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1. Introduction

These notes correspond to a series of lectures given in September 1996 in the Isti-
tuto per le Applicazioni del Calcolo “Mauro Picone” of the Consiglio Nazionale
delle Ricerche. Its purpose is to give a short introduction into the theory of
boundary exact controllability and uniform stabilizability of linear distributed
systems, based on the multiplier method. Many more results are given in Lions
(1988a,b), Komornik (1994), and in their references.

The author is grateful to the Institute for the invitation, to the colleagues he
met there for their help and especially to Professors P. Cannarsa and P. Loreti
for many fruitful discussions during his stay.

The plan of the paper sections is the following:

2. Observability. The multiplier method
2.1 The one-dimensional wave equation
2.2 The wave equation in several space dimensions
2.3 A simple plate model

3. Controllability. The Hilbert uniqueness method

3.1 The wave equation
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3.2 The plate model
4. Stabilization by “natural” feedbacks
4.1 The wave equation with linear feedbacks
4.2 Nonlinear feedbacks
5. Abstract framework
5.1 Observability implies controllability
5.2 Application to the wave equation
5.3 Observability implies stabilizability
5.4 Application to the wave equation
5.5 Application to the plate model
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2. Observability. The multiplier method
2.1. The one-dimensional wave equation

Let € be a bounded domain in R™ with boundary I'" and consider the problem

v —Au=0 in QxR,
u=0 on I'xR, (1)
w(0) =up and u'(0)=wu; in Q.

Among many other things, for n = 2 this modelizes the small transversal vibra-
tions of an elastic membrane of the form 2, stretched along its boundary.
We recall the following facts (see, e.g., Lions and Magenes, 1968-70):
e given (up,u;) € H(Q) x L2(Q) arbitrarily, (1) has a unique (so-called
weak) solution
u € C(R; Hy()) N C'(R; L*(2));
e the energy of the solution, defined by the formula
E(t) = %fﬂ o' ()2 + |Vu(t)? du, (2)
is in fact independent of ¢ € R. We shall therefore denote it simply by E;
e if Q is of class C? and if the initial data (ug,u;) belong to
(H2(2) N HA(Q)) x H3(Q),
then the corresponding (so-called strong) solutions are smoother:
u € C(R; H2(Q)) N CY(R; HY(Q)) N C%(R,; L2(N)). (3)
Now consider the following question. Suppose we are only able to observe
the solution in some small neighourhood of the boundary I'. Ts this observation
sufficient to distinguish solutions corresponding to different initial data? In
the one-dimensional case it is easy to obtain an affirmative answer by a direct
computation. For simplicity we only consider an interval of length 7.
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PROPOSITION 2.1 Let Q = (0, 7). Then all strong solutions of the problem (1)
satisfy the following equality:

/ ug(0,1)2 + ug(m,t)? dt = 4E. (4)
0

It follows from this proposition that if two strong solutions v and w of (1)
(corresponding to initial data (vg, v1) and (wg,w;)) coincide in some neighbour-
hood (0,e) U (m — &, 7) of the extremities of Q for 0 < ¢ < 7, then in fact v and
w are the same solutions. Indeed, applying the proposition with v := v —w
(which also solves (1) with the initial data (ug,u1) = (vo — wg,v1 — wy), the
left-hand side of (4) vanishes by our assumption. Hence F = 0 and in partic-
ular Vu(t) = 0 in Q for all t € R. Since u(t) € HL(Q), applying the Poincaré
inequality we conclude that u(t) =0 in Q for all t € R. Hence v = w.

Proof of the proposition Using the Fourier method, the solutions of (1) are
given by the formula

o

u(z,t) = Z(ak cos kt + [ sin kt) sin kx
k=1

with suitable real coefficients «x and Jr. We have

- 2
/ ug(0,1)? + ug(m,t)? dt = / <Z k(o cos kt + [ sin lm‘.))
0

0 k=1

- 2
(Z(—l)kk(ak cos kt + [ sin kt)> dt

_|_
k=1
2
™
= / 2 Z k(o cos kt + [ sin kt)
¥ k is odd
2
+2 Z k(ay coskt + P sinkt) | dt
k is even

T 00
- / > 2k*af cos® kt + 2k* 3} sin® kit dt
0 k=1
oo
=3t + 8D
k=1
because during the integration all mixed products disappear.

Furthermore,

2

oo 2 oo
4E(0) =2 / (Zkﬂksinlm:> = (Zkak cos/m) dw
0 \k=1 k=1
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T 00
=32 Z k232 sin? kx + k*a3 cos® ka da
0
k=1

oo
=7y K (a} +5)
k=1
and the proof is completed. i3
Unfortunately, the proof of Proposition 2.1 does not extend to general do-
mains in R™. In the next subsection we shall apply another, more powerful
method.

2.2. The wave equation in several space dimensions

The main result of this subsection is the following, in which we denote by v the
outward unit normal vector to I'.

THEOREM 2.1 Assume that Q is of class C* and let B(xo, R) be the smallest
ball containing 2. Then for every number T' > 2R there exist two constants
¢y, ¢ >0 such that

T
aE < / / |O,ul?> dT dt < e F (5)
o Jr

for all strong solutions of (1).

REMARK 2.1 1. The second inequality in (5) is often called a direct or ad-
missibility inequality. It is due to Lasiecka and Triggiani (1983) and to
Lions (1983). It allows us to define d,u as an element of L2(0,7%; L*(T"))
for all weak solutions by an easy density argument. Observe that this does
not follow from the regularity in the definition of the weak solutions and
from the usual trace theorems as those in Lions and Magenes (1968-70).
Therefore it is often called a hidden regularity result. Note that using this
definition the inequalities (5) remain valid for all weak solutions.

