
Control and Cybernetics

val. 29 (2000) No. 4

An algorithm for finding most likely explanations in
valuation based systems

by

Slawomir T. Wierzchon 1•2 and Mieczyslaw A. Klopotek1•3•4

1 Institute of Computer Science, Polish Academy of Sciences
2Dept of Computer Science, Bialystok University of Technology

3Dept. of Computer Science, University of Podlasie
4Institute of Mathematics, Warsaw University of Technology

e-mail: { stw ,klopotek} @ipipan. waw. pl

Abstract: A method for finding a number of best explanations
in so-called valuation based system is presented. Roughly speaking,
the method allows to sort (decreasingly or increasingly) a function of
many variables without explicit computation of values of this func
tion. The only condition is that the function be decomposable, i.e.
can be expressed as a combination of a number of low-dimensional
functions called components. Two cases are considered: the combi
nation operator has an inverse and a more elaborated case when the
combination operator has no inverse.

K eywords: probabilistic reasoning, bayesian networks, valua
tion based systems, most probable configurations.

1. Introduction

The idea of graphical expert systems, called also bayesian networks (BN) was
initiated by Pearl (1986), and worked-out by Lauritzen and Spiegelhalter (1988) .
Its generalization to different uncertainty formalisms was proposed by Shenoy
(1989) under the name of valuation based systems (VBS in short).

In the probabilistic context knowledge about interrelationships among vari
ables from a fixed set X is represented on the qualitative level by a directed
acyclic graph G and on the quantitative level by a set of conditional probabili
ties (consult, e.g., Pearl, 1986, for a rigorous definition).

Finding i ~ 1 probable explanations in a BN is equivalent to an optimiza
tion problem of identifying a set of configurations x1 , ... , xi such that P(x1) =
maxxEX ~ P(x2

) = maxxEX -{x'} ... ~ P(xi) = maxxEX -{x',x2, ... ,n•-J}, where
P is the joint probability distribution represented by the BN. We call x1 the
most probable explanation (MPE), and x2 , ... , xi- probable explanations or
probable configurations. Partial ordering of the probable configurations is im-

922 S.T. WIERZCHON, M.A. KLOPOTEK

assessment of certain design methodologies, Sy (1989), Keramaris and Sy (1990).
Its importance in such formalism like dynamical programming (a special case
of VBS) is obvious-cf. Wierzchon (1994).

The problem of finding the total ordering of configurations is NP-hard, Yen
(1990), Pal et al. (1992). Also the problem of finding several most probable
configurations is generally NP-hard, Cooper (1990). Previously, two general
approaches were proposed to handle t he complexity of the task. One is to re
strict the type of the network to be dealt with to the so-called singly connected
network, Sy (1993), Henrion (1990), or bipartite graph, Wu (1990). Another
approach is to shift the complexity to spatial domain in order to keep the com
putational complexity in a linear order. For example, Shimony and Charniak
(1990) convert a Bayesian belief network into a Weight Boolean Function Di
rected Acyclic Graph (WBFDAG) which permits the use of best-first search
strategy. This method maintains a linear time with respect to the size of the
graph, but the number of nodes in a WBFDAG could be exponential as com
pared to the original network. Several algorithms have been also elaborated for
the special task of finding only MPE, based on integer programming, and also
on some modifications of the message-passing algorithm of Shenoy and Shafer
(1996).

For singly connected networks, when no compromise is made between spa
tial and time complexity, a efficient algorithm for finding the first two probable
configurations has been developed by Pearl (1988). The basic idea of Pearl's al
gorithm is that each node in a network is associated with a causal and diagnostic
function, through which the largest values of these functions will propagate to
each other for obtaining the information needed to compute P(x1). Sy (1993),
proposed an efficient computational method for obtaining w probable configu
rations in a singly connected network. The algorithm involves essentially a kind
of message passing process.

