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Abstract: A comprehensive convergence theory of dynamical
thin shell models for the purposes of control theory relies heavily on
a thorough analysis of the static model and the complete specifica-
tion of the spaces of solutions of the asymptotic solution for general
midsurfaces ranging from the plate to arbitrary C"! midsurfaces.

In this paper the existence of solution to the membrane shell
equation is studied in a bounded open connected domain w (Lip-
schitzian when w has a boundary ~) in a C"! midsurface for homo-
geneous Neumann boundary conditions or homogeneous Dirichlet
boundary conditions on a part 4o of 7. It is proved that its tan-
gential part is solution of the reduced membrane shell equation in
HY(w)N (resp. H! (w)™) unique up to an element of a finite dimen-
sional subspace, while its normal component belongs to a weighted
L?(w) space by the pointwise norm of the second fundamental form.
[t is also shown that the reduced equation is equivalent to the equa-
tion for the projection onto the linear subspace of vector functions
whose linear change of metric tensor is orthogonal to the second
fundamental form of the midsurface.

Keywords: shells, membrane shell equation, asymptotic shell
models.

1. Introduction

Thin shells are two-dimensional approximations of three-dimensional elastic
bodies as their thickness becomes small. Irom the mathematical and practical
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points of view, such models make sense provided that the loading conditions are
chosen in such a way that the three-dimensional model and the two-dimensional
approximations both converge to some asymptotic shell model. A fairly large
and rich body of literature addresses this issue for the static model and it is pos-
sible to identify which of the thin shell models have good asymptotic properties.
They can be used in the optimal design of static shells as long as the asymp-
totic properties of the optimal thin shell are preserved through the optimization
process.

In their standard version the associated control problems make use of dy-
namical models. They are obtained by including a kinetic energy term in the
energy balance (potential energy and work of the applied loads of the static
model). For the models to be completely coherent and accurate, it is necessary
to show that as the thickness goes to zero, the dynamical three-dimensional
model also converges to an asymptotic dynamical model. Good dynamical thin
shell models should converge to an appropriate asymptotic dynamical model. A
comprehensive convergence theory of dynamical thin shell models relies heavily
on a thorough analysis of the static model and the complete specification of the
spaces of solutions of the asymptotic solution for general midsurfaces ranging
from the plate to arbitrary C'' midsurfaces.

In this paper we focus our attention on the membrane shell equation which
is one of the pieces of the big puzzle. In recent papers (Delfour, 1998, 1999a,
Delfour and Zolésio, 1997b, 1999) it was established that the polynomial P(2,1)
model is both pertinent and basic in the theory of thin shells. It was shown in
Delfour (1998) that its solution converges to the solution of a coupled system of
variational equations. For the plate and the bending dominated shell it yields (as
the thickness 2h goes to zero) the membrane shell equation and the asymptotic
bending equation.

The first variational equation of this asymptotic coupled system coincides
with the variational equation characterizing the asymptotic P(0.1) model. It
was shown in Delfour (1998) that this equation decomposes into two equations:
a first equation containing the Love-Kirchhoff group of terms and a second
equation which coincides with the classical membrane shell equation. The de-
tailed correspondence with the covariant formn of the membrane shell equation
is given in Delfour and Zolésio (1997). The decomposition is achieved by vari-
able elimination which results in the explicit introduction of an effective com-
pliance C,p associated with the initial three-dimensional compliance C'. This
two-dimensional effective compliance inherits the properties of continuity, sym-
metry and coercivity of the initial three-dimensional compliance.

In this paper the membrane shell equation is studied in a bounded open con-
nected domain w (Lipschitzian when w has a boundary 7) in a C"! submanifold
of codimension one for homogeneous Neumann boundary conditions or homo-
geneous Dirichlet boundary conditions on a part g of 4 when ¢ has non-zero
Hy_o Hausdorff measure. It is a companion paper to Delfour (1998) where
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P(0, 1) model and the membrane shell equation are defined as completions of the
appropriate quotient spaces. It gives a complete characterization of the space
EP without extra condition on the second fundamental form. Such a char-
acterization is currently available for the plate and for uniform elliptic shells
in Destuynder (1980), Ciarlet and Lods (1996¢), Ciarlet and Sanchez-Palencia
(1993, 1996). Tt also shows that we can always associate with the vector func-
tions of the space E¥ an equivalence class of tangential components which turns
out to be solutions of the reduced membrane shell equation. This reduced equa-
tion is also connected with a projection onto a linear subspace of elements of £
whose linear change of metric tensor is orthogonal to the second fundamental
form. Another consequence of the characterization of E” is the fact that in
the asymptotic convergence of the solution of the P(2,1) model we now know
that the tangential component of the displacement of the midsurface strongly
converges in H'(w)N and the normal component in a weighed L?(w) space by
the pointwise norm of the second fundamental form. The characterization of
the spaces E° and EF given in this paper, and the one of E®' given in Delfour
(1999a) for the P(2,1) model, sharpen and complete the abstract results of
Delfour (1998). Some of the results have been announced without proofs in
Delfour (1999b).