2. This hidden regularity result will allow us to define the solutions of some
dual problem for rather irregular boundary data. (This explains the word
“admissibility”: some nonsmooth boundary data are admissible for the
dual problem to be well-posed.) This will be important in the solution of
a corresponding controllability problem in the next section.

3. The first inequality in (5) is often called an inverse or observability in-
equality. Tt was first proved by Ho (1986) under a stronger hypothesis on
T and then by Lions (1988a) under the present condition 7" > 2R.
Applying the same argument as in the preceding subsection, this implies
the following observability result. Assume that two weak solutions of (1)
coincide in T'y x (0,7) for some € > 0 and 7' > 2R where I is the e-
neighbourhood of T" in Q:

e ={zeQ|dist (z,T) < &}.
Then in fact v =w in Q X R.
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4. Using the finite propagation property for the wave equafion, it is not
difficult to show that the first inequality of (5) cannot hold for arbitrarily
small T. If Q = B(zg, R), then a short elementary proof in remark 3.6 of
Komornik (1994) shows that we cannot take 7' < 2R. Joé (1991) proved
that we cannot take T' = 2R either if n > 2; this contrasts with the one-
dimensional case. For a general domain the determination of the critical
value of T' is a difficult problem: see Bardos, Lebeau and Rauch (1992)
and Tataru (1996). Tt turns out that the critical value is the length of the
longest line segment lying entirely in €.

The proof of Theorem 2.1 will be based on the multiplier method. Our main
tool is the following technical lemma which goes back essentially at least to
Rellich (1940).

LEMMA 2.1 Letw be a function having the regularity (8) and satisfying the wave
equation v’ — Au =0 in Q x R. Fiz a point z9 € R™ arbitrarily and put

m(z) =z —z9 and Mu:=2m -Vu+ (n—1)u (6)

for brevity. Then for any fired —co < S < T < oo the following identity holds
true:

T
/ /(auzt)Mu + (m-v)((v)? — |Vul?) dT dt
g Jr

T T
- [/ u' Mu dm} +/ /(u’)2 + |Vul|? da dt. (7)
Q s Js Ja

(The dot denotes the usual scalar product in R™.)
Proof. Integrating by parts we obtain that

&
0= / / (v — Au)Mu dz dt
s Ja
T T
= [/ u' Mu dx} —/ /(5,,u)]\/[11. ar dt
Q s Js Jr

T ¥
——/ / w Mu' dx dt +/ / Vu - V(Mu) da dt.
s Ja s Ja

We have
w'Mu' =2u'm-Vu' + (n— 1)) =m- V@) + (n—1))?
and

Vu - V(Mu) = 9;ud;(2my0ru + (n — 1)u)
= 2(0;w) (Jimi) (Bpw) + 2my (0;u) (i) + (n — 1)|Vuf?
=m-V ([Vul?) + (n+1)[Vul.
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In the last computation we applied the summation convention of repeated in-
dices and we used the obvious relation 9;my = d;.
Substituting these equalities into the first identity we obtain that

T
0= |:/ u' Mu dx}
Q

3
oy
—/ /(al,u)Mu dT dt
s Jr

T
—m -V = (n—-1DW)2+m- wl? n ul?.
+AuL V)2 = (n— 1)) +m-V (V) + (n+ 1)|Val

Integrating by parts again and using the relation div m = n the lemma
follows:

T
0= [/ uw' Mu dij
Q s

T
—(Ou)Mu+ (m-v w2 — (w)?) dT
+L~£(®)M-H ) (IVal? — (u')?) dT dt

T
+ / / W2 + |Vul? da dt.
oy Q
i

Note that the lemma and its proof remains valid if we replace R in (3) by
some interval I and if S,T € I.
We shall also need from Komornik (1987) the following

LEMMA 2.2 Given u € H2(Q) arbitrarily, we have the following identity:
/ (Mu)? dz = / |2m - Vaul? + (1 —n?)u? dz + (2n — 2) / (m-v)u? dT.  (8)
Q Q r

Proof. We integrate by parts and we use again the relation divm = n as
follows:

/(Mu)2 dz = / [2m - Vu + (n — 1)u? dz

Q Q

= / [2m - Vu)? 4+ (n — 1)%u® + 4(n — 1)um - Vu dz
Q

= / 12m - Vul? + (n — 1)%u? + 2n — 2)m - V(4?) dz
Q

= / |2m - Vul? + (n — 1)%u? — n(2n — 2)u? dz + (2n — 2) /(m ~v)u® dT.
Q

r

|
Now we are ready to prove the following result obtained in Komornik (1987):
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THEOREM 2.2 Assume that Q is of class C? and that it is contained in a ball
B(zo, R). Then all strong solutions of (1) satisfy for all T > 0 the following
estimates:

T
2(T —2R)E < / /(m V) (O,u)? dT dt < 2(T + 2R)E. (9)
o Jr

Proof. We apply the identity (7) of Lemma 2.1 with S = 0. Since u = 0
on I' x R, we also have v' = 0 and Vu = (d,u)v on T' x R. Therefore the
expression under the integral sign on the left-hand side of the identity reduces
to (m - v)(8,u)?.

