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Abstract: The paper concerns an application of the idea of field
theory and the concept of “concourse of flights“ to the sufficient opti-
mality conditions for the optimal control problems stated in terms of
focal and conjugate points. The concept of concourse of flights was
begun by Young (1969), and later extended by Nowakowski (1988).
In the paper the definition of a focal and conjugate point of a field of
extremals is given. Using these concepts, we prove that the existence
of a field of extremals without conjugate points implies the existence
of concourse of flights and consequently we obtain the second order
sufficient conditions for the generalized problem of Bolza. Another
approach to the concept of focal and conjugate points is given by
Zeidan (1983, 1984).
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1. Preliminaries and assumptions

Let us consider the generalized problem of Bolza:

T
minimize J (x,u) = / L(tyx (t) ,u(t))dt +1(x(T)) (1)
Jo
subject to
& (t) = f(t,z(t),u(t) ac in[0,T], =z(0)=0, (2)
u(t) € Q CR™ a.e. in [0,7], where Q is a compact set (3)

Here 2 : [0,77] — R is an absolutely continuous function, u : [0,7] — R™ is
a Lebesgue measurable function, L : [0, T]xR*xR™ — R, f: [0, T]xR" xR™ —
R LR = RU {+o0}, f:[0,T] x R" x R™ — RN, 1: N* - RU {400} and
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354 A. SZYMANOWSKA

We assume that f, I, L and u satisfy the following hypotheses:

H1. the functions L, f are continuous with respect to all variables, the
function ! is lower semicontinuous and not identifically +o0o, there exist the
following derivatives: fr, L, frz, Lzs and they are continuous

H2. there exists a neighbourhood of (0,0,0) such that the function

H(t,z,y) = sup{yf(t,z,u) — L(t,z,u) | v € Q } has continuous partial
derivatives I, (t,z,y), which is a Lipschitzian function with respect to x, and
H, (t,x,y), which is a Lipschitzian function with respect to 3.

The consequence of these assumptions is the existence of local solutions of
the following Hamilton equations:

dx dy
= = Hy (t.2,9), = = —Ha (t,2,9),2(0,5) = (4)

where ¢ belongs to some open set in iR, which will be defined later.

2. The local sufficient condition

A family of solutions of (4) will be named canonical extremals of our problem.
We shall distinguish one of them, namely that for which 2(0,0) = 0, denoting
it by #(¢) and the canonical trajectory (), and the control function (1),
corresponding to it (i.e. Z (t), 4 (t) satisfy (2)).

We assume that:

H3. the control function @ (t) is piecewise continuous and for ¢ € [0,7’] the
generalized Jacobian 9, H, (t,Z (t),7 (t)) in the sense of Clark of the function
H, (t,2(t),y(t)) has the maximal rank n.

The last hypothesis allow us to state a local one to one and smooth embed-
ding theorem.

THEOREM 2.1 There exist § > 0 and a neighbourhood N of the point (0,0),
such that the extremals z(t) of (4), restricted to (0,6), cover N simply.

Proof. This is basically a “three map® proof. We construct three separate
maps.

Map n°1. Let us consider the extremal Z (¢) in a neighbourhood of (0,0).
There exists a canonical trajectory g (t) such that d—i%l = —H. (t,z(1),5(t))-
Denoting yo = 7 (0), we have z (0) = H,, (0,0, 30).

By H3, the generalized Jacobian d,H,, (0,0,30) has the maximal rank. By
the generalized implicit theorem (Clarke, 1983), there exist a neighbourhood K
of (0,0, 7o) and a neighbourhood N of (0,0, # (0)) and a one-to-one map K onto
N. Our map n°1 is thus a map (t,z,y) — (t,z,2).

Map n°2. Consider the canonical extremals z(t,w,v), y(t,w,v), t € (0,6),

(6 is determined by the neighbourhood K) with the initial values (0, w,v) = w,
. . - . e . LA EEE IR ] 1 1T 1.3 e Y L. T ml. .



cn

The conjugate points sufficient conditions for an optimal control 35

canonical extremals exist and are unique, by H2. For these extremals, consider
the following system of equations

t=tz(t,w) =zt wv)=y, te€]0,d.

