to m=l m=l 

However, it is well known (for a rigorous proof see Zaremba, 1995, Lemma 
1) that D(Z) is a convex combination of durations D(Om), that is, 

r Pm 
D(Z) = L XmD(Om), X111 = p•, 

m=l 

r 

P* = L Pm. 
m=l 

(5) 

It is also well known, Elton, Gruber (1995), p. 548, that the convexity of a 
bond A is defined to be the number 

V(A) = ~ tf, t(t + 1)x:, x: = Ct(1 ;AYt)-t 
t=to 

(6) 

In the same way one understands the convexity of a bond portfolio Z = 
(xl,X2, ... ,xr), that is to say, 

1 t=t,. 
V(Z) = 2 L t(t + 1)xf, 

t=to 
(7) 

where xf stands for the weight of all coupons to be received from Z at time t. 
Like in case of duration, V(Z) is a convex combination of convexities of bonds 
Om (see, for instance, Zaremba, 1995, Theorem 2), that is, 

r 

V(P) = L Xm V(Om), (8) 
m=l 

where, as usual, Pm stands for the investment value of the bond Om, while P* 
is the investment value of Z (see (4)). 
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Now, suppose that spot rates Yt have been changed proportionally so that 
(1) holds. Denoting by Pz the new investment value of a bond portfolio Z, the 
unanticipat ed rate of return on Z (see, Elton, Gruber, 1995, p. 544) , due to the 
proportional shifts in the spot rates, is expressed as in Zaremba (1995, T heorem 
3). 

- 2 

dPz = Pz- Pz = -D(Z)~- + V (Z) ( ~) + o, 
Pz Pz 1 + Yto \ 1 + Yto 

(9) 

where o, being a third order term with respect tc· ht0 , may be neglected. Note 
that on many investment (financial) markets one has - .01 ~ ht ~ .01 , which 
makes the term o really small (sec, Zaremba, Example 1) 

3 . Basic immunization problem 

Assume one has to discharge the financial liabiLty to pay C dollars J{ years 
from now, t 0 ~ K ~ tn , where as usual, t 0 (tn) iE: the maturity of the shortest 
(longest) bond available on a given financial market. T he basic immunization 
problem can be stated as follows: How to meet this liability with the help of 
a bond portfolio, expecting proportional shocks in spot rates, with the least 
amount of money spent for this purpose? Analogously as in Zaremba (1995) , 
let us set 

(10) 

Obviously, C"K can be thought of as the investment value of a real or imag
inary zero- coupon bond o paying C dollars at time K. Following Zaremba 
(1995) we shall say that a bond portfolio Z is a J(- immunization portfolio if Z 
solves the basic immunization problem defined above. It was proved in Zaremba 
(1995) t hat any portfolio Z with Pz ~ Cj< and D (Z) = K is a J( - immuniza
tion bond portfolio. Moreover, if Pz < C"K or Pz = Cj< and simultaneously 
D(Z ) =/= K then Z is not a K - immunization bo1d portfolio. 

The last result obtained in Zaremba (199!)) can be formulated as follows. 
Suppose that spot rates Yt have been changed proportionally instant ly after an 
investor has acquired a K - immunizat ion portfolio. T hen the investor obtains 
the unanticipated rate of return on Z, Rz, which is approximately equal to (the 
third order term with respect to ht0 has been neglected) 

Rz = [v(Z)- ~K(K + 1)] (~) 
2 

+ (~) - K - 1. (ll) 
2 1 + Yto 1 + Yto 

Using this equality and Theorem 1, we derive several corollaries in Section 
5. 
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4. Maximum convexity m the class of K - immunization 
strategies 

The main goal of this paper is to construct a portfolio Z* with the highest 
convexity V(Z*) in the class of K - immunization portfolios. Following Elton, 
Gruber (1995, p. 552), a bond portfolio Z = (x1 , x2 , ... , Xn) consisting of two 
types of bonds only, say Oi, Oj (in other words, Xk = 0 except for k = i and 
k = j) is said to be a barbell strategy for the basic immunization problem if 
D(Z) = K, while D(Oi) and D(Oj) are "very different". On the other hand, 
Z is said to be a focused strategy if D(Ok) are centered around the duration of 
the liability, that is, the number K, k = 1, 2, ... , r. 

THEOREM 4.1 A K - immunization portfolio Z* with the highest convexity ex
ists and appears to be a barbell strategy built up with the shortest and the longest 
zero-coupon bonds, say, 0 1 , 02, whose maturities are equal to to, tn, respec
tively. The investment values of these bonds 0 1 , 0 2 , are equal to 

t - K K- t0 * 
P, - n C* and Po, = ---CK 0

' - tn -to K tn -to 
(12) 

respectively (they sum up to C'K ). 