Furthermore, using the definition and the conservation of the energy, the
last integral on the right-hand side of this identity is equal to 2T'E, so that (7)
reduces to

T

/OT‘/F(W’L-I/)(&Ju)2 dl dt = [/Qu'Mu de +9TE.

If we prove the inequality

/ u' Mu dx
Q

then the estimates (9) will follow. For the proof of (10) first we note that the
identity (8) of Lemma 2.2 implies the inequality

/(Mu)2 dx g/ [2m - Vu|? do < 4R2/ |Vu|? do
Q Q Q

< 2RE, (10)

because u = 0 on T', n > 1 and because |m| < R in Q. Now (10) follows easily:
/ [u/ Mul|dz < / R(u)? + (4R) Y (Mu)?dx < R/ (u')? + |Vu|’dz = 2RE.
Q Q Q

|

Proof of Theorem 2.1. We prove the theorem only under the extra hypothesis

that € is strictly star-shaped with respect to xg, i.e., there exists a number r > 0

such that m-v > r on I'. In this case the theorem follows at once from the
preceding one with ¢; = 2(T' — 2R)/R and c¢p = 2(T — 2R)/r.

In the general case we need a slight generalization of Lemma 2.1, replacing

the function m by another function h whose restriction to I' is equal to v; see,
e.g., Lions (1988a,b) or Komornik (1994). |

2.3. A simple plate model

Now consider the problem
W+ A%u=0 in QxR,
v=0,u=0 on TI'xR, (11)
w(0) =ug and u'(0)=wu; in Q.
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For n = 2 this represents a very simple model describing the small transversal
vibrations of a thin plate clamped along its boundary.
We recall the following facts (see, e.g., Lions and Magenes, 1968-70):
e given (up,u1) € HZ(Q)x L2(Q) arbitrarily, (11) has a unique weak solution
u € C(R; Hy(Q)) N C'(R; L*(2));
e the energy of the solution, defined by the formula
E(t) =3 [ou' (1) + (Au(t))® da,
is in fact independent of ¢ € R. We shall therefore denote it simply by F;
e if O is of class C* and if the initial data (ug,u;) belong to (H*(€) N
HZ(Q)) x HE(S2), then the corresponding strong solutions are smoother:
u € C(R; H4(Q)) N C*(R; H*(Q)) N C%(R; L*(Q)).
We have the

THEOREM 2.3 Assume that Q) is of class C*. Then for every number T > 0
there exist two constants ci, co > 0 such that

i iy
aE < / /(Au(t))2 dTl' dt < e E
0 T

for all weak solutions of (11).

This theorem implies that two solutions of (11), corresponding to different
initial data, can be distinguished by observing them in some neighbourhood of
the boundary I" during an arbitrarily small time interval. (There is no contra-
diction because in the present problem we have infinite propagation speed.)

Theorem 2.3 was proved by Lions (1988a) for a sufficiently large T and
then in Komornik (1987) under the weaker condition of T" > 2R/\/p1, where
B(zo, R) is the smallest ball containing €2 and y; denotes the first eigenvalue of
the eigenvalue problem

A% = —pAv, ve HZ(Q).

Finally, using a compactness—uniqueness argument based on Holmgren’s theo-
rem, Zuazua (1988) proved the theorem for all 7" > 0.

Another, constructive and more elementary method was developed later in
Komornik (1989) in order to weaken the sufficient conditions for inverse inequal-
ities. This approach provides a simple recipe: whenever we obtain a sufficient
condition of the form 7" > f(u1) where 1 is the first eigenvalue of some corre-
sponding eigenvalue problem, the inverse inequality also holds under the (usually
weaker) condition T' > f(co). In the present case this leads to the condition
T > 2R/oco = 0. We refer to Komornik (1991) for the proof of Theorem 2.3
using this method.
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3. Controllability. The Hilbert uniqueness method
3.1. The wave equation
Fix a number 7" > 0 and consider the following problem:

y'—Ay=0 in Qx][0,7],
y=v on I x][0,T], (12)
y(0) =y and «/(0)=wu; in Q.

We shall prove the following result of Lions (1988a):

THEOREM 3.1 Assume that Q is of class C? and that it belongs to an open ball
of diameter < T. Then for any given (y°,y') € L2(Q) x H='(Q) there exists
v € L?(0,T; L?(T)) such that the solution of (12) satisfies

y(T) =y (T)=0 in Q. (13)

In what follows we shall identify L?(2) and L?(T") with their respective duals.
Let us first study the well-posedness of (12). Since we will have to use rather
irregular initial and boundary data, we will define a suitable weak solution by

applying the transposition method. Consider for this the problem studied in
Subsections 2.1 and 2.2:

' —Au=0 in xR,
u=0 on I'xR, (14)
uw(0) =up and ' (0)=wu; in Q.

If y solves (12) and u solves (14), then we can make the following formal com-
putation for every S € [0,7):

S
0= / /(y” — Ay)u dzx dt
0 Q

S g p
= {/ v'u—yu da;} +/ / y(u" — Au) dx dt
Q 0 0 Q

S
+/ / —(0,y)u +y(O,u) dT dt.
0 r

Using the initial and boundary conditions in (12) and (14) we conclude that

. 5w
/ —' (S)u(S) + y(S)u'(S) dx = / —y1ug + youy dx + / / vo,u dT dt,
Q Q J0 P
or writing in a more abstract way,

(=¥ (8),9(9)), (u(S), 4 (S))) H-1(Q)x L2(), HE (VX L2(2)
== ((_yl ,%0), (uo, U1)>H—1(sz)xL2(n),H3(Q)xLz(Q)
+(v, 0uu) 12(0,8;L2(r))- (15)
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This suggests us to define a solution of (12) as a continuous function

(v,9): [0, 7] — L*(Q) x H71(Q)
satisfying (15) for all (ug,u1) € H{ () x L*(Q) and for all S € [0,T]. This
definition is justified by the

ProrosITION 3.1 Given
(Wo,11) € L*(Q) x HH(Q) and v € L*(0,S;L*(T))
arbitrarily, the problem (12) has a unique solution.

