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Abstract: To programn an autonomons robot so that it acts re-
liably in a dynamic environment is a very hard task. Towards a
promising approach to this problemn, we have developed a genetic
fuzzy controller for a mobile robot, and showed the possibility by
applying it to a simulated robot called Khepera, The robot gets
input from eight infrared scnsors and operates two motors accord-
ing to the fuzzy inference based on the sensory input. This paper
attempts to analyze the adaptive behaviors of the controller by us-
ing automata, which indicates the cimergence of several strategios
to make the robot to navigate the complex space without bumping
agains the walls and obstacles.
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1. Introduction

It is quite difficult to constrnct the optimal controller that appropriately adapts
to the ever-changing enviromments. This is becanse of missing necessary infor-
mation at design stage, the unpredictability of the environment dynamics, and
the inherent noise of the sensors and actuators (Dorigo, 1996). Clearly, an an-
tonomous robot that can acqnire knowledge by interaction with the environment
and subsequently adapt and change its behavior in the run time could greatly
simplify the work of its designer. As a promising approach to the learning of au-
tonomous robot, behavior-based robotics has recently appeared (Brooks, 1986;
Dorigo and Schuepf, 1993).

One of the key points of this approach is not to give the robot information
abont the enviromment but to let the robot find the knowledge by itself. With

1 This work has been supported in part by a grant no. SC-13 from the Ministry of Science
and Technology in Korea.
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Figure 1. Khepera robot and the simulated representation.

this approach, a number of rescarchers have successfully employed evolution-
ary procedures to develop the control system of simulated robots (Beer and
Gallagher, 1992; Cliff, Harvey and Husbands, 1993; Parisi, Cecconi and Nolfi,
1990). The rich variety of structures, which have appeared during evolution
and the large number of evolved behaviors, have empirically demonstrated the
power and generality of the evolutionary algorithins. However, this approach
suffers from the difficulty of analyzing the control system evolved, which pro-
hibits the designer from making use of some domain knowledge fo design the
control system by an evolutionary approach.

To work out this problem, we proposed a fuzzy system for a behavior-based
robot, and presented an evolutionary approach to determine the structure and
parameters of the fuzzy controller (Cho and Lee, 1998). In this paper, we at-
tempt to analyze the genetic fuzzy controller developed to control the simulated
robot called Khepera. We also show that the adaptive behaviors result from
the interaction of several primitive low-level strategies acquired through the
evolutionary process.

2. Autonomous robot

For the simulation, we have used the Khepera robot that is circular, compact
and robust as shown in Figure 1. This is a miniature robot that has diameter
of 55mimn, height of 30mum, and weight of 70g. The robot is supported by two
wheels and two small Teflon balls placed under its platform. The wheels are
controlled by two DC motors with an incremental encoder (12 pulses per mmn of
robot advancement) and can rotate in both directions. The geometrical shape
and the motor layout of Khepera make the robot to navigate in sophisticated
environment even when its control systein is immature.

It is provided with eight infrared proximity scusors placed around its body
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which are based on emission and reception of infrared light. Each receptor can
measure both the ambient infrared light and the reflected infrared light emitted
by the robot itself. Several new single sensors and complete modules, such as
a sterco-vision module and a gripper module, can be casily added, due to the
hardware and software modularity of the system.

Dedicated to Khepera, the simulated mobile robot (Michel, 1995) includes
eight infrared sensors (small rectangles) allowing it to detect by reflection the
proximity of objects in front of it, behind it, and to the right and left sides of it.
Each sensor returns a value ranging between 0 and 1023 represented in gradual
color levels. 0 means that no object is perceived whereas 1023 means that an
object is very close to the sensor (almost touching the scnsor). Intermediate
values may give an approximate idea of the distance between the sensor and the
object. Each motor can take a speed value ranging between —10 and +10. The
size of arrows on the motors in Figure 1 indicates the amount of speed.

3. Genetic fuzzy controller

In order to operate the robot introduced at the previous section, we have de-
veloped a fuzzy controller of which the internal parameters are adapted with
genetic algorithms. A fuzzy inference system provides a computing framework
based on the concepts of fuzzy sets, fuzzy if-then rules, and fuzzy reasoning. The
basic structure consists of a fuzzy rulebase, reasoning mechanism, and defuzzi-
fication mechanism. A fuzzy rulebase is a set of fuzzy rules that are expressed
as follows:

Rule 1: If (#1 is A]) and (@2 is A3) and ... and (z, is A}), then y is B!
Rule 2: If (z1 is A2) and (x5 is A2) and ... and (2, is A2), then y is B?