However, methods developed for singly connected networks fail for multiply
connected networks. One possible way out of this problem would be to create
compound variables (combining several variables into one) in order to obtain
a singly connected graph, Pearl (1988). However, the computational load of
processing the compound variable is exponentially increased . A similar approach
would be to generalize Sy's approach to joint tree representation of a Bayesian
network. (Consult Jensen, 1996, for appropriate definitions). To overcome
the problems occurring w en a junction tree must be computed, Wierzchon,
Klopotek and Michalewicz (1997) proposed another, genetic, approach to solve
this problem within the general framework of VBS's. Some successful solution
to the problem of finding probable configurations in junction trees was proposed
recently by Seroussi and Golmard (1994) and Nilsson (1996). Particularly the
last solution seems to be especially attractive.

In this paper we study the problem of finding the first i ;::::: 1 probable expla
nations (configurations) in a VBS. Section 2 is a rigorous problem formulation.

Finding most likely explanations 923

the nonserial dynamic programming introduced by Bertele and Brioschi (1972),
and the explanation process is just the optimization, in the rest of the paper
we will use the terms "function" (instead of "valuation") and we will speak
about optimization. Section 3 is devoted to the mechanics of finding the first
explanation- it introduces Shenoy's methodology. To better understand this
mechanics we use a simple optimization example with combination realized in
terms of standard addition. It is simpler to add integers than, for instance,
multiply real numbers. Knowing the best explanation we are ready to compute
further explanations. This problem is divided into two parts. First, in Section 4
we discuss the problem of finding the second best explanation, and we generalize
it in Section 5 to finding the next explanation. Furthermore, in Section 4 we
show a solution to the problem when combination has no inverse. Finally, in
Section 6 we summarize the algorithm.

2. Problem formulation

Let X = {X 1, .. . , Xn} be a set of variables with discrete domains D1, .. . , Dn,
respectively. Let D stand for the Cartesian product of these domains, D =
D 1 x ... x Dn; it represents the space of total configurations. Suppose H =
{H1, ... , Hk} is a family of subsets of X, and D(Hi) is the Cartesian product of
the domains of variables in Hi. If x E D then x.Hi stands for the projection of
the configuration x onto the set of variables Hi. In the sequel we will write alter
natively fi(Hi) to show that fi is simply a function of variables specified in the
setH;, or J;(x.H;) to refer to a particular value of the function in xED. With
each H; we associate a real valued function J; : D(H;)--> R, i = 1, ... , k, and we
define the function f : D --> R being the "combination" of the functions Ji, i.e.

k

f(x) =@ f;(x.H;), xED. (1)
i=l

Here ® : R x R --> R is a binary operation such that (R, ®) is an abelian
group. That is: (a) ®is commutative and distributive, (b) ®admits an inverse
operation®, i.e. for any a, b, c E R if a®b = c then a= c@b, and (c) there exists
a neutral element 0 E R such that 0 ® a = a for all a E R. Later (Section 4,
Lemma 5) we relax this assumption; in fact it suffices to assume that (R, ®) is
an abelian monoid.

Having in mind this distinction, we assume that ® is such an operation that
if f(HI),g(H2), are two real-valued functions, where H1 ,H2 ~X, and His a
subset of H2 such that H n H1 = 0, then

We are interested in sorting decreasingly configurations in D with respect to a
function f given in the factored form (1), i.e. we want to find a configuration

924 S.T. WIERZCHON, M.A. KLOPOTEK

such that f(x 1) 2: f(x 2) 2: ... 2: f(xm), where m ::; IDI, the cardinality
of D. To solve this problem we briefly review t he method of finding the first
maximal configuration, x 1

, next we show how to find the second configuration,
x 2

, knowing x 1, and later we generalize this problem to finding xm, m > 2,
knowing all previous solutions.

3. Finding the first maximal configuration

A commonly used approach to finding the optimal value of the factored func
tion f is so-called nonserial dynamic programming, Bertele and Brioschi (1972),
consisting of two parts. In t he f orward part the variables in X are ordered in an
appropriate way and the problem dimensionality is gradually reduced by maxi
mization over subsequent (according to the assumed order) variables. This part
returns the maximal value of f. In the backward part a configuration for which
the maximum has been achieved is determined.