Proof. First fix S € [0,T] arbitrarily. Thanks to the second inequality in (5)
the right-hand side of (15) defines a bounded linear form of

(wo,u1) € HY(Q) x L3(Q).
Since the problem (14) is time reversible, the application
(w0, u1) = (u(S), w'(5))

is an automorphism of H{(Q2) x L?(Q2). Therefore the right-hand side of (15)
may also be considered as a bounded linear form Lg of

(w(S),u'(S)) € Hg(Q) x L*(Q).
By the definition of the dual of a Hilbert space there exists a unique pair
(~y'(8),y(8)) € H1(Q) x L*(Q)

satisfying (15).

Since the bounded linear form Lg depends continuously on S (which is easy
to verify), the function S — (—y'(S),y(S)) is also continuous. |
Proof of Theorem 3.1. The idea is to seek a suitable control in the special
form v = d,u where wu solves (14) for some appropriate choice of the initial data
(uo,u1). It is sufficient to show that if (ug,u;) runs over H}(Q) x L?(Q) and if
y denotes the solution of the problem

y'—Ay=0 in Qx][0,T],
y=v on I x[0,T], (16)
y(T) =y (T)=0 in @,
then (y(0),%'(0)) runs over L2(Q2) x H~1(2). Indeed, then it is sufficient to
choose v = 8,u in (12) with (ug,u;1) € Hi(Q) x L%(Q) such that y(0) = yo and
y'(0) = v,
Equivalently, it is sufficient to show that the linear map

A HY Q) x L2(©) - H1(Q) x L2 (Q)
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defined by the formula

Alug,u1) = (¥'(0), —y(0))

is onto. We will show that A is in fact an isomorphism. Thanks to the Lax—
Milgram theorem it is sufficient to show that the associated bilinear form

(A(uo,u1), (vo, v1)) H-1(0)x L2(Q), HE () x L2 ()

is continuous and coercive on Hg () x L?(9).

The continuity of A follows from the well-posedness of the problems (14) and
(16). (Thanks to the time reversibility of the wave equation the well-posedness
of (16) can be deduced from that of (12) by the change of variable t — T —t.)
The coercivity of A will follow from Theorem 2.1 if we establish the formula

¢
<A(u0»ul)a(u07u1)>H—1(Q)xL2(Q),Hé(Q)xL2(Q) :/0 /F|3uu|2 dI' dt.

This equality follows from (15) applied with S = T if we use “final” conditions
in (16) and the equality v = d,u in the definition of A. |

3.2. The plate model

By applying the method of the preceding subsection, Theorem 2.3 implies the
following exact controllability result for the problem

y'+A% =0 in Qx][0,7],
Y= 0 and a,jy =v on I X [O,TL (17)
y(0) =yo and %'(0)=% in Q:

THEOREM 3.2 Assume that Q is of class C* and fix T > 0 arbitrarily. For any
given (y°,y") € L2(Q) x H™2(Q) there exists a function v € L*(0,T; L*(I))
such that the solution of (17) satisfies

y(T) =4/ (T) =0 in Q.

This result is due to Lions (1988a) (for T' sufficiently large) and Zuazua
(1988) (for T' arbitrarily small). We leave the proof to the reader.

4. Stabilization by “natural” feedbacks

In this section we consider boundary feedbacks making the system dissipative
and we estimate the energy decay rate. The Lyapunov type approach used
here was introduced in Komornik and Zuazua (1990) and was later developed

in Komornik (1991).
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4.1. The wave equation with linear feedbacks

Fix two continuous functions a,b : I' — (0,+00) and consider the following
problem:

W' —Au=0 in  x][0,+00),
du+tau+bu' =0 on T x[0,+00), (18)
w(0) =ug and W/ (0)=wu; on Q.

This type of boundary feedback was first proposed by Russell (1978). We recall
the following facts (see, e.g., Komornik, 1991; 1994):
e given (ug,u1) € H'(Q)x L2(2) arbitrarily, (18) has a unique weak solution
w € C(0, +00); H'(2)) N C" ([0, +00); L2());
e the energy of the solution, defined by the formula
E(t) =1 [(u'({)? + |Vu(t)]? do+ 1 [ au(t)? dT, (19)
is nonincreasing;

e if 2 is of class C? and if the initial data satisfy (ug,u1) € H?(2) x H' ()
and d,ug + aug + bu; = 0 on I', then the corresponding strong solutions
are smoother:

u € C([0,400); H2(R2)) N C* ([0, +00); H'(R2)) N C%([0, +00); L2(R)).