Rule m: If (#1 is A7) and (22 is AY') and ... and (z, is A7), then y is B™

where 2; (1 € j < n) are input variables, ¥ is output variable, and A‘; and B*
(1 <2 < m) are fuzzy sets which are characterized by membership functions.
In our simulation, the munbers of inpnt and output variables are cight and two,
respectively.

In order to facilitate the design of the controller, we adopt the following four
fuzzy sets for the input and output paramcters:
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Input : 8 values from infrared sensors (0 ~ 1023)
Fuzzy set : I = {VF, F, C, VC}
VF (Very Far)
F (Far)
C (Close)
VC (Very Close)

Output : 2 values from motors (—10 ~ +10)
Fuzzy set : O = {BH, B, F, FH}
BH (Backward High)
B (Backward)
F (Forward)
FH (Forward High)

The fuzzy sets could be simplified if we used partition of less munber of fuzzy
values, but the four values make the robot navigate smoothly. Even though the
fuzzy scts consist of four fuzzy values, the exact partitioning of input/output
spaces depends on membership fuuctions which are determined by genetic al-
gorithms in our approach. Triangular shapes specify the membership function.
A parameter value divides the range (0 ~ 1023 for input and —10 ~ +10 for
output) by ten equidistance segents.

For fuzzy inference we use correlation minimun method, which truncates
the consequent fuzzy region af the truth of the premise (IKosko, 1992). The
firing strength, j;, of the ith rule is defined as follows.

s = min(Lio(xo), Lin (1), -+ -, Lij(25), (1)

where j is the munber of input variables, and I;; is the fuzzy membership
function defined at the jth input variable of the ith rule.

Finally, centroid defuzzification method is adopted to vield the expected
value, g/, of the solution fuzzy region, as follows.

m —
Z,‘_:o Hili 9
= (2)
Zi:(} Hi
where 7; is the 4th domain valne. Figure 2 shows an example of the fuzzy

inference and defuzzification used in this paper. In this figure, rules 5 and 7 are
activated and produce two output values: 3 and 4.

*
Bi=

In order to robustly determine the shape and wunber of membership func-
tions in fuzzy rules, genetic algoritlun has been utilized. This approach reduces
the burden of human operators to decide the structure of fuzzy rules. Genetic
algorithm (GA) is considered as an effective method for optimization (Goldberg,
1989), and several hybrid methods with fuzzy logic have been recently proposcd.
Figure 3 shows the overall diagram of the proposed systemn,

The parameters in the fuzzy systemn are represented as a gene, and the per-
formance with the Khepera simulator decides whether it can produce offsprings
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Figure 2. An example of the fuzzy inference and defuzzification.
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Figure 3. Schematic diagram of the genetic fuzzy system.
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Figure 4. Gene code for encoding the fuzzy system.

with the genetic operators. In the figure, four genes of nmmbers 1, 2, 4 and 6
are selected as candidates for the next generation, and the crossover is applied
to them.

To get a suceess in the application of genetic algorithm, it is quite important
to devise a gene coding scheme appropriate to the problem. In this paper, we
should incorporate the input and output membership functions and the rules as
a gene code as shown in Figure 4 which encodes the cight input paramecters, two
output parameters and maximun 10 rules. For details on the gene encoding
scheme, sce the recent publication (Cho and Lee, 1998).

Another important issuc in the genetic algorithin is to determine a proper
fitness measure for the problem. In this paper we make the fitness function
decrease as the robot collides with the walls, and increase as it moves farther
from the start point. In addition, a couple of factors arc included to indnce
the compact fuzzy system by prefarring fo the sinaller mumber of rules and
membership functions. The fitness function is as follows.

fitness

a x no. of collisious (3)
[ x distance moved
4 % no. of rules

6 x no. of mewmbership functions

+ + + +

e x no. of check points reached,

where a = =3, f=1, vy = =100, § = —10, and e = 500.

The coefficients might be determined by another optimization technique,
but in this paper we have just sclected themn empirically,. The fitness would
increase as the robot goes farther from the start poiut while passing by more
check points. The fitness would decrease as the robot collides with the walls or
the munbers of rules and membership functions get larger. In order to expedite
the evolution, we put several check points along with the pathways which will
be removed later.
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Figure 5. Fitness change.

