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Abstract: In this paper an application of decision rules to func
tion representation in reinforcement learning is described. Rules are 
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periment investigating the performance of the system and results 
achieved are reported. 

Keywords: rough set theory, decision rules, reinforcement learn
ing, Q-learning. 

1. Introduction 

A reinforcement learning system (also called agent) learns by experimentation 
and does not require a teacher for proposing correct actions for all possible states 
the system may find itself in. The agent searches and tries out different actions 
for every state it encounters and selects the most useful ones according to its 
current knowledge. This search and selection process is guided by a reinforce
ment signal that is a performance evaluation feedback. Thus, unlike supervised 
learning, reinforcement learning is a class of problems where only very simple 
evaluative information, as opposed to instructive information, is available for 
learning (Sutton and Barto, 1998). The current knowledge of the agent is rep
resented as a real-valued function defined over state space or state-action pairs 
space. It is required for large spaces to use function approximator in order 
to save memory and allow generalization. The necessity of using efficient func
tion representation methods is especially important in problems with continuous 
space. There are several common methods of approximating learning function 
described in literature. Best known are: lookup table (Watkins and Dayan, 
1992), neural networks (Barto et al., 1983), CMAC (Watkins, 1989), memory
based function approximators (McCallum, 1996; Santamaria et al., 1996). One 
must note that much of the successful research in reinforcement learning has 



990 A. MICHALSKI 

lookup tables. Thus, most of them use representations, which require numerical 
computation to determine the agents' next act ion. However, it may be necessary 
to provide agents with symbolic representation to enable them, for instance, to 
exchange knowledge. 

This paper presents another function approximation approach based on de
cision rules, which establish symbolic representation. Rules are generated ac
cording to the method of rough set theory (Skowron, 1995). 

The rest of the paper is organized as follows. Section 2 presents a well
known reinforcement learning algorithm called Q-learning. In the subsequent 
section our learning method is described. Section 4 characterizes an evaluation 
experiment and provides results achieved in comparison with earlier approaches. 
The last section contains fi al conclusions and remarks. 

2. Standard Q-learning 

Reinforcement learning is a machine learning paradigm that approximates the 
conventional optimal control technique known as dynamic programming. Within 
this paradigm we have cont roller called the agent and the external world (also 
called environment) modeled as a discrete-time, finite state, Markov decision 
process. Each action of an agent is associated with a reward. The task of 
reinforcement learning is to maximize the long-term discounted reward per ac
tion. Our studies are based on the reinforcement learning agent that uses the 
one-step Q-learning algorithm (Watkins, 1989). In this algorithm, the agent 
decisioi1 policy is determined by state-action value function, Q, which estimates 
long-term discounted rewards for each state-action pair. However, the agent 
does not have such Q-function readily available from the beginning and it must 
learn such function using its own experience. Thus, the idea is to provide the 
agent with an initial estimate of the Q-function and let it decide the best action 
based on the current estimate. Then, the agent can use the outcome of each 
action (reward received) to asymptotically improve the estimate towards the op
timal action value. More s ecifically, given a current state x and the available 
actions ai, a Q-learning agent selects each action a using current, non-optimal 
estimate of the state-action value function. The action selected is the action 
leading to the best value at the current state. However, in order to enable the 
state space exploration the action is choosen randomly according to a given 
probability distribution. The agent than executes the chosen action, receives an 
immediate reward rand moves to the next state y. In each time step, the agent 
updates Q(x , a) (improves estimate for state-action pair (x, a)) by recursively 
discounting future utilities (next state-action values) and weigthing them by a 
positive learning rate a: 

Q(x, a) +- Q(x, a)+ a(r + rV(y)- Q(x , a)) 1 

1 f( x, .. ... x,) +- f( x, .. . .. x,) + {j means that the value of function f for arguments 
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Here 1 (0 :S 1 < 1) is a discount factor, and V(y) is given by: 

V(y) = max Q(y,b). 
bE {a;} 
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State-action value Q(x, a) is updated only when taking action a from state x but 
random action selection ensures that each action will be evaluated repeatedly. 

As the agent explores the state space, its estimate Q improves gradually, 
and, eventually, each state value, V(x), approaches: E{I:~=l 1 11

-
1rt+n}, the 

discounted expected sum of rewards. Here, rt is the reward received at time t 
due to the action chosen at time t- 1. It was shown in Watkins and Dayan 
(1992) that Q-learning algorithm converges to an optimal decision policy for 
a finite Markov decision process and Q-function represented as a lookup table. 
Each state-action pair in such representation is associated with only one memory 
location and each such location is used to store the current estimate of the value 
associated with that pair. Thus, the above update equation has the form: 

Q(x, a)= Q(x, a)+ o:(r + 1V(y)- Q(x, a)). 