Let us first give a more precise result concerning the nonincreasingness of

energy:

LEMMA 4.1 The strong solutions of (18) satisfy the equalities

T
m@—mm:/ /mﬁfﬂ%t (20)
s Jr
for all0 < S <T < 400.
Proof We have
E = / v + Vu-Vu' dz +/ auw' dT’
Q r
= / v Au+ V' - Vu dz + / auu' dT
Q

r
= / v (O,u+au) dT' = ——/ b(u')? dT.
r r

2]

If  is a star-shaped domain of class C?, then energy tends to zero exponen-

tially as ¢ — oo. For the sake of simplicity, we shall prove this here only in a

very particular case and we refer to Komornik (1991, 1994), Tcheugoué Tébou

(1994, 1996), Martinez (1999) for more general results. See also Aassila (1997)

for strong stability theorems under weaker assumptions by a modification of the
proof below.
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THEOREM 4.1 Let Q be a unit ball B(xzg,1) in R® and choose a = b= 1. Then
all solutions of (18) satisfy the estimate

E(t) < E(0)e!™%/?
for allt > 0.

Proof. It is sufficient to consider strong solutions; the general case then follows
by an easy density argument.

By applying Lemma 2.1 (see the note following its proof) we have for all
0 < S <T < +oo the identity

/T/(B,,U)Mu + (m-v)((u)? — |[Vul?) dT dt
g Jr

E T
= [/ uw' Mu d:c} +/ /(u')2 + |Vul? dz dt.
Q s Js Ja

Since now m-v =1, ,u = —u — v’ and Mu = 2m - Vu + 2u, using also the
definition of the energy this identity can be rewritten in the following form:

i
/ /(u')2 — |Vul2 = 2(u+u')(m - Vu) — 2(u 4+ ' )u +u? dT dt
s Jr

T i
== [/ u' Mu da::| + 2/ L dt. (21)
Q S S

Since |m| = 1 on T, the expression under the integral sign on the left-hand
side can be majorized as follows:

()% = |Vaul? = 2(u + u')(m - Vu) — 2(u + v )u + u?
< (w)? = |Vul?> + (u 4+ u')? + |m - Vaul? — 2(u + u')u + u?
< (W) + (u+u)? —2u+u)u +u? = 2(u')2

Therefore, using also Lemma 4.1, we deduce from (21) the following inequality:

T T
2 f E dt < 2E(S) — 2B(T) — [ / o Mu dm} . (22)
S Q S
If we prove that
/u'Mu dx| < 2E, (23)
Q

then (22) will imply that

2 / " g < 2B(S) — 2B(T) + 2E(S) + 2B(T) = 4E(S),
S
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whence, letting 7" — 400 we shall conclude that

/ E dt <2F(S) forall S>0. (24)
#

For the proof of (23) we use the identity (8) of Lemma 2.2:
/(Mu)2 dz = / 12m - Vul2 + (1 — n?)u? dz + (2n — 2) /(m ~v)u? dT.
Q Q r

Since |m| < 1 in Q and since n = 3, this implies the inequality

/(Mu)2 dz < 4/ |Vul? dx+4/ u? dT.
Q Q iy
Now (23) follows easily:
/ |u' Mu| dz < / (u)? + (1/4)(Mw)? dz
Q Q
< /(u')2 + [Vul? dw+/u2 dT'=2E.
Q r

Since the energy function is nonnegative and nonincreasing, the theorem now
follows from (24) by applying the Gronwall type lemma (4.2) given below. M

LEMMA 4.2 Let E : [0, +00) — [0, +00) be a nonincreasing function and assume
that there exists a constant T > 0 such that

o0
/ E(s) ds <TE(t), Vt>0. (25)
t
Then
E(t) < E(0)e! YT, vt >0. (26)
Proof. Define

f(z) =T /00 E(s) ds, z>0;

then f is locally absolutely continuous and it is also nonincreasing by (25):
f'(@) =Tte/T (/Oo E(s) ds — TE(a:)) <0

almost everywhere in [0, +c0). Hence, using (25) again,

f(z) < F(0) = /O " B(s) ds < TE(0), ¥z >0,
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ie.,
/ E(s) ds < TE(0)e™/T, Yz >0. (27)

Since E is nonnegative and nonincreasing, we have
o+ T

/:0 E(s) ds > / E(s)ds>TE(x+T).

x

Substituting into (27) we obtain that
E(x+T) < E0)e *T, Vz>0.

Setting t := z + T hence we conclude (26) for all ¢t > T'. Finally, for 0 <t < T
the inequality (26) is obviously satisfied because E(t) < E(0). |

REMARK 4.1 This lemma is taken from Haraux (1978b). See Haraux (1978a),
Lagnese (1989), Komornik (1996), Martinez (1999), Laurencgot (1998), for more
general results.

It is natural to ask whether we can achieve arbitrarily large energy decay
rates by a suitable choice of the coefficients @ and b in (18). A result of Koch and
Tataru (1995) shows that this is impossible. In the last section of these notes
we shall construct boundary feedbacks of a different kind leading to arbitrarily
high decay rates.

4.2. Nonlinear feedbacks

The method of the preceding section can be adapted to nonlinear feedbacks.
We state just one result here; we refer to Komornik (1994) for proof. Various
other results of this type can be found in Komornik (1994), Kouémou-Patcheu
(1996), Martinez (1999) and in the references therein.

Let g : R — R be a nondecreasing, continuous function. Assume that there
exists a real number p > 1 and positive constants ¢; such that g satisfies the
following growth conditions:

alel? < lg(@)| < eolzVP i o] <1
and
cslz] < |g(z)| < cqlz| if |z| > 1.
Fix a continuous function a : I' — (0, +00) and consider the following problem:

v —Au=0 in Qx][0,+0c0),
du+tau+g(u)=0 on T x[0,+c0), (28)
u(0) =ug and u'(0)=wu; in Q.