Finally for N = 3, this paper extends to arbitrary second fundamental forms
D?b the available existence of solutions obtained in Ciarlet and Lods (1994a,
1996a) for g° = 0, homogeneous Dirichlet boundary conditions on the whole
boundary, the special constitutive law C~'e = 2 e + Are I and the uniform
ellipticity of the two-dimensional C?-midsurface w. However in the case of uni-
form elliptic shells uniqueness does not. so far seem to follow directly in an
obvious way from the techniques used in the present paper. The first existence
and uniqueness result seems to be due to Destuynder (1980) under relatively
strong conditions. For a domain w with a C* boundary 5 in an analytic midsur-
face, the existence and uniqueness of solutions (0%, %) in H} (w)? x L*(w) was
established in Ciarlet and Sanchez-Palencia (1993, 1996). The conditions were
relaxed in Ciarlet and Lods (1994a, 1996a): the midsurface is of class C? and
the boundary « is Lipschitz for the existence (midsurface C® and the boundary
7 of class C* for existence and uniqueness).

Notation, assumptions and background material

. . J . . N N
The inner product in RY and the double inner product in L(RY;R") (space
of N x N matrices or tensors) are denoted as

N N N
Ty = me vi, A-B= Z Z Az By
i=1

i=1 j=1
“M denotes the transpose of of an arbitrary & x m matrix M.
A summary of some of the main definitions and results which are necess
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The submanifold T of codimension one is specified as the boundary of a subset
Q of RN, It is assumed that w is a bounded (relatively) open subset of I' and
that I is of class C*! in some neighborhood of w. This is equivalent to saying
that the algebraic distance function b = bg of £ is C'*! in that neighborhood.
Its gradient Vb coincides with the unit exterior normal n to T' on w and its

Hessian matrix D?b with the second fundamental form. P g I —n*n will
denote the orthogonal projection onto the tangent plane to w ([n *nli; = n;n;).
Further assume that w is Lipschitzian and connected when w has a non-empty
boundary . For a detailed account of the intrinsic differential calculus on
a CMl-submanifold, the reader is referred to the now available lecture notes
Delfour and Zolésio (1997), Delfour (1998). Finally, it will be convenient to
introduce the following notation for the decompositions of an N x N matrix 7
into its tangential and normal parts along w

P def PTP T dgf ™m-n,

[t]r = P+ (Pm)*n+n*(Pm) 4+ man'n

and the spaces of symmetrical matrices (or tensors)

Sym det {r e LRY;RM):* v =7}

SymN {'r € Symp:7n =0} = Y7 € Symy, P e 'me.

2. The membrane shell equation

It was shown in Delfour (1998) that the membrane shell equation can be ob-
tained by decomposition of the variational equation of the asymptotic P(1,0)
model which also yields the typical group of terms occurring in the Love-
Kirchhoff condition. It involves an effective compliance C.p which retains the
properties of the three-dimensional compliance C'. For the purposes of this
paper it is convenient to start with the following assumption on the effective
compliance.

ASSUMPTION 2.1 The effective compliance (Delfour, 1998) is a tensor valued
function Cop:w — L’(SymN Sym_}’:,) such that for all X € w, Cop(X) is a lincar
bijective and symmetrical transformation of SymXk,

Cop € L®(w; L(Symky, Symk)), and

e

da > 0 such that VX € w, V7 € Sym;:r, Cp(X)r-7 2o

The membrane shell variational equation is given by: for all v° € H'(w)V

! -
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where the right-hand side is specified by a linear functional (7. Associate with
ek the space

def {vELz(w) cop € HY(w)V }c Hdef L2 (w)N (2)

and define EF as the completion of the quotient space V/ker F with respect to
the norm associated with the inner product

/ ek (u)--ef (v) dr. (3)

Similarly for homogeneous Dirichlet boundary conditions on a part ~ of 4
denote by E.‘; the completion of the quotient space

V.. keref, v %

def

{v € L*(w)N:vr € H-:«n(‘-“')N}

H (w) = {f € H'(W): fl5 = 0)

with respect to the norm generated by the scalar product (3). By Assump-
tion 2.1 on C,p, the bilinear term in (1) is continuous and coercive in E¥. We
obtain the following general existence and uniqueness theorem where uniqueness
in the space E¥ means a unique equivalence class in the quotient space, that is
~ the solution is unique up to an element of ker ",

THEOREM 2.1 Let Assumption 2.1 on C.p be verified.
(i) Given (¥ € (EP)', that is — there exists ¢ > 0 such that for all v°

H! (u))N
167 ()] < eller (%) oo ] (4)
the variational cqmtion' to ﬁnd o° € EP such that for all v° € H' (w)™
/[ Copef (1%))- ef (%) dT" = €7 (1°) (5)

has a unique solution ©° in E¥.