3. Learning algorithm 

The learning method presented (Fig. 1) is based on the above-described Q
learning algorithm (Watkins, 1989). As we already know, it requires learning 
of only one function, assigning to each state-action pair (.1:, a) a utility of per
forming action a in state .7:, called action utility or Q-value. 

Our main idea is to maintain a set of instances representing historical in
formation. This is a memory of past experiences, where each instance Sj has 
a structure Sj = (xj, aj, Q j) (i.e. state-action pair and current estimate of its 
Q-value) . We use these instances to generate all possible decision rules accord
ing to the rough set method of Skowron (1995) based on discernibility matrix. 
Another alternative is to generate rules covering the decision classes, and not 
all rules . These methods are have been implemented, e.g., in LERS (Grzymala
Busse, 1992) and ROSETTA systems (Ohrn and Komorowski, 1997). 

Since we generate all rules, many rules can be derived from a single instance 
and a single rule can be obtained from many instances. Instead of generating 
rules every time a new instance is added to memory, the agent does it every P 
step of simulation run. This limits its computational load and prevents it from 
spending most of the time on generating sets of new rules slightly different from 
old ones. 

With each rule r·i a real value u' called utility of rule is associated, depending 
on Q-value of instances in memory, from which the rule was derived. Utility of 
each new rule is computed as a minimum of the Q-values of all instances from 
which the rule was obtained (step 5). The minimal value was chosen to avoid 
overestimating initial utilities, which can slow down learning process. 

When the agent is about to choose an action it finds a set of rules matched 
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Let: 
M(x,a) = {r; I MATCHES(r;,x,a)}, m = IM(x,a)l 
MEM = {s; Is;= (x;,a;,Q;)} 

Set parameters: a,/, INIT_V AL 
Ro := {r; I r; is the most general rule} 
£:=0, MEM:=0 

At each time step t: 
1. Observe current state Xt 
2. Select an action at for state Xt using the action utilities Q(xt, a) 

for each a established by the following rule: 
if IM(xt, a)l > 0 then 

(a) Q(xt, a) := uk where uk =max{ u' lr; E M(xt, a)} 
else 
if (3s; EM EM)(x; = Xt 1\ a; =at) then 

(b) Q(xt,a):=Q; 
else 

(c) Q(xt,a) := INIT_VAL 
endif 

3. Perform action at ; observe new state Xt+I 
and immediate reinforcement rnft 

4. Update utilities according to the following rule: 
if IM(xt,at)l > 0 then 

for each ruler; E M (xt, at) : 

(a) u' := { u' + a(rnft + 1 maxa Q(xt+1, a)- u ' ) fori= k 
u' + a(r maxa Q(xt+I, a)- u') otherwise 

endfor 
if ( -.3sl E M EM) such that (xl = Xt 1\ al = at) then 

L := LU {(xt,at,uk)} 
endif 

else 
(b) Q(xt, at) := Q(xt, at)+ a(rnft + 1 maxa Q(xt+J, a)- Q(xt, at)) 

if ( -.3sl E M EM) such that (xl = Xt 1\ a1 = at) then 
L := L U { (xt, at, Q(xt, at))} 

end if 
end if 

5. After every P steps: 
Rn+1 := GENERATKRULES(Rn,MEM,L) 
with utility ui of each new decision rule Tj (e.g. Tj E Rn+l 1\ Tj rf. Rn ) 
calculated according to t he following rule: 

ui :::: min{Q;Is; E MEM U L 1\ MATCHES(rj , x;, a;)} 
Then: 

MEM := MEMUL, L :=0 
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(step 2a). Using the individual rules utilities the agent calculates Q-value of 
each action in the current situation as a maximum from the m matched rules: 

Q(xt,a) = max{u; I MATCHES(r;,Xt,a)}. 

Since, according to the Q-learning algorithm (the current decision policy, to 
be exact), the agent chooses the action with the highest Q-value, only one rule 
rk must be selected, which suggests the subsequent action. If there are more 
rules matched with the same action and identical utility one is chosen arbitrary. 
There is also some random exploration based on a normal distribution, which 
is used during action selection. 

As stated above, we generate rules after every P steps. Therefore, there 
may be quite new- with regard to random exploration we use- state-action 
pairs, which do not match any rule (steps 2b and 4b ). In this situation, each 
new instance added into memory is treated as a lookup table element (Watkins, 
1989), as long as new rules will be derived from it. Therefore, its Q-value 
calculations and modifications are performed on a single table element only 
(Step 4b). 