This problem is well-posed in H'(Q) x L?(2). We define the energy of the
solutions by the same formula (19) as in the preceding subsection. Then we
have the
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THEOREM 4.2 Assume that ) is a star-shaped domain of class C?. Then the
solutions of (28) satisfy the estimates

E(t) & ct—2/(p=1)
for allt > 0, where C is a constant depending on the initial energy E(0).

REMARK 4.2 In the one-dimensional case the optimality of these estimates has
been proved by J. Vancostenoble and P. Martinez in Vancostenoble (1999) and
Martinez and Vancostenoble (1999).

5. Abstract framework
5.1. Observability implies controllability
Consider a linear evolutionary problem
' = Az + B, z(0) = o, (29)

where A is a densely defined, closed linear operator in some Hilbert space H
and B is a densely defined, closed linear operator from another Hilbert space G
into D(A*)’. Let us also consider the dual problem

(10/ = ’“A*QO, (10(0) = Y0, 77/) = B*(pa (30)

where A*, B* denote the adjoints of A and B. In control-theoretical terminology
B is a control operator, v is a control, B* is an observation operator, and 1) is
an observation.

Assume that the following hypotheses are satisfied (we denote by G’, H' the
dual spaces of G and H):
(H1) The operator A* generates a group e**" in H’;
(H2) D(A*) C D(B*), and there exists a constant ¢ such that

1B*¢ollc < cllA*ol|a-
for all g € D(A*);

(H3) There exist three numbers T, ¢y, ca > 0 such that the solutions of (30)
satisfy the inequalities

cilleollz < 1¥llzz0ran < callpolla
for all g € D(A*).

In the applications the hypothesis (H1) is usually satisfied for time-reversible
problems. Hypothesis (H2) is not necessary if the operator B is bounded. It
is often satisfied in boundary control problems where B is unbounded. Finally,
(H3) is an abstract form of the direct and inverse inequalities.

We shall see later that the problems studied in Section 2 can be rewritten
in the form (30) satisfying these hypotheses.

o It follows from (H1) that for every po € H’ the initial value problem

in (30) has a unique weak solution ¢ € C(R;H'), given by the formula

o(s) = 4" .
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e Furthermore, it follows from (H1) and (H2) that for every g € D(A*),
(30) has a unique strong solution
¢ € C(R; D(A"))NC(R; H'),
and that ¥ € C'(R;G’); in particular, hypothesis (H3) is meaningful.

e Now the second (direct) inequality in (H3) allows us to define ¢ as an

element of L2(0,T; G) for all ¢y € H’, by a density argument.

Next we show that hypotheses (H1), (H2) and the second inequality in (H3)
allow us to define by transposition the solution of (12) for every xy € H and
v € L?(0,T;G). Proceeding formally, if  solves (29) and ¢, solve (30), then
for every S € [0,T] we have the identity

S
(2(S), 0(S))m,1 = (o, po) 17 +/0 (v(s),¥(s))G,G" ds. (31)

Indeed, we have
s
| @),/ + Al ds.
0

.S
= [(a(s), (s)) .15 + / (—a'(), () v + ((s), A*p(5)) .11 ds.

.5
= [(z(s),(s))m,a'16 +/0 (—2'(s) + Ax(s), (s)) g ur ds.
g
= [(a(s), () a0 1§ ~ / (Bu(s), o(s)) v ds.

.S
= [((s), () mr,e1§ / faf, s e B

Hence we define a solution of (29) as a continuous function x : [0,T] — H
satisfying the identity (31) for all ¢g € H' and for all S € [0,77]. This definition
is justified by the

PROPOSITION 5.1 Given xg € H and v € L?(0,T;G) arbitrarily, the problem
(29) has a unique solution.

Proof. Thanks to the second inequality in (H3) the right-hand side of (31)
defines a bounded linear form of ¢y € H'. Since the map o — @(T) is an
automorphism of H’ by hypothesis (H1), the right-hand side of (31) is also a
bounded linear form of ¢(S) € H'. Since H” = H, it is uniquely represented
by some z(S) € H, so that (31) is satisfied. |

Until now we did not use the first (inverse) inequality in (H3), expressing
the observability of the problem (30). Now we prove that the observability of
(30) implies the controllability of (29):

THEOREM 5.1 Assume (H1) to (H3). Then to every initial state vy € H there
exists a function v € L2(0,T; G) such that the solution of (29) satisfies the final
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condition z(T) = 0. (We say that the control v drives the system to rest in time
T.)

Proof. Thanks to hypotheses (H1) to (H3) the formula

T
(0, %0) '—>/ (B*e 4" pg, B*e "4 1) e ds
0

defines a continuous, symmetric and coercive bilinear form in H’. Applying the
Riesz—Fréchet theorem, there exists a self-adjoint, positive definite isomorphism
A € L(H', H) such that

T
(Ao, o) 1 =/ (B*e™** o, B*e™** yo)g ds
0

for all wg,%0 € H'.
Let us denote by J : G’ — G the canonical Riesz isomorphism. Given
zo € H arbitrarily, we claim that the control

v(s) := —JB*e "4 A 1z

drives zg to rest in time 7. Indeed, for any given o € H’, using (30) and (31)
we have

T
(o(T), (T .7 = (&0, Poder. i + / (0(s),¥(s))a," ds.

T

= (o, Yo)H,H’ —/ (B*e 4" A~ 1zg, B*e™ 4 pp) o ds.
0

= (xO;(p())H,H’ - <AA_1.’L'O, SD())H,H’ = 0.