(i1) Assume that w is connected and that g is @ subset of v with strictly positive
Hpy_o measure. Given (¥ € {Ei:_) . that s — there exists ¢ > 0 such that
for all v° € HI (w)V

167 (@°)] < cllef (V) L2y (6)
the variational equation: to find ©° € EX such that for all v° € H] (w)N
f [Copef (89))ef () dl = €7 (x°) (7)

has a unique solution ©° in Ef;.

3. The reduced membrane shell equation

The membrane shell equation can be (le{'omposed into a system of two equations.
For test functions v € V, that is, (vQ,0%) € H'(w)N x L*(w),
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dc> 0,8 € H'(w), |67 (@dn)| < c|lvd D2b|| sy < ¢ 12| 2w

= 3fF € L*(w) such that (F(v9n) = / fP2dr

1t will be convenient to introduce the function

def [ fP(X)/IID?6(X)|,  if [D*6(X)|| # 0
(%)= { 0, if | D2b(X)]| = 0

By construction, f7 ||D?b|| € L?(w).

Denote by H} (w)V (resp. HI ,(w)") the subspace {v &€ H'(w)N (resp.
H! (w)™) : v-n =0} of tangential vectors. The decomposition yields the two
equations

[Coper )]~ D = 7 = £ L%
Vo € H} W)V, / [CoReR (%)) eF (o) dT" = £P (v]) (8)
where by condition (4) on (¥

3> 0, Vol € H (W)Y, |tPR)| < eflef (vP)

L2(w)-

In the case of the plate (D?b = 0), &£ (¢°) = &f (vQ) + 0% D?b = [ (1]) and
there is only the variational equation

Vol € H (w)V, /[c sef (60)] e (vf) dl = €7 (vp)

which completely specifies i € H}(w)™/kerel (resp. H! ,(w)") and 9 is
arbitrary. This result generalizes to C"' midsurfaces without adding extra con-
ditions on D2b. It turns out that the second equation (8) specifies the tangential
part i}]Q of #° up to an element of some appropriate equivalence class providing a
natural decomposition of the membrane shell equation into an equation for the
equivalence class of 9 and an equation for #{) again modulo another equivalence
class. In the case of the plate the corresponding equivalence class for ¥ is so
big that there is no information on ©2 and we have uniqueness for ¢ in the case
of homogeneous Dirichlet boundary conditions on a part of the boundary.
Denote by [v]g the equivalence class of v in EF (resp. EI). Let

wp def {z €w : D*(z) =0} and w, det w\wo.
For v € V (resp. V,,) define the function

Cael (v)- D% y
, + def f v— = —— in w, B
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Using the identity ef (v) = eF (vp) +vy, D?b, it is easy to verify that for all v € V
(resp. V)

P C7 Er D). D% 9 . )
€p(7r ) == er (v) — AH"D g Db, in wy (10)
r(7s A ,

Er (v), in wy

For each vr € H] (w)V (resp. H! ,(w)") define the tensor

P Copef (ur o oo
2 (or) E' ef (s ar) ={ oflor) - SRR D e ()
er (vr), in wy
the quotient space
VP U H )N fkergE (resp. V2 Y2 () ker D) (12)
and the space
def def , ,
UL rs(H )Y)  (resp. Uy, T ms(HL,(@))). (13)

Consider the reduced membrane shell equation: to find vy € V' (resp. V;:)
such that for all wr € H} (w)™ (resp. H2 ,(w)™)

/c;;gﬁ(vr)-.gﬁ(w,~)dr = (P (ns(wr)) (14)
w
By condition (4) on £F there exists ¢ > 0 such that for all wr € H] (w)V

|67 (ms(wr)| < cllef (ms(wr))

and equation (14) has a unique solution in the completion of the quotient

2w) =C Héf(wr)

(@)

space VP d:ef V/ ker é{? with respect to the topology generated by the norm
|EE (vr) || L2(o). We now give a sharper existence theorem for the reduced mem-
brane shell equation and the membrane shell equation. This theorem is based
on a characterization of the elements of the spaces E7 and Efo.

THEOREM 3.1 Let Assumption 2.1 on Cep and (4) on (" be verified.
(i) There ezists a solution or in H} (w)™ (resp. H. ,(w)™) to fh( reduced
membrane shell equation (14) unique up to an element of ker &1 and

[7s(r)]e = [7s(3)]E (15)
where (0] 1s the solution of the membrane shell equation (5) (resp. (7))
in EP (resp. Efr:))
(i1) There ezists a solution @ such that iy € H} (w)N (resp. H! (w)V) and
Un||D?b|| € L?(w) to the membrane shell equation (5) (resp. (7)) which is



488 M.C. DELFOUR

(iti) keréF is finite dimensional. When Db # 0 almost everywhere in w,

keref is also finite dimensional and

keref = {u : v € ker &l and v, = %} (16)

This theorem necessitates the following theorem on the structure of the spaces
EF and Ef; which follows from a sequence of lemmas.