At t = 0 the Jacobian in w,v is the identity matrix, and so nonsingular. By
the implicit function theory, the above equations have unique solutions locally.
After diminishing K suitably, we can determine our second map defined by thesce
solutions, in the form

(t,w,v) = (t,2,y).
Map n°3. The same arguments allows us to define our third map
(t,z,v) - (t,w,v)

in suitable domains. All the three maps are one-to-one. Morcover, if we diminish
the initial domain sufficiently, the image of cach map can be mapped by the
previous map, and the final image will be in N.

The composite map 7. We can now arrange the three maps and combine
themn by writing

(t,z,v) = (Lw,v) — (t,z,y) - (L,2,3),
(t,z,v) — (t,z,2)

If we inverse the above map, we shall obtain a map T (t,z,4) — (f,2,v). For
a given (f,2,4) € N, there is just one v for which the equations

t=t, 0 =40%=p(t0)

have solutions. The map T realizes the required covering. |

In order to study the existence of an extremal joining two given points, we
assume the local restriction of the maps in (4). By a change of scale of the
form (t,2,y) — (at, bx, cy), where a, b, ¢ are positive constants, we now arrange
that there exists a neighbourhood of (0,0, y) such that, for any (¢,2,y) in this
neighbourhood, we have the following incqualities: |H,, (t,z,y)| < 1, |w| < 1
for all w € 9, H, (t,2,y), |s| < 1 for all s € 9, H, (t,2,y), |2| < 1 for all
z € O Hy (1, 2,y).

By a 8-trajectory, we shall mean the solution x(t) of (4) that corresponds
to the interval [0,6]. Further, we shall term local 6-pencil of é-trajectories,
the family of é-trajectories beginning at + = 0, whose derivatives @ at £ = 0
satisfy |#(0) —2(0)] < 8. The set of points (f,2) for which t € [0,8] and

T—Fﬂ;(—m- - (0)| < & will be termed a local angle about (0,2 (0), % (0)).

LEMMA 2.1 If 2(t) is a §-trajectory on the interval [0, 68], then for any t,t1,t2
from the interval [0, 6], we have

x (ta) — = (t)
o,

~n‘:(r.)‘ < max {3 |ty —t|,3[t; — |} (5)
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Proof. We may sct t = 0. Then we have
Had=ol) 4 (0) = 2 [} Hy (7,2 (1) ,y (7)) dr — H,, (0,0, 30)
- ~aw = f,’f (H, (r,2 (r) (7)) — Hy (0, (r) y (7)) dr

M Jf [Hy (0,2 (7),y (7)) — Hy (0,0,y (7))] dr

t:—l‘i j H'.* 0 U:y(T)) y 010:?}0)]‘17'
By thc mean-value theorem of Leburg (Clarke, 1983), for 7 € (#,13), we
obtain fori=1,2,...,n

Hy, (1,2(7),y (1)) = Hy, (0,0,30) € (a!Hys (fi,:r( ),y (r ) T) +
(37 i (0! 31:?}’( )) T ( )) (a?J'H?ﬁ (01 0, ?}f-) Y (T) - ?/I’J) )

where t; € (0,7),%; € (0,2 (7)) ,% € (v0,¥ (7)), and 8, H,),, 0, H,,, 0, H,, denote
the generalized gradients in the sense of Clark of the function H,, (t,z,y).
In view of above, we have that for 7 € (¢;,42) and fori = 1,2,...,n,

|Hy, (2 (7),y (7)) = Hy, (0,0,30)| < 7+ |2 (7)| + [y (7) = 5ol -

Using the relations
t t
= [ B es@s@d vO-w=- [ Ho0,00)

we would have,

[ ()] <t |y (t) —yol <t

and in consequence
q

x (ta) —a (t : 1 “
2lta) - 2(h) iz_,f ) _s0) s—, - / |y (7,2(7) 3 (7)) = Hy (0,0,0)| dT <
2 — L f-].
— 1) 3(ta+t)
= 3ty, 3la}.
tz—fl / 3rdr 2(t2_f1) 5 < max {3t, 312}

=

Two é-trajectories I'y, Iy will be termed markedly deflected if they possess,

respectively, line elements (¢, 21, 1), (t2, 22, p2) such that either |[p; — py| > 126
or (ty,m1) = (t2,23) and |pa — py| > 68.

