PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Complex interpolation of spaces of operators on l1

Autorzy
Języki publikacji
EN
Abstrakty
EN
Within the theory of complex interpolation and 0-Hilbert spaces we extend classical results of Kwapień on absolutely (r,1)-summing operators on l1 with values in lp as well as their natural extensions for mixing operators invented by Maurey. Furthermore, we show that for 1 < p < 2 every operator on l1 with values in a 0-type 2 space, 0 = 2/p', is Rademacher p-summing. This is another extension of Kwapień's results, and by an extrapolation procedure a natural supplement to a statement of Pisier.
Rocznik
Strony
303--318
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
autor
  • Fachbereich Mathematik, Carl Von Ossietzky Universitilt Oldenburg, Postfach 2503, D-26111 Oldenburg, Germany
autor
  • Fachbereich Mathematik, Carl Von Ossietzky Universitilt Oldenburg, Postfach 2503, D-26111 Oldenburg, Germany
Bibliografia
  • [1] J. Arazy, Some remarks on interpolation theorems and the boundness of the triangular projection in unitary matrix spaces, Integral Equations Operator Theory, 1 (1978) 453-495.
  • [2] J. Bergh, J. Löfström, Interpolation spaces, Springer-Verlag, Berlin 1978.
  • [3] Yu. A. Brudnyi, N. Ya. Krugljak, Interpolation functors and interpolation spaces, North-Holland, Amsterdam 1991.
  • [4] A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math., 24 (1964) 113-190.
  • [5] B. Carl, A. Defant, Tensor products and Grothendieck type inequalities of operators in Lp-spaces, Trans. Amer. Math. Soc., 331 (1992) 55-76.
  • [6] J. Cerdà,, M. Mastyło, The type and cotype of Calderón-Lozanovskii spaces, Bull. Pol. Ac.: Math., 47 (1999) 105-117.
  • [7] A. Defant, Variants of the Maurey-Rosenthal theorem for quasi Köthe function spaces, Positivity, to be published.
  • [8] A. Defant, K. Floret, Tensor norms and operator ideals, North-Holland, Amsterdam 1993.
  • [9] A. Defant, C. Michels, A complex interpolation formula for tensor products of vector-valued Banach function spaces, Arch. Math., to be published.
  • [10] J. Diestel, H. Jarchow, A. Tonge, Absolutely summing operators, Cambridge Univ. Press, Cambridge 1995.
  • [11] D. J. H. Carling, N. Tomczak-Jaegermann, The cotype and uniform convexity of unitary ideals, Israel J. Math., 45 (1983) 175-197.
  • [12] N. J. K alto n, On a question of Pisier, Bar-Ilan Univ., Isr. Math. Conf. Proc., 5 (1992) 113-120,
  • [13] H. König, Eigenvalue distributions of compact operators, Birklauser, Basel 1986.
  • [14] O. Kouba, On the interpolation of injective or projective tensor products of Banach spaces, J. Funct. Anal., 96 (1991) 38-61.
  • [15] S. G. Krein, Ju. I. Petunin, E. M. Semenov, Interpolation of linear operators, Transl. Amer. Math. Soc., Providence, 54 (1982).
  • [16] S. Kwapień, Some remarks on (p, q)-absolutely summing operators in 4-spaces, Studia Math., 29 (1968) 327-337.
  • [17] K. Lermer, Banachraurn-Ungleichungen vom Typ der Grothendieck- Unglei-chung, unpublished manuscript, Univ. Zürich, 1994.
  • [18] W. Linde, A. Pietsch, Mappings of Gaussian cylindrical measures in Banach spaces, Theory Probab. Appl., 19 (1974) 445-460.
  • [19] J. Lindenstrauss, A. Pełczyński, Absolutely summing operators in Lp-spaces and their applications, Studia Math., 29 (1968) 275-326.
  • [20] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces I: Sequence spaces, Springer-Verlag, Berlin 1977.
  • [21] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces II: Function spaces, Springer-Verlag, Berlin 1979.
  • [22] U. Matter, Factoring through interpolation spaces and super-reflexive Banach spaces, Rev. Roum. Math. Pures Appl., 34 (1989) 147-156.
  • [23] B. Maurey, Théorémes de factorisation pour les opérateurs linéaires à valeurs dans les espaces LP, Astérisque, Paris, 11 (1974).
  • [24] C. Michels, Complex interpolation of tensor products and applications to summing norms, Ph.D. thesis, Carl von Ossietzky Univ., Oldenburg 1999.
  • [25] A. Pietsch, Operator ideals, North-Holland, Amsterdam 1980.
  • [26] A. Pietsch, H. Triebel, Interpolationstheorie filr Banachideale von be-schriinkten linearen Operatoren, Studia Math., 31 (1968) 95-109.
  • [27] G. Pisier, Some applications of the complex interpolation method to Banach lattices, J. Analyse Math., 35 (1979) 264-281.
  • [28] Referee's report on [5].
  • [29] N. Tomczak-Jaegermann, A remark on (s, t)-summing operators in lp-spaces, Studia Math., 35 (1970) 97-100.
  • [30] N. Tomczak-Jaegermann, The moduli of smoothness and convexity and the Rademacher averages of trace classes Sp (1 si p < ∞), Studia Math., 50 (1974) 163-182.
  • [31] N. Tomczak-Jaegermann, Banach-Mazur distances and finite-dimensional operator ideals, Longman Scientific & Technical, New York 1989.
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT2-0001-0265