THEOREM 3.2 Let Assumption 2.1 on Cep be verified.
(i) ker&f is finite dimensional and the space V¥ = V/keréf (resp. V.f: =
Vyo/ ker &F) is complete for the norm ||EF (vr)|| 2 (u)-
(ii) The space EF (resp. EP) is equal to
; 1 N
Ur + U ;l;detfﬂggb”(?? (::;w( Wy } /k(—zra,’? (17)
Specifically for each [v]g € EF, there exists a unique [ur]y € VF =
H} (w)N /keréf (resp. V! = H! (w)N/ker&l) such that
[ms(ur)]e = [7s(v)]E (18)
and for each ur in the equivalence class [vr]y the normal component
def el (v—ur)- D*b y
Uy = { C.gD%-D% ' %0
’ in wy
is such that u, ||D?b| € L*(w) and
[ur +u, n)g = [v]E.
Conversely for all ur € H} (w)V and uy, |[D?b]| € L*(w)
[ur + unn]g € EF.
(iii) When D?b # 0 almosi everywhere in w, then keref is finite dimensional.

Define the closed linear subspace

sP ey e BP . cl,,,,.s[ (v) Db =0}

(resp S2. 4 {4y € EP . 071ef(v)- D =0}) (19)
of EP (resp. EL). We first make sense of the map 7g on E”.

LEMMA 3.1 The map

ol = ms(ule) % rs()ls « BF - 5 (20)

is well-defined, linear and continuous. Moreover

P -

ws(V)/ keref P e (‘V/l«el.sI 3" =8P (21)
VvGS‘U, er{ s(v)) = eF (v). (22)
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Proof. For each v € V, ef (v) = 0 implies ef (75(v)) = 0 and hence

Ple=0 = [rs(v)]g =0
So the map (20) is well-defined and linear from V/kerel in B and
ms(V)/keref = ms(V/kerel). (23)
By direct computation it is easy to verify that
Yo eV, Cpel(ns(v))-D*=0
and hence [r5(v)]g € S¥ so that

ms : V/kerek — m5(V)/kerek c SP.

The map g is also continuous. On wo ||eF (7s(v))[|12(we) = lIEF ()] 12(wo) and

on w.y

Copef (vr)- D%

— —— D%
C_pD2b-- D?b

lef (s (0)) L2(w\wo) < lleF ()]

LA (w\wo) T H
L2 (w\wo)

But from Assumption 2.1 on C.p
Ja >0, VX €w, V7 € Symk, CRp(X)r-7 2> afr|?
which implies that

_1 D> D%

b ———>a>0inw
" ID2b||  [|D%] !

and

Coper(or) 1877 D2

—1_D2b_ ~_DZu_ [[D2b]]
eP D% D%

& (1_\ ||Ce_r-151_[‘7(1’r)||m(w+)

< ¢ |lef (or)ll L2y

L2 (wy)

So that for all v € V

HEIE(WS('UF))HLz(w) </d Hfl{)(WF)HLQ(w)-

Since E¥ is the closure of V/ker el with respect to the norm [[ef (v)[| 12(), Ts
extends to a continuous linear map from E¥ to S”. Identity (21) is proved as
follows. With any v in S¥ we can associate a sequence {v*} in V such that

eR (v*) = eR (v) in L2(W)V*V,

By continuity of mg
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But
b " el (vk) — _LIM -
ep(ms(v”)) = L), C XD D% e
v in wy
On wy
ef (ms(v*)) = ef (v%) — ef (v) in L (wo) V.
On w\wo
Copef (") 1Bty D2 o120ty D2 ’
= ! = ePEr (W) =
Cop oy ooy 10?0l oy ~ ¢ 177 D201 |12 vy
and
D% ;5. oD
CAel(v*) —— ‘ Crkerls =10
eP T"( ) "Dzb” L2(\wo) eF 1"() ”quH Ttaso)

since C_pef (v D? = 0 for v in S¥. Therefore
ef (ms(v*)) = ef (v) in L*(w)V*N

and
B (ms(v%)) = el (ms(v)) = ef (v) in L2(w)¥*N,

Then, for each v € S there exists a sequence {v*} in V such that
[rs(@®)]g = [v]g in EP.

This establishes (21) and extends (22) from (V/keref) N SP to SP. Moreover
from (22) for all v € EP el (ns5(ns(v))) = eR(7s(v)), [rs(ns(v))lE = [7s(v)]E,
and g is a projection.

