
Control and Cybernetics

vol. 29 (2000) No. 4

An application of decision rules
in reinforcement learning

by

A. M ichalski

Institute of Computing Science, Poznan University of Technology,
Piotrowo 3a, 60-965 Poznan

e-mail: michalsk@sol.put.poznan.pl

Abstract: In this paper an application of decision rules to func
tion representation in reinforcement learning is described. Rules are
generated incrementally by method based on rough set theory from
instances recorded in state-action-Q-value memory. Simulation ex
periment investigating the performance of the system and results
achieved are reported.

Keywords: rough set theory, decision rules, reinforcement learn
ing, Q-learning.

1. Introduction

A reinforcement learning system (also called agent) learns by experimentation
and does not require a teacher for proposing correct actions for all possible states
the system may find itself in. The agent searches and tries out different actions
for every state it encounters and selects the most useful ones according to its
current knowledge. This search and selection process is guided by a reinforce
ment signal that is a performance evaluation feedback. Thus, unlike supervised
learning, reinforcement learning is a class of problems where only very simple
evaluative information, as opposed to instructive information, is available for
learning (Sutton and Barto, 1998). The current knowledge of the agent is rep
resented as a real-valued function defined over state space or state-action pairs
space. It is required for large spaces to use function approximator in order
to save memory and allow generalization. The necessity of using efficient func
tion representation methods is especially important in problems with continuous
space. There are several common methods of approximating learning function
described in literature. Best known are: lookup table (Watkins and Dayan,
1992), neural networks (Barto et al., 1983), CMAC (Watkins, 1989), memory
based function approximators (McCallum, 1996; Santamaria et al., 1996). One
must note that much of the successful research in reinforcement learning has

990 A. MICHALSKI

lookup tables. Thus, most of them use representations, which require numerical
computation to determine the agents' next act ion. However, it may be necessary
to provide agents with symbolic representation to enable them, for instance, to
exchange knowledge.

This paper presents another function approximation approach based on de
cision rules, which establish symbolic representation. Rules are generated ac
cording to the method of rough set theory (Skowron, 1995).

The rest of the paper is organized as follows. Section 2 presents a well
known reinforcement learning algorithm called Q-learning. In the subsequent
section our learning method is described. Section 4 characterizes an evaluation
experiment and provides results achieved in comparison with earlier approaches.
The last section contains fi al conclusions and remarks.

2. Standard Q-learning

Reinforcement learning is a machine learning paradigm that approximates the
conventional optimal control technique known as dynamic programming. Within
this paradigm we have cont roller called the agent and the external world (also
called environment) modeled as a discrete-time, finite state, Markov decision
process. Each action of an agent is associated with a reward. The task of
reinforcement learning is to maximize the long-term discounted reward per ac
tion. Our studies are based on the reinforcement learning agent that uses the
one-step Q-learning algorithm (Watkins, 1989). In this algorithm, the agent
decisioi1 policy is determined by state-action value function, Q, which estimates
long-term discounted rewards for each state-action pair. However, the agent
does not have such Q-function readily available from the beginning and it must
learn such function using its own experience. Thus, the idea is to provide the
agent with an initial estimate of the Q-function and let it decide the best action
based on the current estimate. Then, the agent can use the outcome of each
action (reward received) to asymptotically improve the estimate towards the op
timal action value. More s ecifically, given a current state x and the available
actions ai, a Q-learning agent selects each action a using current, non-optimal
estimate of the state-action value function. The action selected is the action
leading to the best value at the current state. However, in order to enable the
state space exploration the action is choosen randomly according to a given
probability distribution. The agent than executes the chosen action, receives an
immediate reward rand moves to the next state y. In each time step, the agent
updates Q(x , a) (improves estimate for state-action pair (x, a)) by recursively
discounting future utilities (next state-action values) and weigthing them by a
positive learning rate a:

Q(x, a) +- Q(x, a)+ a(r + rV(y)- Q(x , a)) 1

1 f(x, x,) +- f(x, x,) + {j means that the value of function f for arguments

An application of decision rules in reinforcement learning

Here 1 (0 :S 1 < 1) is a discount factor, and V(y) is given by:

V(y) = max Q(y,b).
bE {a;}

991

State-action value Q(x, a) is updated only when taking action a from state x but
random action selection ensures that each action will be evaluated repeatedly.

