Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper we present in the algebraic setting an intersection algorithm considered by Tworzewski [22], which is a local analytic counterpart of the Stueckrad-Vogel intersection algorithm from global algebraic geometry (cf. [20, 5)]. Some other local algebraic counterparts have been investigated by Achilles and Manaresi [1, 2]. The main purpose is to provide in this analytic context the significant method of deformation to the normal cone, which is one of the most powerful tools of intersection theory (cf. [4, 5, 2, 10]). For some important refinements and applications of this method we refer the reader to our next article [11].
Wydawca
Rocznik
Tom
Strony
121--130
Opis fizyczny
Bibliogr. 26 poz.,
Twórcy
autor
- Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
Bibliografia
- [1] R. Achilles, M. Manaresi, Multiplicity for ideals of maximal analytic spread and intersection theory, J. Math. Kyoto Univ., 33 (1993) 1029-1046.
- [2] R. Achilles, M. Manaresi, Multiplicities of a bigraded ring and intersection theory, Math. Ann., 309 (1997) 573-591.
- [3] E. M. Chirka, Complex analytic sets, Kluwer Acad. Publ., Boston 1989.
- [4] W. Fulton, Intersection theory, Springer, Berlin 1984.
- [5] L. J. van Gastel, Excess intersections and a correspondence principle, Invent. Math., 103 (1991) 197-221.
- [6] M. Gerstenhaber, On the deformations of rings and algebras, Ann. Math., 84 (1966) 1-19.
- [7] S. Łojasiewicz, Introduction to complex analytic geometry, Birkhäuser, Basel 1991.
- [8] H. Matsumura, Commutative ring theory, Cambridge Univ. Press, Cambridge 1994.
- [9] M. Nagata, Local rings, Interscience Publishers, New York 1962.
- [10] K. J. Nowak, An algebraic approach to multiplicities for analytic improper intersections, preprint 1998/07, IMUJ, Kraków.
- [11] K. J. Nowak, Analytic improper intersections II: deformation to an algebraic bicone and applications, Bull. Pol. Ac.: Math., this issue, pp. 131-140.
- [12] D. Rees, Valuations associated with a local ring, J. London Math. Soc., 31 (1956) 228-235.
- [13] P. Samuel, La notion de multiplicity en algèbre et en géométrie algèbrigue, J. Math. Pures Appl., 30 (1951) 159-274.
- [14] P. Samuel, Algebre locale, Memorial Sci. Math., 123, Gauthier-Villars, Paris 1953.
- [15] P. Samuel, Méthodes d'algèbre abstraite en géométrie algèbrigue, Ergeb. Math. Grenzgeb. 4, Springer, Berlin 1955.
- [16] P. Schenzel, Ngo Viet Trung, Nguyen Tu Cuong, Verall-gemeinerte Cohen-Macaulay Moduln, Math. Nachr., 85 (1978) 57-73.
- [17] B. Segre, Nuovi metodi e resultati nella geometria sulle varieta algebriche, Ann. di Mat., 35 (1953) 1-128.
- [18] F. Severi, Introduzione alla geometria algebrica, Roma 1947.
- [19] F. Severi, Il concetto generale di molteplicitei delie soluzioni pei sistemi di equazioni algebriche e la teoria dell'eliminazione, Ann. di Mat. (4), 26 (1947) 221-270.
- [20] J. Stückrad, W. Vogel, An algebraic approach to the intersection theory. In: The curves seminar at Queen's Univ., Vol. II, 1-32, Queen's Papers Pure Appl. Math., Kingston 1982.
- [21] J. Stückrad, W. Vogel, Buchsbaum rings and applications, Springer Berlin 1986.
- [22] P. Tworzewski, Intersection theory in complex analytic geometry, Ann Polon. Math., 62 (2) (1995) 177-191.
- [23] P. Tworzewski, T. Winiarski, Continuity of intersection of analytic sets, Ann. Polon. Math., 42 (1983) 387-393.
- [24] A. Weil, Foundations of algebraic geometry, 1946, Revised and enlarged edition, Amer. Math. Soc. Coll. Publ., 29 (1962).
- [25] H. Whitney, Complex analytic varieties, Addison-Wesley, Reading, Mass 1972.
- [26] O. Zariski, P. Samuel, Commutative algebra, Vols. I and II, Van Nostrand, Princeton 1958,1960.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT2-0001-0071
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.