LEMMA 2.2 Two markedly deflected trajectories cannot intersect at more than
one point.

Proof. Suppose that there exist t; # #o of the interval [0,6] such that
x1 (1) = 29 (t1) and 21 (t2) = @3 (t2). Denoting 5y = &1 (1) ,P2 = #2 (t1) , 1 =
iy (t2), pa = @3 (t2), we have [pa — p1| > 66 and |pa — p1| > 66. By Lemma 2.1,
PP SO 1Y (29 e S1(20 R TTR IPPIL TSP I 102 21 (29 N TURY I
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36. Arguing as before, we find that |py — p;| < 68, which contradicts the defi-

nition of markedly deflected trajectories. |
We are now in a position to establish, for differential equations (4), the

existence of a solution of the boundary-value problem in a local angle.

THEOREM 2.2  (Local Angle Theorem) Let (t1,x1) lie in the local (-l%)-angle
about (0,0, (0)). Then the points (0,0) and (t1,21) can be joined by a trajectory
of the local 3 6-pencil, and by no trajectory not belonging to that pencil.

Proof. It will be sufficient that the points in question can be joined by a
trajectory of a local (%)»pcucil. Then two trajectories, one from the Gd-pencil
and one from the (%)-pcucil will be markedly deflected, and they will have only
one common point (0,0). The existence of the trajectory from a local -g--penci],
joining the points (0, 0) and (t;, 2, ) follows from the distortion theorem (Young,
1969).

Let us denote

S={p

We have that the boundary of the set H is distant at least -Ellg— from the boundary
of the set S. Let us define the following continuous map T : § — St

- 6
[p —2(0)] < ﬁ}

p-Ol<3}H={p

7 () = 2oL

where t; € (0, %) and z(t,p) is the %—traju(:tory satysfying 2(0) = 0 and
x (0) = p. By Lemma 2.1,

J:(thp) ‘I . . 4 D
9 —_— = | —— < f < A m— ‘—-6.
IT (p) — pl ‘ . p] Sth Limds

By the distortion theorem, H C Sr. This, in particular, implics -}f e S,
which means that, for p € S, we have T (p) = £, so z(t1,p1) = #1. This

completes the proof. |

THEOREM 2.3 (Minimum Property of Well Directed Local Extremals).

There exist a neighbourhood N of (0,0) and a local angle about (0,0, (0))
such that, for any extremal Cy in N with one end at (0,0) and with the derivative
at some relevant i in the local angle, and for any other admissible trajectory C
lying in. N with the same ends as Co, we have

J(Co) £ J(C)

where J(C),(J(Co)) denote the values of functional (1) restricted to the trajec-

o PTG /R T
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Proof. The existence of the neighbourhood N and of the local angle, such
that N is covered one-to-one by graphs of the extremals satisfying (4), follows
from Theorems 2.1 and 2.2. Then we have the existence of a local spray of flights
described in Nowakowski (1988). Thus the assertion of the theorem follows from
(Nowakowski, 1988, Theorem 4). [

3. Focal and conjugate points

We assume the following hypothesis:

H4. there exists a division of the interval [0, 7] into subintervals [t;,ti41],
.1=0,...,q, such that, for cach i = 0, ..., q, therc exist an open set @; C R™* of
parameters o', containing zero, functions £; (0%) ,tit1 (¢') , (t: (0) = ti, tisq (0)
= ti41) of the class C!, canonical extremals

z(t,0') ,y (t,0") ,t € [ti (07) ,tis1 (07)] ,0" € Qs. (6)

which are smooth functions of both variables and x (t,0) = & (t). Moreover, we
assume that at o' = 0 the m; x 2n Jacobian matrix (241,%,¢) has rank m; for
some tg € (i, tit1),1=0,...,¢.