LEMMA 3.2 The map ng : H}(w)N — U is a continuous linear bijection and
U is closed for the topology generated by the norm

PR 1/2
lelle = {Ie @2 + lurlBagey + lun D632} -

The space VP is complete for the norm ||EE (vr)||2(.) and kerEE is finite di-
mensional.

Proof. By definition g is surjective. 1t is injective since wg(vr) = 0 implies
that vr = 0 on wg while on w\wy

2
C_]EIE('UF)“ L n
I — er - [IE.,M ——— =0 = uvr=0
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since vr is orthogonal to the second term which is a fortiori also equal to zero.
By Korn’s inequality (38) in Theorem 4.1 of the Appendix the space H}(w)V
endowed with the norm

lorlla = {lef wr)l12 + furli2}/?

is complete. By definition of wg(vr) and expression (10) of £F (75(vy))
Ims(orlly = {Ilf?(ﬁs(vr))llizm + ol
)+ D7 ? 1
R IR L e
L2(w\wo)

But we shall show that there exist A > 0 and «a > 0 such that
e rs (o gy + 3 { o }
. L2(w\wo) (24)
],Q(w)) .

> a ([lef (or)3age + llor
Therefore U is closed for the chosen norm and wg is an isomorphism. Define
the Hilbert space H as the closure of U with respect to the norm

cr(l«'l) D?b
(' 5 D2b Db

o

el " fur 2 2wy F IID%b wallZ ey

The injection of U into H is compact. Pick any bounded sequence {ms(vE)} in
U. By the previous equivalence of norms {vf} is a Cauchy sequence in H (w)"
and there exists vp € H} (w)™ and a subsequence, still denoted {vf}, which
weakly converges to vp in H/ (w)". Therefore
k LZ
vk — vp in L?(w)N- strong
el (vk) = el (vr) in L2 (w)V*V -weak
2h D4
P ky.. L P ) 72 ;
= ep(vp) —=— — e (vp ) —=— in L*(w)-strong.
F( T) “Dzb” F( ) ||D2b|| ( ) S
Hence

75(vE) — ms(vr) in H-strong

and the injection of U into H is compact. In addition for the continuous linear
map A:U — U’ defined as

Au,v & Chef (u)- el (v)dI’
) eP=T T

[A+AI]7! is compact and by Lemma 4.2 of the Appendix ker A4 is finite dimen-
sional. But
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Since 7 is a bijection, then ker £l is also finite dimensional and thence the

topology on the quotient space V' defined by the, norm [|£F (vr)| is complete.

To complete the proof it remains to establish inequality (24). On wy
Ilws(vr)llar = llor L2y and llef (ms(vr)ll L2gwe) = llef (vr)ll 2 (wo)-

On w\wp the norm ||7s(vr)||% is equal to

i) Db
el \wo) * H%”Dz ”H

L2 (w\wo)

and the L?(w\wp)-norm ||ef (zs(vr))| is equal to

2
C.pef(vr)- D% ) ek (ur)- D?b
P ePET P eP T 2
oB [ g~ ZepTTN) 20, e-(v]-)-———_-—DE
"( C.AD?b- D2 - ‘ CoA D% D2 -
Coaek(vr)- D
2 ePEr\'T
=|le i o T D?b
> glebon)ita - | SEEE 2y i )
Finally
llef S (or)|1? + [lor? on wo

leE (rs@r))I? + lms(r)]? > {

Choose A=1and a = 1/2. |

2lefS(wr)|2 + llor)?  on w\wo

LEMMA 3.3 The map
def
[orlv = ws(ferlv) = [ms(v)le _ (25)
: VP = H(w)N /keréF — U/kerek

is a well-defined isomorphism, where [v]y denotes the equivalence class of v
in VP, VP is endowed with the topology generated by the norm ||EF (vr)| and
U/keref by the norm ||ef (v)|| on EF. Moreover

P = U/keref = ns(H}(w)N)/keref = ns(VP).
Proof. The map (25) is well-defined and injective since
& (vr) = e (ms(vr))
implies
[rlv =0 & [rs(vr))e = 0.
It is surjective since for any [u] in U/ ker £F, there exists v € H}(w)" such that
[ule = [rs(vr)]e-

It is bi-continuous since by definition of &f (vr) the norms are equal
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Since V¥ is complete for that norm by Lemma 3.2, U/ker Eff is necessarily
closed in EF. Finally, from (10) it is easy to see that for all vp € H] (w)V

CopeR(ms(vr))-D* =0

and U/ keref € SP. Moreover, from (21) in Lemma 3.1

P 2P

E > ,
7s(V)/kerel . =ms(V/kerek) = SP.

But H}(w)N c V and
U/keref = ws(H} (w)V)/keref C ng(V)/keref.

In the other direction first observe that we always have from (10) by using the
identity ef (v) = ef (vr) + v, D?b for each v € V

et (ms(v)) = ef (ns(vr)).