Proof. The maximization of V(Z) in the class of portfolios Z satisfying D(Z) = 
K and Pz = C'K (see (10)) leads to the following optimization problem 

(13) 

where 

(14) 

Since all the functions occurring in (13) are linear with respect to xf, the 
Kuhn - Tucker conditions are necessary and sufficient for the optimality of a 
given portfolio Z. We thus have 

(15) 

where 

t=t11 t=t" 

L = ~ L)t2 + t)xf + L (),tzf + f.L1txf + f.L2xf). 
t=to t=to 

(16) 

At first, we show that xf =J 0 for at most two instances ti , tj, which means 
the remaining xf 's vanish. Assuming on the contrary, that xf =J 0 for ti, tj, 
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t 1, with ti, tj, t1 being pairwise distinct , one arrives at a contradiction. In fact, 
because by virtue of (14) At, , Ati, At1 , should be equal to zero, the necessary 
condition 

{)£ 1 2 
0 = axf = 2(t + t) + At + J-L1 + J.L2 (17) 

would then mean three distinct roots of the quadratic equation ~ ( t2 + t) + J-L1 t + 
J-L2 = 0! , which is impossible. Now we shall guess (intuitively it is quite clear) 
that the portfolio Z* is given by 

z• tn - K z• '7* K - to 
Xto = -t --, Xt = 0, t =/= 0, t =/= tn, Xj~, = tn _to 

n- to 
(18) 

and next show that the necessary and sufficient conditions (14) hold for Z*. In 
fact, by setting 

(19) 

one sees that (16) holds. The remaining three conditions given in (14) are 
obviously satisfied because xf 2: 0, At 2: 0 and A~cf = 0. It all means that Z* 
is the only solution to the optimization problem (13); see Remark 1 to follow. 
Since Z* pays two coupons only at t = t0 and t = tn , the simplest way to define 
it is to set Z* = (xi , x2, 0, . . . , 0) with ::z:i copies of the shortest bond 01 paying 

Cx(1 + Yt0 )t0 (tn - K) 
(tn - to) 

dollars at t = t0 and x2 copies of bond 0 2 paying 

(1 + Yt,Jtn (K- to) 

(tn - to) 

dollars at t = tn· It is now clear that the investment values of all bonds 01 
present in Z* and 0 2 are given by (12) , as required. The proof is complete. • 

REMARK 4.1 The reader may wonder why another barbell strategy Z built up 
with two zero-coupon bonds Oi, Oj with maturities ti =/=to or tj =/= tn(ti < tj) 
cannot be a solution to the optimization problem (13). The answer is simple: 
this is so because then At = Htj - t)(t- ti) would not be nonnegative for all 
t. In fact, if ti =/= to then At0 < 0 and similarly, if tj =/= tn then At,. < 0. The 
proof of the fact that At must be of the form ),t == ~(tj - t)(t- ti) is given in 
the Appendix. 
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5. Unanticipated rate of return 

In this Section we derive a few corollaries resulting from the formula (11) and 
Theorem 1. An example is also included. 

THEOREM 5.1 The unanticipated rate of return on the K - immunization bond 
portfolio Z* due to proportional shifts in spot rates is approximately equal to 

Rz. = -
2
1 

[K(tn +to - K) - totn] (~) 
2 

+ (1 + ~) -K - 1 (20) 
1 + Yto 1 + Yto 

Proof. Based on (11) it is enough to demonstrate that 

max [v(Z) - ~K(K + 1)] = ~[K(tn +to- K)- totn] · (21) 

Taking into account the formulae for xf given in (14) and using the defini
tion of convexity for a bond portfolio (see (7)) we have 

V ( Z) = ~ [to (to + 1) tn - J( + ( tn + 1) K - to] . 
2 ~-~ ~-~ 

By virtue of Theorem 1, the maximum in (21) is attained at Z = Z*. There
fore, it is sufficient to prove that V ( Z*) - ~ J( (I(+ 1) equals the right hand side 
of (21). Towards this end, observe that 

2(tn- to) [v(Z*)- ~K(K + 1)] = 

K[t~ +tn-t~- to- (K + 1)(tn- to)] + (tnt6- t?,to) 

= (tn - to)[K(tn +to- K) - tn -to]. 
The proof is complete. • 
THEOREM 5.2 The unanticipated rate of return on a J( - immunization bond 
portfolio Z after J( years due to proportional shifts in spot rates (if no other 
changes in the spot rates occur in the meantime) equals 

R§ = [v(Z)- -
2
1 

K(K + 1)] (~)
2 

(1+yk+hk)K+[(1+yK)K-1],(22) 
1 + Yto 

where Rtf= [(1+yK)K -1] is the rate of return at the maturity on an imaginary 
or real zero- coupon bond 0 maturing at time t = J(. 