Since by hypothesis (H1) ¢(T) runs over the whole H' if ¢y does, hence we
conclude that z(T") = 0. |

In fact, Dolecki and Russell (1977) proved that under hypotheses (H1) to
(H3) the controllability of (29) is equivalent to the observability of (30). (See
also Komornik, 1997, for a short proof.) Moreover, this duality relation remains
valid if we only assume instead of (H1) that A* generates a semigroup in H’;
see Dolecki and Russell (1977).

Lions (1988a, b) developed a general and systematic approach for the study
of exact controllability of linear distributed systems, the so-called Hilbert unique-
ness method (HUM). It was based on the preceding theorem.

5.2. Application to the wave equation

We may study the problem of Subsection 3.1 in the abstract framework as
follows. First, putting ¢ = (u,v’), wo = (ug,u1) and introducing the linear
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operators A* and B* by the formulas

D(A*) = D(B*) = (H*(Q) N Hy(2)) x Hy (%),
A*(z0,21) = — (21, Az),
B*(Z(),Zl) = (9,,Z0,

we may rewrite (14) with the observation of d,u in the abstract form (30).

We claim that by choosing H' = H(Q) x L%(Q2) and G’ = L?(I") we satisfy
the assumptions (H1) to (H3). Indeed, (H1) is well-known and is related to
the energy conservation, see, e.g., Lions and Magenes (1968-70). Property (H2)
follows from the definition of A*, B* and from the elliptic regularity theory for
z0 € H2(2) N HL(Q):

1B* (20, 21) |l 2(ry = 10v 20l 21y < cllzoll a2
< || Azl r2(a) < el A% (20, 21) | H2 (@) x L2(0)-

Finally, (H3) is equivalent to the inequalities proved in Theorem 2.1.

Now, by comparing the identities (15) and (31) we obtain that the dual
problem (29) of (30) is just another form of the problem (12) if we introduce
the notations z = (—v',y), o = (—¥1,%0) and if we put G := G” = L?(T") and
H = H" = H-Y) % LA(D).

By applying Theorem 5.1 and Theorem 2.1 we secure satisfaction of Theorem
3.1.

5.3. Observability implies stabilizability

Despite its elegance and relative simplicity, the method applied in Section 4 has
two drawbacks. First, it can be applied only in few cases. Secondly, it does
not lead to arbitrarily large decay rates. We present here another approach to
the uniform stabilization, analogous to HUM. This leads to the construction of
boundary feedbacks with arbitrarily large decay rates. The results are borrowed
from Komornik (1997). The particular weight function e, below was proposed
to the author by Bourquin (1998).

Let us return to the abstract framework of Subsection 5.1. Assume hypothe-
ses (H1) to (H3) again. Fix a number w > 0, set T,, = T + (2w) ™!, define

ew(s) =

o—2ws if0<s<T,
2we—2wT(Tw _ 3) T <s< T,

and set

T
(Awpo, o) o 1 :=/ ew(8)(B*e™* 0o, B*e™*4 " tfo)c ds.
0

Then A, is a selfadjoint, positive definite isomorphism A, € L(H', H). The
following result was obtained in Komornik (1997).
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THEOREM 5.2 Assume (H1) to (H3) and fix w > 0 arbitrarily. Then the prob-
lem

2’ = (A—BJB*A;Y)z, z(0) = 2o (32)

s well-posed in H. Furthermore, there exists a constant M such that the solu-
tions of (32) satisfy the estimates

lz@)ll e < Mol re™* (33)
for all xg € H and for all t > 0.

In other words, this theorem asserts that the feedback law
v=—JB*A 'z,

where J : G’ — G denotes again the canonical Riesz isomorphism, uniformly
stabilizes the control problem

z' = Az + B, z(0) = zo

with a decay rate at least equal to w.

The well-posedness means here that (32) has a unique solution 2 € C(R; H)
for every zg € H.
Sketch of the proof. We admit the well-posedness of (32) and we write A,
in the following form:

Tw
A, = / eu(s)eABIB*e*A" ds.
0

Fix zp € H arbitrarily and consider the solution of (32). A simple (formal)

computation leads to the following identity:
d
C—l-t-<A;122, x)H/,H = <A;1,’E, (AN, + AL LA™ — 2BJB*)A;1£E>H/’H. (34)

Since
2wey,(s) < —el,(s) and eu(T.) =0,
we have

T,
2 "
AA, +AWA* + 2wA, < -—/ E— <€W(S)€_SABJB*6_SA ) ds — BJB*.
0 S

Hence we obtain that
AA, + A A* —2BJB* < —2wA,,.

(It means that the right-hand side minus the left-hand side is positive semidef-
inite.) Therefore we deduce from the identity (34) the following inequality:
d

;E(A;]»x’x>H’,H < _QUJ(A‘ZISU,:C)H/’H,
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Hence

(A z(t),2() i < (A w0, wo) rrr e (35)
for all t > 0. Since A, € L(H', H) is a selfadjoint, positive definite isomorphism,
there exist two constants ¢; and ¢ such that

allzly < (A 'z, 2) a8 < collzlh

for all z € H. Using these inequalities, (35) implies (33) with M = \/cy/c;. B
The above proof is correct in the finite-dimensional case, but there are some
technical difficulties in the infinite-dimensional case due to the rather weak
regularity of the solutions of (32). We overcome this difficulty by working with
an equivalent integral equation.
Fix o € D((A*)?) and consider the solution of (30). We have

T
1B oll% = / 2 (euls)|B*o(s)I) ds.