Therefore for each v € V' we have [7s(v)|z = [rs(vr)]g and

ms(V)/kerek C ns(H} (w)V)/ kerel =U/keref
= ms(H} (w)V)/keref = U/keref = ms(V)/keref C S”.

Finally, since U/ kerf. is closed in EF

» —————5E"
7s(V)/kerek = U/keref = rs(V)/kerel ™ =S8F
U/kerek = n5(V)/keref = ns(V/kerel) = ns(VF) = .

This completes the proof. [ |

LEMMA 3.4 For each v € EF, the projection [rs(v)|g is the unique solution in
SP of the variational equation: for all w € H'(w)V

[ catekasts) - -k wyar =0 (26)

and there is a solution vy € H} (w)™ unique up to an element of ker X to the
variational equation: for all wy in H} (w)™

/ CopéF(vr)- &l (wp)dl = / Copef(v)-ef (ms(wr))dr. (27)
Moreover
[rs(v)le = [ms(vr)]e- (28)

All this remains true for Dirichlet boundary conditions on a part ~o of the bound-
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Proof. Since S” is a closed linear subspace of EF we already know that
the variational equation (26) has a unique solution in S”. So, it is sufficient to
show that mg(v) is a solution. It is easy to check that

Copel (v)- D*b o o
E{-’(v _ ?TS('U)) - m Db, if D b(.j) ?5 0
0, if D2b(z) =0

But Cpef (w)- D?b = 0 for all w € S” and hence C_pef (v — 75(v))- D*b =0
and 7ms(v) is a solution of (26). By Lemma 3.3 for each v € E there ex-
ists a unique [vr]ly € V¥ such that [rs(v)]g = [ms(vr)]e and &F(vp) =
e (rs(vr)) = el (ns(v)). From property (22) in Lemma 3.1 for each w € SP

ER(w) = ef (ms(w)) and there exist a unique [wr]y € V7 such that &8 (wr) =

ef (ms(wr)) = eR(ng(w)) = &R (w). It is then sufficient to substitute these
identities in (26) to obtain (27). |
LEmMA 3.5

(i) The space EF is equal to
{ur +unn : ur € H (W)™ and v, |D?b|| € L*(w)} /keref  (29)
Specifically for each [vlp € ET, there exists a unique [vp]y € VI =
H|} (w)IN/(keE]E{? (1‘?.9}).{ V_];': = H) (W)™ /ker&l') such that 0
ws(vr)|g = (ms(V)|E 3
and for each ur in the equivalence class [ur]y the normal component

—1.Pes0_ N D2 i
def{ Gapsp 0 ~up)sD in wo

Uy = CpD%-D%
0, in wy
is such that u, |D?b|| € L*(w) and
[ur + unnlg = [v]E.
Conversely for all up € H} (w)V and u, |D?b|| € L*(w)
[ur + u,n]g € EF.
(ii) When Db # 0 almost everywhere in w, then keref is finite dimensional.

(31)

The lemma remains true for Dirichlet boundary conditions on a part ~q of the
boundary with H} . (w)V and EL in place of H} (w)" and H) ,(w)".

t,vo ol

Proof. (i) From Lemma 3.4 for each [v]y € EP there exists a unique
[vr]v € V¥ such that

[ms(vr)le = [ms(v)]e

QT S, RS ST S FUTAU, DIPTSR () (e Ry i [ ey [ R R e
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L?(w). Now for the vector function w = up + w, n

ef(v—u)= F.‘p ( ) - E?{'nr) un Db
Yel (v)-- D?b o . .
=l - —-*-L—C S s D?b, in w\wo
0, in wy
Cpef (ur)- D? b2 " .
—eP(ur) + C D% D% b, inw\w
0, in wop

= ef(v—u) =l (ns(v) —ef (rs(u) =0 = el (u) = 2f (v).

and [u]g = [v]z. Conversely, for up € H] (w)™ and u, [|[D?b|| € L*(w)
eF (ur + unn) = ef (ur) + un Db € L2 (w)V*N

and [u]g € EF.
(ii) When D?b # 0, then the identity

ef(u) = ef (ur) +un D*b =0

uniquely determines the normal component u,, associated with up € ker £F in
(31). Then, keref is isomorphic to kerF and hence finite dimensional. =

Proof. Proof of Theorem 3.1 (i). Going back to Lemma 3.4 if [¢°]p € E
is the solution of the membrane shell equation (5): for all v € H'(w)"

[ cateb@)-ebeyar = )
then for all w € H' (w)"
fC:}_l‘ef?(irs(irn))--E{?{m)dl‘ /c el (i) ek (w) dI" = € (w)

Moreover, from Lemma 3.4 there exists a solution 1y in H} (w)™ unique up to an
element of ker &F to the reduced membrane shell equation: for all wy € H} (w)"

[ Catelan) e ur) v = ¢ (r(ur)).