EXAMPLE 1 Suppose f is a sum of three functions j; defined over the sets of
variables H1 = {X1,X3,X5}, H2 = {X1,X2}, and H3 = {X2,X4,Xs}. Hence
X= {X1,X2,X3,X4,X5} and®=+. Suppose the maximization is done in
the order {X3, X4, Xs, X1, X2}, that is- first we maximize over (the domain of)
the variable X3, next over X4, and so on. The first step (maximization over X3)
of the forward part looks like

max f(X) = max max(/l(Hl) + /2(H2) + h(H3))
{XI, ... ,Xs} {X1, X2,X4,Xs} {X3}

= max (max /l (Hl) + /2(H2) + /3(H3))
{X1,X2,X4,Xs} {X3}

= max (m({X 1, X5}) + h(H2) + h (H3)).
{X1,X2,X4,X5}

By maximizing over X 3 we have reduced problem dimensionality: in the
next step the maximization is done over four variables only, {X 1, X 2, X 4, X 5}.
We say that the variable X3 has been deleted from the original problem. The
problem remaining after removal of X 3 is of the same form as the original
problem. The only difference resides in a minor modification of the objective
function: it consists of the original functions h, h and a new function m defined
over the set { X 1, X5}.

3.1. Hypergraphs and junction t rees

The complexity of computations described above hardly depends on the or
der of deletions. If we choose, say, X 5 , as the fi rst variable to delete, then to
compute the auxiliary function m, we must first create a function of five vari
ables, m({X1,X2,X3,X4, Xs}) = /l({X1,X3,X5}) + /3({X2,X4,X5}), that
is-nothing has been gained! To find a good deletion ordering Shenoy (1989)

Finding most likely explanations 925

Bertele and Brioschi (1972). Observe namely that from a mathematical stand
point, the family H is nothing but a hypergraph (X, H) 1 .

Among hypergraphs of special importance are the so-called acyclic hyper
graphs, denoted (X, N), or simply N. They have two attractive properties. First,
their hypernodes, denoted by Nj, j = 1, ... , q (q is the cardinality of N), can
always be ordered in such a way that the running intersection property2 , or RIP
for short, holds:

(Vk 2: 2)(3j < k) : Ni 2 Nk n (N1 U ... U Nk_l).

This property means that the variables in node Nk, also contained in previous
nodes (N1, ... , Nk-1) are all members of one previous node, Nj. Second, the
hypernodes of N can be organized into a tree, called junction tree. To introduce
this tree we need further definitions. The set

is said to be separator: it separates the residual

Rk = Nk \ Sk

from (N1 u ... u Nk-d \ Sk. Particularly, S1 = 0 and R1 = N1 . Any node Ni
containing Sk with j < k is called a parent of Nk in the tree; similarly the node
Nk is called a child of Nj. Hence N1 is the root of the junction tree and Nq is
a leaf node in this tree.

Lemma 1 below characterizes some useful properties of the set of residuals.

LEMMA 1 Let N be an acyclic hypergraph with nodes ordered such that the RIP
holds, and let T be its junction tree. Denote by Ch(N;) the set of indices of the
children of the node N;, T(N;) the set of indices of the nodes belonging to the
subtree rooted at the node N;. Let De(N;) be the set of indices of the descendants
of the node N;, i.e. De(Ni) = T(N;) \ {i}. Then

a) if U De(N;) stands for the set theoretical union of all the subsets being
descendants of the node N;, then U{RiiJ E De(N;)} = U De(N;) \ N;,

b) the residuals R2, ... , Rq form a partition of X/ N1.

Proof. (a) We prove this identity by induction. It trivially holds if N; is a leaf
in the junction tree. Suppose it holds for any i > 1, and let NP be the parent
of N;. Then

1 Usually a hypergraph is identified with the set of its hypernodes. Hence we will write
simply H instead of (X, H).

2Precise description of all notions concerning hvoergraohs. used here. can be found e.g. in

926 S.T . WIERZCHON, M.A. KLOPOTEK

Consider a single child, say Nk, of Np· Since Rk ~ Nk we have Rk U (U De(Nk)
\ Nk) = U De(Nk) \ Sk = U De(Nk) \ (Nk n Np) = U De(Nk) \ Np. By the
identity A1 \BU ... U An\ B = (A1 U ... U An)\ B we obtain the assertion.