As the agent explores the state space, its estimate Q improves gradually,
and, eventually, each state value, V(x), approaches: E{I:~=l 1 11

-
1rt+n}, the

discounted expected sum of rewards. Here, rt is the reward received at time t
due to the action chosen at time t- 1. It was shown in Watkins and Dayan
(1992) that Q-learning algorithm converges to an optimal decision policy for
a finite Markov decision process and Q-function represented as a lookup table.
Each state-action pair in such representation is associated with only one memory
location and each such location is used to store the current estimate of the value
associated with that pair. Thus, the above update equation has the form:

Q(x, a)= Q(x, a)+ o:(r + 1V(y)- Q(x, a)).

3. Learning algorithm

The learning method presented (Fig. 1) is based on the above-described Q
learning algorithm (Watkins, 1989). As we already know, it requires learning
of only one function, assigning to each state-action pair (.1:, a) a utility of per
forming action a in state .7:, called action utility or Q-value.

Our main idea is to maintain a set of instances representing historical in
formation. This is a memory of past experiences, where each instance Sj has
a structure Sj = (xj, aj, Q j) (i.e. state-action pair and current estimate of its
Q-value) . We use these instances to generate all possible decision rules accord
ing to the rough set method of Skowron (1995) based on discernibility matrix.
Another alternative is to generate rules covering the decision classes, and not
all rules . These methods are have been implemented, e.g., in LERS (Grzymala
Busse, 1992) and ROSETTA systems (Ohrn and Komorowski, 1997).

Since we generate all rules, many rules can be derived from a single instance
and a single rule can be obtained from many instances. Instead of generating
rules every time a new instance is added to memory, the agent does it every P
step of simulation run. This limits its computational load and prevents it from
spending most of the time on generating sets of new rules slightly different from
old ones.

With each rule r·i a real value u' called utility of rule is associated, depending
on Q-value of instances in memory, from which the rule was derived. Utility of
each new rule is computed as a minimum of the Q-values of all instances from
which the rule was obtained (step 5). The minimal value was chosen to avoid
overestimating initial utilities, which can slow down learning process.

When the agent is about to choose an action it finds a set of rules matched

992 A. MICHALSKI

Let:
M(x,a) = {r; I MATCHES(r;,x,a)}, m = IM(x,a)l
MEM = {s; Is;= (x;,a;,Q;)}

Set parameters: a,/, INIT_V AL
Ro := {r; I r; is the most general rule}
£:=0, MEM:=0

At each time step t:
1. Observe current state Xt
2. Select an action at for state Xt using the action utilities Q(xt, a)

for each a established by the following rule:
if IM(xt, a)l > 0 then

(a) Q(xt, a) := uk where uk =max{ u' lr; E M(xt, a)}
else
if (3s; EM EM)(x; = Xt 1\ a; =at) then

(b) Q(xt,a):=Q;
else

(c) Q(xt,a) := INIT_VAL
endif

3. Perform action at ; observe new state Xt+I
and immediate reinforcement rnft

4. Update utilities according to the following rule:
if IM(xt,at)l > 0 then

for each ruler; E M (xt, at) :

(a) u' := { u' + a(rnft + 1 maxa Q(xt+1, a)- u ') fori= k
u' + a(r maxa Q(xt+I, a)- u') otherwise

endfor
if (-.3sl E M EM) such that (xl = Xt 1\ al = at) then

L := LU {(xt,at,uk)}
endif

else
(b) Q(xt, at) := Q(xt, at)+ a(rnft + 1 maxa Q(xt+J, a)- Q(xt, at))

if (-.3sl E M EM) such that (xl = Xt 1\ a1 = at) then
L := L U { (xt, at, Q(xt, at))}

end if
end if

5. After every P steps:
Rn+1 := GENERATKRULES(Rn,MEM,L)
with utility ui of each new decision rule Tj (e.g. Tj E Rn+l 1\ Tj rf. Rn)
calculated according to t he following rule:

ui :::: min{Q;Is; E MEM U L 1\ MATCHES(rj , x;, a;)}
Then:

MEM := MEMUL, L :=0

An application of decision rules in reinforcement learning 993

(step 2a). Using the individual rules utilities the agent calculates Q-value of
each action in the current situation as a maximum from the m matched rules:

Q(xt,a) = max{u; I MATCHES(r;,Xt,a)}.