and [75(2°)]g = [ws(dr)]p. Parts (ii) and (i) follow from Lemma 3.5. The
proof remains true for Dirichlet boundary conditions on a part 79 of the bound-
ary with H'. (w)V in place of H/ (w)". O

4. Earlier results on membrane shells and regularity

In the previous sections we have shown existence of solution with tangential
component 99 in H} (w)N (resp. HJ ,(w)") and normal wmponent o9 such
that 90 ||D?b|| € L%(w) unique up to an element of keref to the membrane
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has a non-empty boundary ) in a C"! midsurface for homogeneous Neumann
or Dirichlet conditions or for shells without boundaries. The reduced mem-
brane shell equation completely characterizes the tangential component up to
an element of the finite dimensional subspace ker ZF.

For N = 3, this completely relaxes the condition on D?b and generalizes the
existence result in V' and V. obtained by Ciarlet and Lods (1994a, 1996a) for
g° = 0, homogeneous Dirichlet boundary conditions on the whole boundary, the
special constitutive law C~1'e = 2ue + Atre I and the uniform ellipticity of the
2-dimensional C2-midsurface w:

Jv > 0 such that V¢ € R®, D*b(X)ér- & > v |ér)? (32)

(recall from Delfour and Zolésio, 1994, that this means that w is a domain which
is locally contained in the boundary I" of a uniformly strictly convex subset of
RN - observe that D?b(X)¢ - € = D?b(X )ér - &r).

However, so far, uniqueness in the case of uniform elliptic shells does not
seem to follow directly in an obvious way from the techniques used in this
paper. The first existence and uniqueness result seems to be due to Destuynder
(1980) under relatively strong conditions. For a domain w with a C* boundary
7 in an analytic midsurface, the existence and uniqueness of solutions (o, %) in
H}(w)? x L*(w) was established by Ciarlet and Sanchez-Palencia (1993, 1996).
The conditions were relaxed by Ciarlet and Lods (1994a, 1996a): the midsurface
is of class C? and the boundary ~ is Lipschitz for the existence (midsurface C?
and the boundary - of class C* for existence and uniqueness). See also Sanchez-
Hubert and Sanchez-Palencia (1997).
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Appendix

Given R in RY, 0 # 0 (resp. T %

distance function) is defined as

0 # 0) the distance function (resp. oriented

def . lef
do(2) = inf ly — 2| (resp. bo(x) = do(x) ~dg_ ().

When Q is a domain of class "' in RV, b = by is C' in a neighborhood of
every point of I" and the converse is true. [ts gradient Vb coincides with the
exterior unit normal n to the boundary on I'. The projection p onto T' and the
orthogonal projection P onto the tangent plane T.I" are given by

o) B = bYW, Pla) B T~ O b,

where *V denotes the transpose of a columm vector V' in RN, Given k > 0 and
an open domain w in I', a shell of thickness 2k is the open domain

Si(w) o {z € RN:|bo(2)| < k, p(a) € w}

in RY, When w =T the shell has no boundary; otherwise we denote by v the
(relative) boundary of w in 1" and by

Ek(’?) {$ € RV: |bo(2)| <k, p(z) € v}

the lateral bO’l.‘.ﬂdﬂ.’.-"y of Sk(w). Similarly for 4 C 7, we use the notation

2k (70) {,Le RN: [ba(2)| < k, p(2) € 10}

DEFINITION 4.1 (TANGENTIAL SOBOLEV SPACES) Let w be a bounded (rela-
tively) open subset in I'. Assume that there cxists h > 0 such that b belongs to

C1Y(Sp(w)). Define

1, def | . . ) dk,0<k<h =
e = {f COTR such that fope WP(S,(w)) } (33)

The definition of Wh?(w) is independent of h.

LEMMA 4.1 Let w be a bounded open subset of ' for which the assumptions of
Definition 4.1 are verified and consider a function f : w — R. If there caists
0 < k < h such that f o p € WIP(Si(w)). then

fope W'¥(S,(w)) (34)
and for all0 < k < h
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Proof. Consider the map
def k

= p(y) + FOY)Vb(y) : Sp(w) = Sk(w)-

It is clearly well-defined since p(R(y)) = p(y) and |b(R(y))| = |kb(y)/h| < k.
Similarly the map

wicsis(e)

y+— R(y)

pla) + THIVB(@) ¢ Sile) — Su(w)

is well-defined and R(S(z)) = = and S(R(y)) = y. Moreover both R and
R~1 = S are Lipschitz continuous. From Netas (1967, Lem. 3.1, pp. 65-66),
the map

uruo R : WUP(Si(w)) = W'P(S,(w))

is an isomorphism. In particular, choosing v = vop € WHP(S,(w)), we get
uoR=vopoR e W'P(S,(w)). But

k
v(p(R(y)) = v(p(p(y) + 3-b(y) Vb(y))) = v(p(y))
since Vb, b and p are defined in Sy, (w

). This implies that
vop=(vop)oREW'P(Sy(w)).

|

It can be shown that the Sobolev spaces defined in this way coincide with

Sobolev spaces defined by local maps and that there is a direct relationship be-

tween tangential derivatives and covariant derivatives. The tangential gradient
associated with an element f of the Sobolev space W!'P(w) is given by

Vrf =V(fop)lu € LP(w).
The same constructions apply to Sobolev spaces of vector functions v — RN
Drv=D(vop)l, € LP(w)N erv=c(vop)l, = %(Dr-v + " Dru).
The projected derivatives are defined as
DEfv = PDp(v)P € LP(w)N  efv = Per(v)P.