Proof. Since the investment value of the bond 0 equals C(1 + Yk)- K = Ck 
where C is the face value of 0, we have 

J( c- C(1 + yk) - K J( 

Ro = 0(1 + YK) - K = (1 + YK) - 1. (23) 
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To prove the first part of the theorem, let us observe that 

- K 
RK _ Pz(1+yK+hi<) -Pz 

z - Pz ' 

where Pz, the investment value of Z instantly afte r the change in the spot rates, 
equals 

- - ( ht ) 
2 

Pz =Po+ Pz[V(Z) - V(O)] --0
-

1 + Yto 
(24) 

To demonstrate (23) let us suppose without loss of generality that Pz = 
Po = Ci<· Besides, D(Z) = K = D(O) . We already know from the very 
end of Section 2, (see also Zaremba, 1995, Lemma 3) .that in such an instant 
V(Z) > V(O) = ~K(K + 1) and, by Equation (9), 

dPz- ~Po = [V(Z)- V(O)] (-~)2 > 0. 
Pz Po 1 + Yto 

Since dPz- dP0 = Pz- P0 , we infer that 

- ( ht ) 
2 

Pz- Po= Pz [V(Z) - V(O)] --0
- , 

1 + Yto 
(25) 

what proves (23). Let us note that after J( years the investment value of Z will 
be equal to Pz (1 + YK + hK )I<, while the investment value of the bond 0 will be 
equal to Po (1 + YK + hK )K = C, the latter mean ing Po = C(1 + YK + hK) -I< . 
Finally, 

{ C(1 + YI< +hi< )- I<+ C(1 + YK )-K[V(Z) - V(O)] ( 1~lf,o) 
2

} 

RK- . 
z - C(1 + YK) - I< 

·(1 + YK + h]( )]( - C (1 + YK )-I< 

what completes the proof of (22). • 
COROLLARY 5.1 The unanticipated mie of Tehtm afteT J( yeaTs on the poTtfolio 
Z* with the highest convexity due to pmpodional shifts in spot mtes ( if no otheT 
changes in the spot mtes occuT in the meantime) is appmximately equal to 

•) 

K 1 ( h to ) .. ) ]( ]{ ( ) Rz. = -[I<(tn + to - K) - totn] --- (1 + YK + hi< + R 0 , 26 
2 1 + Yto 

whe1·e R{i. = (1 + YI< )K - 1 is the mte of Tetmn at matuTity on an imaginaTy 
oT Teal zem - coupon bond 0 matuTing at t = K . 

The proof follows from (21) and (22). 
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EXAMPLE 5.1 Let us suppose that K = 4, t0 = 5
8
2 (the shortest bond is an 

8 - week treasury bill), tn = 10 (the longest zero-coupon bond matures after 
10 years) and Yto = .34. Setting ht0 = -.04 and assuming that spot rates 
changed proportionally, we know that the unanticipated rate of return on the K 
- immunization portfolio Z* due to proportional shifts in spot rates is given by 
the formula (20). 

Therefore, Rz. = 11.53846(.02985074)2 + (1.1288748 - 1) = .139156356, 
which is 13.9156%. Note that the first term depending solely on the convexity 
represents 7.9779% of the entire Rz. (so much can be gained by choosing the 
portfolio Z* with the highest convexity). 

Finally, suppose an investor is unfamiliar with Theorem 2 and applies a 
"naive" strategy by purchasing a J( - immunization focused portfolio Z = 
( 0 1 , 0 2 ) with 0 1 and 0 2 being zero-coupon bonds with maturities of 2 and 5 
years, respectively. By making use of (11), we obtain 

Rz = (10.5- 10)(.02985074)2 + (1.01288748 - 1) = .12932, 

that is: 12.932%. It is now obvious that the last choice of Z was very unfortunate 
because the first term depending solely on convexity is now over 23 times less 
than it was in case of Z * 11.53846(10.5- 10)-1 > 23. 
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Appendix 

We will demonstrate here that the coefficients ),t, appearing in the Kuhn-Tucker 
conditions are of the form 

(27) 

Proof. It was shown in the proof of Theorem 1 that just two of the numbers 
xf are different from zero, say xf,, xf; , resulting in At; = 0, Aij = 0 due to the 
equality Atxf = 0 valid for all t E { t0 , f;1 , .. . , tn} · It follows from (17) that 

(28) 

and consequently 

1 2 1 2 
112 = -2(ti + ti) - J.Llti + 112 = --2(tj + tj) + J.Lltj , (29) 

the latter resulting in 

1 2 
J.ll = -2(tj - ti + 1). (30) 

Having proven this, we infer from (29) that 112 = -- ~ (t; + ti) + ~ti(t1 + ti + 1) = 
titj. 

Finally, it follows from (17) and the obtained formulae for J.L1, 112 that 

1 2 1 . At = --·(t + t)- 111t - 112 = -(t1- t)(t- ·~ i)· 
2 2 

(31) 

• 