Tu
“—‘/ el ()1 B*¢(s)1 & ds — (Awpo, A*@o) 10 — (A% 0o, Awpo) 7 1,
0
and hence

~[1B*¢oll2:

- [ 4w

for all g € D(A*), too, by a density argument. Identifying H" with H, by hy-
pothesis (H3) we obtain existence of a nonnegative bounded selfadjoint operator
C € L(H, H) (defined as a square root) such that

|B*@(8)|1Z ds — (Awpo, A*o) i — (A* o, MAwipo) i, (36)

Tw
ICAolly == [ L (sIB o)l ds
for all g € D(A*). Then we conclude from (36) that A, satisfies the algebraic
Riccati equation
AN, + A A* — BIJB* + A,C*CA, =0.

Thanks to hypotheses (H1)-(H3) we may apply a theorem of Flandoli (1987) to
conclude that Aj! satisfies the dual algebraic Riccati equation

ASYA+ A*AZY — A'BIB*A' +C*C =0

in the following sense: the operator A — BJB*A! “generates” a strongly con-
tinuous group U(s) in H, and

AL =U(t—s)*AJ Ut — s)
t
+/ Ulr — 8)*(C*C + AZ'BIB*AZ)U(r — s) dr (37)
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for all t,s € R. (See also Komornik, 1997, for a formal justification of (37).)
Since we have

C*C + A,;'BJB*A; > C*C > 2wA 1,
we deduce from (37) the inequality

t
AL > U@t —s)* A Ut —8) + 2w/ U(r—s)*AJ U (r —s) dr

for all t > s.
Now fix 2o € H and solve (32). Putting
Q= (AJ'y,v)m.n
for brevity, it follows from the preceding inequality that

t
Qz(s) > Qz(t) + Zw/ Qz(r) dr
for all ¢ > s. If we can infer from this estimate that

Qz(t) < (Quo)e "
for all ¢ > 0, then the proof of the theorem can be completed as above. Thus it
only remains to prove the simple

LEMMA 5.1 Let f : [0,400) — R be a continuous function and let w > 0 be a
real number. Assume that

t
16) 2 £®) + 2 [ 1) ar
for allt > s> 0. Then

F(t) < F(0)e2
for allt > 0.

The proof of this lemma is easy if f is of class C': letting s — t we obtain
f'+2wf < 0 in (0,+00), whence the function e>!f(t) is nonincreasing in
[0,4+00). The general case then follows by approximating f by the sequence of
functions fx of class C', given by the formula

t+k1
fu(t) = k/t fs)ds, k=1,2,...

REMARK 5.1

e Bourquin (1998) gave another proof of the well posedness of (32).

e Various numerical and experimental tests were conducted by Bourquin,
Briffaut and Collet (1997), Bourquin, Briffaut and Urquiza (1997), on the
efficiency of these feedbacks.

e Theorem 5.2 was recently generalized by Loreti (1999) to cases where the
problem (30) is only partially observable, i.e., the first inequality in (H3)
is weakened.
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5.4. Application to the wave equation

We recall from subsection 5.2. that if we write the problem

' —Au=0 in QxR,

u=0 on I xR,

u(0) =ug and u'(0)=wu; in Q,
Yv=0,u on I'xR

in the abstract form

o' =-A%,  @(0)=po, ¢=DB",
then the corresponding control problem

z' = Az + B, z(0) = zo
is equivalent to

y'—Ay=0 in QxR,
y=v on ['xR,
y(0)=yo and ¥ (0)=y; in Q.

(We use here an infinite time interval instead of [0,7].) Since the hypotheses
(H1) to (H3) are satisfied, we can apply Theorem 5.2 It remains to identify the
feedback v = —JB*A_'z. Writing the operator

AZY: HY(Q) x L2(Q) — H3(Q) x L2(Q)
in the matrix form
a_( P -Q
A= ( —-R S
and using the definition of B*, we have
v=—JB*A 'z = ag(Py’ + Qy).

(We identified G = L2(T") with its dual G’.) We have thus proved the

THEOREM 5.3 Let Q be of class C? and fiz an arbitrarily large positive number
w. Then there exist two bounded linear maps

P:H'(Q)— Hy(Q), Q:L*Q)— Hp()
and a constant M such that the closed-loop problem

y'—Ay=0 in Q xR,
y=0,(Py+Qy) on T xR,
y(0)=vyo and y'(0)=y1 in

is well-posed in H := L?() x H~1(Q), and its solutions satisfy the estimates

I, ") )ll2e < M| (yo, y1) | e
for allt > 0 and for all (yo,y1) € H.
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5.5. Application to the plate model

By applying the results of Subsection 2.3, we obtain from Theorem 5.2 the

THEOREM 5.4 Let Q be of class C* and fiz an arbitrarily large positive number
w. Then there exist two bounded linear maps

P:H™XQ) - H}(Q),  Q:L*Q)— H}(Q)
and a constant M such that the closed-loop problem

v+ A%y =0 in QxR,
y=0 and 0,y=A(Py +Qy) on T xR,
y(0)=yo and y'(0)=y1 in Q

is well-posed in H := L?(2) x H~2(12), and its solutions satisfy the estimates

Iy, ¥ ) (Ol < Ml (Yo, y1) [l
for allt > 0 and for all (yo,y1) € H.

The proof is left to the reader (or see Komornik, 1997).
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