(b) To prove this statement we must show that: (i) the residuals are mutually
exclusive, and (ii) their set theoretical union equals X/ N1 . Part (ii) is just the
case (a) when i = 1, i.e. when N; is the root of the junction tree. Hence
we must prove only part (i). Let A' be the complement of A in X. Then
R; = N; \ S; = N; n (Ni n (N1 U ... U Ni-l))'= Ni n (N1' n ... n Ni-1'). Now,
let Rj, j > i, be another separator. Then R; n Rj = (N1' n ... n Ni-l' n Ni) n
(N1' n ... n N;' n ... n Ni- 1' n Ni) = 0. •

Graham test allows verifying if a hypergraph H is acyclic. It consists of
two, performed in any order, rules: (i) if a variable X belongs to exactly one
hypernode H, remove it from X, i.e. H +--- H- {X}, and (ii) if H1, H2 are two
hypernodes such that H1 C H2, and H1 f= H2 then delete H1 from H. If any of
two rules cannot be applied further, and H = 0, it means that H is acyclic.

EXAMPLE 2 Consider the hypergraph H from Example 1. Variable X3 belongs
to H1 only and the variable X 4 belongs to H3 only. Hence, by applying twice the
rule (i) we obtain H = {{X1,Xs},{XI.X2},{X2,Xs}} and we can do nothing
more. Observe, however, that by adding the hypernode H' = {X1,X2,Xs}
to H we make it acyclic. Indeed, both the modified, by rule (i), hypernodes H 1

and H3, and the hypernode H2 are subsets of H', and-by rule (ii) -they can be
deleted from H which now takes the form H = { {X1, X2, Xs} }. Adding some new
hypernodes to H is a general method of transforming a non-acyclic hypergraph
into acyclic one.

There is another way of finding acyclic coverage of a given hypergraph (i.e.
we search for N :J H). Define namely 2-section of a hypergraph H as an undi
rected graph G(H) = (X, E) such that {Xi, Xj} E E only if Xi and Xi belong
to a common hypernode H E H. If H is acyclic then G(H) is triangulated and
hypernodes in H are precisely cliques of G(H). Hence, to find an acyclic coverage
of the original hypergraph, we construct its 2-section, triangulate it, and the
cliques of such a graph are hypernodes in the acyclic hypergraph (X, N). This
explains also another name of t he junction tree: tree of cliques.

EXAMPLE 3 Let us illustrate the notions of separator, residual, and tree of
cliques. Suppose the modified set of hyperedges N consists of the hyperedges
N1 = {X1,X2}, N2 = {X1,X2,Xs}, N3 = {X2,X4,Xs}, N4 = {X1,X3,Xs}.
It is easy to check that such ordered sets admit the RIP. Separators, residuals
and potential parents are given in the table below.

It is instructive to compare this table with the computations described in the
forward vart. Observe firs t that the residuals written from the last to the first

Finding most likely explanations 927

Node Separator Residual Potential parent
Nr = {Xr,X2} Sr =0 Rr = {Xr, X2} -
N2 = {Xr,X2, Xs} S2 = {Xr, X2} R2 = {Xs} Nr
N3 = {X2,X4, Xs} S3 = {X2,Xs} R3 = {X4} N2
N4 = {Xr,X3,Xs} S4 = {Xr,Xs} R4 = {X3} N2

already proposed. Separator S4 = {X 1. X5 } agrees with the domain variables of
the function m computed in the first step of the forward part. Similarly, after
removal of variable X4 we obtain another auxiliary function of two variables
X2, X5 -and this is just the separator S3. Now, to remove variable X5 we must
first add the two auxiliary m functions obtaining new function, f', with domain
variables X1, X2, and X5-this is just the added hypernode Nz. Since this is a
new function we define it as f'W = 0, e E D({X1, X2, X5 }). After maximiza
tion over X5 we obtain the next auxiliary function with the domain variables
S2 = {X 1 , X 2 }. Joining this function with the function h we can maximize it
over the variables in R1 = {X1, Xz}. After this last maximization we obtain a
single value, hence it can be treated as a ''function" with no arguments (S1 = 0).