Fori=0,...,q, let us denote:
T; asct covered by graphs of trajectories = (t,0') 1 € [t;, tiy1], 0" € @,
S;={(t,0") [t=ti(¢") 2 ti,0" € Q; },

S = {(t,0) t: (7) < £ < tiss (o) o € @1,

S = {(t,0%) |t = tig1 (6¥) < tiza,0" € Qs },

[S!] == S‘_ US{US?-,

Ef ={(t,z) |z =2(t,¢"),(t,0*) € ST },

E; = {(t,z) |z =z (t,0%),(t,0%) € S: },

Ef ={lt,z) ¢ == (L0} {te*) €5},

[Ei] = Ef UE;UE}.

By ¥; we denote a canonical family

z(t,0') ,u(t,0'),y(t,0"),(t,0') € Si. (7
For (t,x) € [E;], we denote sets

Yo, (t,2) = {y(t,2)|(t2) € [B],z=2(t,0")}, (®)

Us, (t,z) = {u(f.,:r:) I(t, ) € [Bi],z ==z (L, 0'") }s

DEFINITION 3.1 A set T; will be called a relative exact set for the family L;
if, for each bounded rectifiable curve C' C T; with end points (t1,21), (t2,22),
" 5 LW i P¥ W . % | 4.

Frw EE: L . A F



The conjugate points sufficient conditions for an optimal control 359

of the description of C'), at almost every point of C takes the same value for all
y(t,x) € Y, (t,2),u(t,z) € Ug, (t,2), we have

/c {L(t,z,u(t,z)) —y(t,z) f(t,z,u(t,z))}dt+y(t,z)de

= I(tllml) _I(f"an:'l) (9)
for each admissible pair y (t,2) € Yz, (f,2),u(t,z) € Uy, (t,2),(t,2) € T;.

Let further 4 denote the extremal () restricted to the interval [t;,fi41].
The extremal 4; is then embedded in the family of extremals (7).

DEFINITION 3.2 By a focal point of our embedding we mean a point of v at
which the real Jacobian matriz z,: has rank less than m;.

When a family of solutions to (4) satisfies H4 and in addition the expression
y-%-ﬁ-_[;t‘“ 22 L(7, (7, 0%),u(r,0"))dr vanishes at the point (ti41 (¢7) , 2 (tiy1 (07) ,0%))
for all y € Yy, (t,z), i = 0,...,q, we call such an embedding of 4; canonical.

Now, we can formulate

THEOREM 3.1 Let ; have a canonical embedding without focal points. Then
there exists a neighbourhood W of ~; such that for any admissible trajectory
x(t) whose graph lies in T; "W with the same ends as ; we have

tip1(0) “tig1(0)
/ L(t,7(t),a(t) dt < / Lt (), (2)) dt.
Jt:(0) Jt;(0)

Proof. The consequence of the assumption about the existence of a canon-
ical embedding @ (1‘.,6"') LU (t, U{) U (H‘., Ui) without focal points is that the ma-
trix 24 (¢,0) has rank m; for all ¢ € [t;,t;41]. By the implicit function theorem
(Clarke, 1983), there exist a neighbourhood Uj for all t € [t;,%i4+1], a neighbour-
hood V of 0 = 0 and a map o' : U; — Vp, such that = (t,0" (t)) = z. Since
ol € Q; C B™ and x € X", m; < n, the covering of the strip t € U; of (,2)
by the extremals x (,¢7 (t)) is not one to one. This covering will be descriptive
(Young, 1969). Each small arc of z (,0") is the image of an arc of (¢,0% ()) in
U; x V. Let us denote by Wi the embedding of «; restricted to the image under
the map 2 (¢, % (t)) of the set Uy x V. The neighborhood W of v; has the form
W= Uie[:.-‘f..-ﬂ] Wi