4. Simulation

The Khepera simulator has been written in C++ (Michel, 1995), and the sin-
ulation was conducted in SUN Sparc 10 workstation. We initialized 200 chro-
mosomes at random, each of which was developed to a fuzzy controller for the
robot. Each robot operates within 5000 sensor sampling time, and produces the
performance value according to the fitness function.

Figure 5 shows the best and average fitness changes in the course of simu-
lation. As the figure depicts, the performance increases as the generation goes,
and a robot navigated successfully at the given enviromment has been obtained
at less than 100 gencrations. It can be secen that the fitness is radically increased
at the beginning stage, but there is nearly no change after 90 generations except
some oscillation. This has occurred mainly hecause the elite preserving strategy
has not been incorporated in producing the next generation. The fitness jumps
to a high value when the robot can escape from the closed corridor. Around the
G7th generation the best individuals already perform a near optimal behavior.
They navigate smoothly not to bump into walls and corners, and maintain a
straight trajectory whenever it is possible.

Figure 6 shows the trajectories that the robot has made during the simula-
tion. These results are highly reliable and have been replicated in many ruus
of the experiment. In the beginning of the evolution the individuals evolved a
frontal direction of motion, corresponding to the side where more sensors are
available. Those individuals that moved in the other direction got stuck in a
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Figure 6. Trajectories of the robot.
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corner without being able to detect it, and soon disappeared from the popula-
tion. The controller for this robot consists of only seven effective rules, which
are generated through the evolutionary process as follows.

Rule 1: If (2 = C') and (r5 = VF) and (z7 = VC)
Then (yo = BH) and (y, = B)

Rule 2: If (x4 = VF)
Then (yo = FH) and (y; = F)

Rule 3: If (x; = VC) and (22 = F) and

(24 = C) and (z7 = VCO)

Then (yo = BH) aund (y; = B)

Rule 4: If (22 = F) aud (23 = F) and (26 = VC)
Then (yo = F) and (3 = FH)

Rule 5: If (z4 = V)
Then (yo = BH) and (y; = F)

Rule 6: If (zo0 = VF) and (24 = F) and (2 = VC)
Then (yo = F) and (31 = FH)

Rule 7: If (zg = VF) and (24 = F) and (25 = C)
Then (yo = BH) and (y; = F)

Even though we did not give any hints to the system, several effective rules
to control the mobile robot appropriately at a number of different cases have
emerged through the evelution. The overall behavioral model can be depicted
as Figure 7.

The rule 2 triggers the state of “Obstacle Avoidance,” the rules 2 and 7
cooperatively induce the state of “Wall Following,” and the rule 5 activates
the state of “Impact Avoidance.” This result dictates that the evolutionary
approach is quite useful to design a flexible and cfficient fuzzy systems to control
mobile robot.

For instance, Figure 8 shows the snapshots of the robot that escapes from
the closed corridor. When the robot arrives at the closed corridor the internal
state of the robot changes to “Impact Avoidance” which is governed by rule 5,
while the usual “Wall Following” state is activated by rules 2 and 7. Figure 9(a)
depicts the speed of the two motors with respect to the activation levels of rule
5. As can be seen from this figure, the robot turns left as soon as the rule 5 is
activated. Figure 9(b), (¢) and (d) show the changes of the sensor values, the
activation levels of the rules, and the speed of left and right motors, respectively.

5. Concluding remarks

Building a genetic fuzzy controller is by all means a consistent approach to the
problem of antomatically adapting the behavior of a mobile robot in a changing
enviromment. This paper has presented a fuzzy system to control the Khepera
robot, and utilized genctic algoritlhun to optimize the internal paramcters in
the system. A successful controller gencrated consists of only seven effective
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Figure 7. Behavior model for the robot evolved.
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Figure 8. Snapshots of the robot escaping from the closed corridor.
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Figure 9. Internal states of the robot in the closed corridor.
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rules, which shows the evolution finds out the optimal set of rules to control
the robot. The simulation result shows that the evolutionary approach is quite
useful to design a flexible and efficient fuzzy systems to control mobile robot.
Nevertheless, further efforts are required to deal with the stability issue of the
proposed controller.
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