Since, according to the Q-learning algorithm (the current decision policy, to
be exact), the agent chooses the action with the highest Q-value, only one rule
rk must be selected, which suggests the subsequent action. If there are more
rules matched with the same action and identical utility one is chosen arbitrary.
There is also some random exploration based on a normal distribution, which
is used during action selection.

As stated above, we generate rules after every P steps. Therefore, there
may be quite new- with regard to random exploration we use- state-action
pairs, which do not match any rule (steps 2b and 4b). In this situation, each
new instance added into memory is treated as a lookup table element (Watkins,
1989), as long as new rules will be derived from it. Therefore, its Q-value
calculations and modifications are performed on a single table element only
(Step 4b).

After the agent receives reinforcement (step 3), Q-learning modification of
utilities is performed. Utilities of those instances in memory, for which decision
rules have not been generated yet, are modified according to the standard update
rule (step 4b) (Watkins and Dayan, 1992). The modification of decision rule
utilities, however, refers only to those of the m matched rules, which suggested
the same action as the chosen rule rk (step 4a). The modification is implemented
as the update of individual utilities u' for all rules matched by current state
action pair as prescribed by the following rule:

u' = { u~ + a(rnft + 1 maxa Q(xt+l, a)- u')
u' + a(Tmaxa Q(xt+l,a)- u•)

fori= k
otherwise

where a is a learning rate, rnft is received reinforcement and 1 is a discount
factor. The utilities of the other rules are not updated .

4. Simulat ion results

The cart-pole balancing problem, also called the inverted pendulum problem,
is the control problem we decided to use in order to present the performance of
our method. The pole balancing task has been studied by Burto, Sutton and
Anderson (Barto et al., 1983) and others. The task involves a wheeled cart on a
track, with a pole hinged to the top of the cart. At each time step (0.02 second
interval) the controller (or agent) must decide whether the cart should apply a
force to the left or to the right, in order to keep the pole balanced vertically.
The trial is judged a failure when the pole falls too far (2: 12 degrees) to either
the left or the right , or when the cart falls off the track (cart position , in meters,

994 A. MICHALSKI

four system state variables (the position of the cart on t he track, the velocity
of the cart, t he angle of the pole with the vertical, the angular velocity of the
pole) and a reinforcement signal of -1 when a trial fails. The output of the
controller is a binary value indicating a push on the cart to the left or to the
right. The pole balancing is a relatively hard problem with a long reinforcement
delay, because the agent receives non-zero reinforcement only at the end of each
trial, i.e. after a failure. Even at the beginning of learning, with a very poor
policy, a trial may continue for hundreds of time steps, and there may be many
steps between a bad action and the resulting failure.

We implemented the pole and cart dynamics according to the equations given
in Barto et al. (1983). In order to deal with the continuous state space of cart
pole system we divided it into disjoint regions. The quantization thresholds are
also the same as used in Barto et al. (1983) and yield 162 regions. The values
of the Q-learning parameters were as follows: the learning rate a: was set to
0.50 and the discount factor 1 was set to 0.999. We also replicated exploration
strategy used during action selection from Barto et al. (1 983), and set the value
of (3 to 0.01. The generation period P for rule generation was roughly optimized
by a small number of preliminary runs and equal P = 500. Action utilities of
new state-action pairs were initialized at 0.00. Our approach was compared to
the standard version of Q-learning with lookup table function approximation.
The values of learning parameters were all the same as for our method.

70000

60000
;:j . :.;-- !

/

50000

.s:::. ...
Cl 40000 c:
CP

...1
c; 30000
~

20000
--+- Lookup table

' I· Decision rules
10000

0 ~~~~--~~--~--~~------~~------~--~-.~

0 1 00 200 300 400 500 600 700 800 900 1 000 11 00 1200 1300 1400 1500

Trial

Figure 2. Learning curves for Q-learning with lookup table and decision rules

An application of decision rules in reinforcement learning 995

Our experiments consisted of 30 runs with different random initialization
seeds. Each run continued for 1500 trials. The criterion for a successful run was
learning to keep the pole balanced for a trial of 100,000 steps. Therefore, some
of individual runs were terminated before completing 1500 trials . To produce
reliable averages for all1500 trials, fictitious remaining trials were added to such
run, with the duration equal to the last, after which the run was terminated.
The results are plotted as the average duration (number of time steps) of the
previous 50 consecutive trials versus the trial number.