After the agent receives reinforcement (step 3), Q-learning modification of 
utilities is performed. Utilities of those instances in memory, for which decision 
rules have not been generated yet, are modified according to the standard update 
rule (step 4b) (Watkins and Dayan, 1992). The modification of decision rule 
utilities, however, refers only to those of the m matched rules, which suggested 
the same action as the chosen rule rk (step 4a). The modification is implemented 
as the update of individual utilities u' for all rules matched by current state
action pair as prescribed by the following rule: 

u' = { u~ + a(rnft + 1 maxa Q(xt+l, a)- u') 
u' + a(Tmaxa Q(xt+l,a)- u•) 

fori= k 
otherwise 

where a is a learning rate, rnft is received reinforcement and 1 is a discount 
factor. The utilities of the other rules are not updated . 

4. Simulat ion results 

The cart-pole balancing problem, also called the inverted pendulum problem, 
is the control problem we decided to use in order to present the performance of 
our method. The pole balancing task has been studied by Burto, Sutton and 
Anderson (Barto et al., 1983) and others. The task involves a wheeled cart on a 
track, with a pole hinged to the top of the cart. At each time step (0.02 second 
interval) the controller (or agent) must decide whether the cart should apply a 
force to the left or to the right, in order to keep the pole balanced vertically. 
The trial is judged a failure when the pole falls too far (2: 12 degrees) to either 
the left or the right , or when the cart falls off the track (cart position , in meters, 
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four system state variables (the position of the cart on t he track, the velocity 
of the cart, t he angle of the pole with the vertical, the angular velocity of the 
pole) and a reinforcement signal of -1 when a trial fails. The output of the 
controller is a binary value indicating a push on the cart to the left or to the 
right. The pole balancing is a relatively hard problem with a long reinforcement 
delay, because the agent receives non-zero reinforcement only at the end of each 
trial, i.e. after a failure. Even at the beginning of learning, with a very poor 
policy, a trial may continue for hundreds of time steps, and there may be many 
steps between a bad action and the resulting failure. 

We implemented the pole and cart dynamics according to the equations given 
in Barto et al. (1983). In order to deal with the continuous state space of cart
pole system we divided it into disjoint regions. The quantization thresholds are 
also the same as used in Barto et al. (1983) and yield 162 regions. The values 
of the Q-learning parameters were as follows: the learning rate a: was set to 
0.50 and the discount factor 1 was set to 0.999. We also replicated exploration 
strategy used during action selection from Barto et al. (1 983), and set the value 
of (3 to 0.01. The generation period P for rule generation was roughly optimized 
by a small number of preliminary runs and equal P = 500. Action utilities of 
new state-action pairs were initialized at 0.00. Our approach was compared to 
the standard version of Q-learning with lookup table function approximation. 
The values of learning parameters were all the same as for our method. 
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Figure 2. Learning curves for Q-learning with lookup table and decision rules 
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Our experiments consisted of 30 runs with different random initialization 
seeds. Each run continued for 1500 trials. The criterion for a successful run was 
learning to keep the pole balanced for a trial of 100,000 steps. Therefore, some 
of individual runs were terminated before completing 1500 trials . To produce 
reliable averages for all1500 trials, fictitious remaining trials were added to such 
run, with the duration equal to the last, after which the run was terminated. 
The results are plotted as the average duration (number of time steps) of the 
previous 50 consecutive trials versus the trial number. 

The results obtained are presented in Fig. 2. As we see, our method (with 
decision rules) achieved a much better performance level when compared to 
the standard Q-learning algorithm with lookup table representation, as to the 
quality of the final policy, and slightly worse level, as to the learning speed. 
It seems that there are two reasons for slower learning. First, we must take 
into account that the initial phase of our algorithm required gathering of data 
for the first rule generation. In the experiment presented each run started out 
with completely general set of rules to cover all possible states. Thus, the 
system always makes random moves at first. Second, there is a difficulty in 
proper action selection, which stems from the number of rules generated. Since 
all possible rules are generated, it takes too much time to establish optimal 
utilities for them during later stages of learning so as to differentiate between 
redundant and essential rules. 

5. Concluding remarks 

First, we should emphasize that presented algorithm is probably not the only 
combination of the rough set method of rule generation and the reinforcement 
learning. We feel, however, that the results achieved are very promising, even 
if there are several deficiencies. The main one is that the algorithm presented 
generates all rules without any selection mechanism. Since we use the rough 
set method, the number of rules can be huge and computational requirements 
high in general case. Thus, we need another method of rule generation or we 
should modify the method used. Scope classification, for instance, presented 
in Lachiche and Marquis (1998) would proYide one possible solution to this 
problem. There are also other modifications of the presented algorithm, which 
should be considered. For example, using the Variable Precision Rough Set 
model (VPRS) (Ziarko, 1993) instead of standard rough sets would enable us to 
generate imprecise rules. Given such representation, better adaptation to the 
underlying state-action space might be achieved. These and other improvements 
will be the subject for future work. 
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