The smoothness of the boundary « of the domain w in I' is characterized
by the smoothness of the normal set gonerated by the flow of the gradient of b
through « in a small neighborhood of w. If v is the (relative) boundary of w in
T, the lateral boundary of Sy, (w)

uly) = def {z € RN : |bg(x)| < h and p(x) € 7} (36)

is a submanifold of R" of codimension one normal to I'. The smoothness of the
boundary 7 of w in ' is characterized by the smoothness of the lateral boundary
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DEFINITION 4.2 Let w be a bounded open subset of I' which satisfies the as-
sumptions of Definition 4.1.

(i) Given an integer k > 1 and a real number 0 < X < 1, the boundary ~ is
CEX if there exist h > 0 and 0 < h' < h such that the piece X4 (y) of the
lateral boundary of Sy(w) is CF*.

(ii) The boundary v is Lipschitzian if there exist h > 0 and 0 < h' < h such
that the piece L () of the lateral boundary of Sy,(w) is Lipschitzian.

(ii1) The domain w is connected if there exists h', 0 < h' < h. such that Sy (w)
is connected.

The above definitions correspond to the classical definitions in RV.

From previous considerations condition (i) is equivalent to statement that the
oriented distance function bg, (. associated with the set S (w) has the required
smoothness in a neighborhood of /(7).

DEFINITION 4.3 Letw be a bounded open subset of I' which satisfies the assump-
tions of Definition 4.1. Further assume that w is connected with a Lipschitzian
boundary v, and that vy is an (N — 2)-Hausdorff measurable subset of v such
that Hy_o(70) > 0. Given 1 < p < oo, define
de

WP (w f{f w—R: fope Wyl (Sh(w))}
where

WaP (Sa(w)) = {F € W'P(Sh(w)) : Fls, (0 = 0}

Zh(r0) = {2 ¢ [b(z)| < h and p(z) € 70}

In that framework it is possible to give a direct proof of Korn's inequality
for a C'!' midsurface w (see, for instance, Delfour and Zolésio, 1997).

THEOREM 4.1 Letw be a bounded open subset of I satisfying the assumptions of
Definition 4.1. Further assume that w is Lipschitzian when w has a non-empty
boundary y. There exists a constant c(w) > 0 such that

Yv € Ep(w) d=ef{v € L3 (w)N : v, =v-n=0 and &f (vr) € L*(w)V*N}  (37)

[ 10 ar <P [ 1P + ef @ dr (39)
f IDE @) dr < cfw)? / [of? + [lef (0)]1? dr (39)
and Er(w) = {v € H' (W) : v, =v-n =0 on w}. In particular

1/2 " 1/2
{uvu o) HIEE@IBa ) and {lol3a + IDE@)IE, ) (40)

are equivalent norms on the space
.. def .
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LEMMA 4.2 Let V' and H be two real Hilbert spaces with continuous compact
injection of V into H and identify the elements of the dual H' of H with those
of H. Assume that A : 'V — V' is a linear continuous symmetrical operator
which is V-H coercive, that is ~ there exist A and a > 0 such that

YoeV, Mg+ (Av,v)vixy > allvl}.
Then

de
ker A :f{v €V : Av=10)}
is a finite dimensional subspace of V' and
de>0,Vvekerd, [vllv<elvly. (42)
Proof. Clearly we can always pick A > 0 and Al + A has a continuous
symmetrical inverse [AI + A]7' 0 V! = V. In particular, from the compactness
of the injection of V' into H, the operator [AI + A]~" is continuous linear and
compact from H to H. Hence the multiplicity of all its non-zero eigenvalues
is finite, that is, the eigenspace associated with an eigenvalue g # 0 is finite

dimensional (see, e.g., Riesz and Nagy, 1965, Chap. VI, §93, p. 201). For any
0#wve€kerA, Av=0 and

A+ A=Av = %u =M+ A"

and v belongs to the eigensubspace of [\ + A]~" for u = 1/ # 0. Therefore,
ker A is finite dimensional. Moreover, by V-H coercivity

alv]? < Mof? + (Av,v) = Ao|?

and we get the equivalence of norms on ker A. ||