In view of the assumption preceding the theorem (Lemma 4 in Nowakowski,
1988), we have that the identity
Ir -h‘+1(0i) ()ﬁl
- ()? /,’ % dr = U
holds in [Si], where L; = L (t,x (t,6") ,u(t,0%)). Then B; is an cxact spray of

flights. The final incquality thus follows from Theorem 4 published in Nowakowski
f1N00N -
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We suppose one more hypothesis to be satisfied:

H5. the function I* (09) = I (z (T, 07)) has a continuous derivative I}, in T,.
The map S} — Ef, (E} = {(T,z) |z =z (T,0%) ,0% € Q, }) has the following
property: given any bounded rectifiable curve C' in EF, there exists a rectifiable
curve I in S} such that C is its image under the map (T',09) — (T,z (T, 09))
and the ends of C are the images of those of T,

Arguing analogously as in Nowakowski (1988), we get:

LEMMA 3.1 Under the assumption H5, the set Ej is a relative ezact set to X,.

Our next step is to fit together many different sprays of flights. Analogously
as in Nowakowski (1988) and in Young (1969) we have:

DEFINITION 3.3 A finite or countable sequence of spray of flights in T
21,8200, BNy

will be termed a chain of flights if B} C B, fori=1,2,....

If E‘T of ¥, happens to be a relative exact set then all sets E; and E;,
i=1,2,...,N,..., are relative exact sets, and such a chain will be termed an
exact chain of flights.

The consequence of the above definition and of Lemma 3.1 is

THEOREM 3.2 Let v have a canonical embedding (6) without focal points and
let H5 be satisfied. Then the finite sequence £4,54_1,...,%0 18 an exact chain
of flights in T

Proof. In view of Theorem 3.1 our canonical embedding, if we diminish it
if necessary — obtaining in this way a W, consists of a finite number of sprays of
flights. What we need to do now is to join them together. But this procedure is
described in Nowakowski (1988) and in Young (1969). In consequence, we have
a chain of flights in 7' consisting of ¥4, %4-1,...,%0. By the H5 and Lemma
3.1, this chain is an exact chain of flights in 7'. |

It is clear that the nonexistence of focal points for embedding (6) means that
there are no focal points in any subinterval [t;,#;.1], 2 =0,...,q, in the sense of
Definition 3.1. Therefore we can formulate the global version of Theorem 3.1.

THEOREM 3.3 Let % (t),t € [0,T], have a canonical embedding (6) without focal

points. Then there exists a neighborhood W of & (t) such that for any admissible
trajectory z(t), t € [0,T],z (0) = 0, whose graph lies in T N W we have

T T
[ Lezw,am)as< [ Lited),uw)d
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In the sequel, the most important case of embedding (8) will be that in
which the extremals all pass through the same point (0,0). In that case we
speak of a pencil of extremals and the point (0,0) will be termed its vertex.
Thus we shall further consider only such an embedding of z (t) ,# € [0,7], for
which a family of canonical extremals in the subinterval [0,%;] is of the form
x(t,0%) ,y(t,6°) ,06° € Qo C R" subject at ¢ = 0 to the initial condition

z(0,0°) =0,y (0,06%) = 5(0) + o°.

We assume that the matrix (z40,y,0) has rank n for 6° = 0. By Theorems 2.1
and 2.2, there exist a neighbourhood N of (0,0) and a local angle with vertex
(0,0,% (0)) such that the neighbourhood N can be covered by z (t,0%) with
line elements (t,2 (t,0°) ,4 (t,0°)) from the local angle. The vertex (0,0) is a
focal point of this embedding. Other focal points, if any, on Z (t), constitute the
conjugate set of the point (0,0).

With the notion of the conjugate points just defined, we shall write the
following version of Theorem 3.3.

THEOREM 3.4 (Jacobi) Assumne hypotheses (H1)-(H5) to be satisfied. Suppose
that @ (t),t € [0,7],%(0) = 0, contains no conjugate points of (0,0). Then
there exists an open set Wy containing the graph of i (t) ,t € [0,T], such that,
Jor any other admissible trajectory x:(t), t € [0,T], 2:(0) = 0, whose graph lies
in Wy, we have

T T
/ L(t,7(t),u(t))dt < / L(t,z(t),u(t))dt.
J0 40
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