The results obtained are presented in Fig. 2. As we see, our method (with
decision rules) achieved a much better performance level when compared to
the standard Q-learning algorithm with lookup table representation, as to the
quality of the final policy, and slightly worse level, as to the learning speed.
It seems that there are two reasons for slower learning. First, we must take
into account that the initial phase of our algorithm required gathering of data
for the first rule generation. In the experiment presented each run started out
with completely general set of rules to cover all possible states. Thus, the
system always makes random moves at first. Second, there is a difficulty in
proper action selection, which stems from the number of rules generated. Since
all possible rules are generated, it takes too much time to establish optimal
utilities for them during later stages of learning so as to differentiate between
redundant and essential rules.

5. Concluding remarks

First, we should emphasize that presented algorithm is probably not the only
combination of the rough set method of rule generation and the reinforcement
learning. We feel, however, that the results achieved are very promising, even
if there are several deficiencies. The main one is that the algorithm presented
generates all rules without any selection mechanism. Since we use the rough
set method, the number of rules can be huge and computational requirements
high in general case. Thus, we need another method of rule generation or we
should modify the method used. Scope classification, for instance, presented
in Lachiche and Marquis (1998) would proYide one possible solution to this
problem. There are also other modifications of the presented algorithm, which
should be considered. For example, using the Variable Precision Rough Set
model (VPRS) (Ziarko, 1993) instead of standard rough sets would enable us to
generate imprecise rules. Given such representation, better adaptation to the
underlying state-action space might be achieved. These and other improvements
will be the subject for future work.

Acknowledgements. This work was supported by the grant 8T11A 020 016

996 A. MICHALSKI

References

BARTO, A. G., SUTTON, R.S. and ANDERSON, C.W. (1983) Neurolike elements
that can solve difficult learning control problems. IEEE SMC, 13, 835-
846.

BRADTKE, S.J . (1993) Reinforcement learning applied to linear quadratic regu
lation. In: Advances in Neural Information Processing Systems 5. Morgan
Kaufmann, Los Altos.

GRZYMALA-BUSSE, W. (1992) LERS-A system for learning from examples
based on rough sets. In: Slowinski, R., ed., Intelligent Decision Support.
Handbook of Applications and Advances of the Rough Set Theory. Kluwer
Academic Publishers, Dordrecht, 3- 18.

LACHICHE, N. and MARQUIS, P . (1998) Scope Classification: An Instance
Based Learning Algorithm with a Rule-Based Characterisation. In: Pro
ceedings of the 10th European Conference on Machine Learning , Chem
nitz, Germany. LNAI 1398, Springer-Verlag.

McCALLUM, R.A. (1996) Hidden state and reinforcement learning with inst
ance-based state identification. IEEE Tans. on System, Man, and Cyber
netics, 26 (3) (Special Issue on Learning Autonomous Robots).

0HRN, A. and KOMOROWSKI, J. (1997) Rosetta- A Rough Set Toolkit for
Analysis of Data. In: Proc. Third International Joint Conference on In
formation Sciences, Durham, NC, USA, March 1-5, Vol. 3, 403-407.

SANTAMARIA, J.C., SUTTON, R.S . and RAM, A. (1996) Experiments with
Reinforcement Learning in Problems with Continuous State and Action
Spaces. COINS Technical Report 96-088. University of Massachusetts,
Amherst.

SKOWRON, A. (1995) Extracting Laws from Decision Tables: A Rough Set Ap
proach. Computational Intelligence, 11 (2), 371-388.

SUTTON, R.S. and BARTO, A.G. (1998) Reinforcement Learning: An Introduc
tion. MIT Press, Cambridge.

WATKINS, C.J.C.H. (1989) Learning from Delayed Rewards. PhD thesis, Kings
College, Univ. of Cambridge, England.

WATKINS, C.J.C.H. and DAYAN, P. (1992) Technical Note: Q-learning. Ma
chine Learning, 8, 279-292.

ZIARKO, W . (1993) Variable Precision Rough Set Model. Journal of Computer
and System Sciences , 46 (1) , 39- 59.