3.2. A message passing algorithm

Now we are able to reformulate the forward part in this new framework. Suppose
H = { H 1, ... , H k} is a family of subsets of the set of variables X, and with
each Hj there is associated a function fJ. Since the domains of all variables in X
are discrete, the functions fJ are actually arrays of real numbers, i.e. tables.
The f/s are factors of the function f given in equation (1). Now let N 2 H be an
acyclic hypergraph covering H. If Ni E N is a hypernode such that there exists
Hj E H that N; = H1, we associate with N; the table f1; otherwise with Ni we
associate the "empty" table f' such that J'(e) = 0 for all e E D(Ni)· In other
words we add a number of empty tables (defined over appropriate domains) to
the original set {h, ... , fk} and we renumber this new set of factors according
to the RIP. Because of the properties of ® this rearrangement does not affect
resulting function, that is, h ® ... ® fq equals the original function f given in
equation (1).

Next, assuming that the hyperedges in the acyclic hypergraph N are ordered
so that they satisfy the RIP, let T be a junction tree representing N. Its root
is N1 and it has at least one leaf Nq. The forward part consists of a number of
send-absorb steps described below.

1. Mark all the nodes in the junction tree as non-blocked and, additionally,
mark all leaves of the tree as current leaves. Particularly Nq is a current
leaf.

2. Send-step: If N 1 is a current, non-blocked leaf and Np is the parent of N1
in the tree, compute the message ml_.p which N1 sends to its parent:

ml_.p(x.S1) = max{f!(y.NL)iy ED: y.S1 = x.S!}

928 S.T. WIERZCHON, M.A. KLOPOTEK

3. Absorb-step: The message is absorbed by the parent, i.e. the table fp(x.Np)
changes to the table fp(x.Np) ® mt-+p(x.St)·

4. Repeat steps (2) and (3) for all non-blocked children of the parent Np.
When Np has obtained messages from all its children, mark it as current
leaf. When parent of the node Np has all its children marked as current
leaf and non-blocked, go to step (2).

Generally, the sequence of send-absorb steps bears a resemblance to evalua
tion of a parse tree. Hence, a node can send its message only if it is labeled as
current leaf and non-blocked.

To characterize some properties of the algorithm we need further notations.
Let A (r) = { 1, ... , r}, r :S q, be the set of indices of non-blocked nodes in the
junction tree, and B(r) = {r + 1, ... , q} be the set of indices of blocked nodes.
The nodes with indices in A(r) form a subtree of T referred to as the current
tree. In the course of node deletion from the junction tree the table fi changes
according to the rule described in the send-step. To distinguish between the
original and modified table, the later will be denoted as t;. Initially, ti = k So,
if the current tree consists of r (non-blocked) nodes, the table ti assigned to a
non-blocked node Ni equals:

{
fi if Ch(Ni) n B (r) = 0

ti = fi ® (®jECh(Ni)nB(r) mj-+i) if Ch(Ni) n B (r) :/; 0.

LEMMA 2 If all the children of a node Ni are blocked then its table ti equals

ti = fi ® max . . (0 fJ)
XEU De(N,)\N, j EDe(N;)

Proof by induction. If i = q then De(Nq) = 0 and Lemma trivially holds.
Suppose that Np is the parent of Ni and that Lemma is true for all the children of
the node Ni. Then tP = fp ®{@mj-+p lj E Ch(Np)} = fp®{@maxxERi tili E

Ch(Np)} = maxXE{URiliECh(Np)}(JP ® {@tilj E Ch(Np)}). Expanding all

terms tj and using Lemma 1(a) we obtain the assertion. •

The reader can verify that the values of table ti can be expressed as

ti(x.Ni) = fi(x.Ni) ®max { 0 fi(y.Ni)IY ED: Ni = x.Ni }·
jEDe(N;)

COROLLARY 1 Let the current tree consist of the nodes with indices in the
set A(r) . Then t1 ® ... ® tr = max{fi ® ... ® fqiX E Rr+l U ... U Rq}·

COROLLARY 2 After the forward part the root, N1, of the junction tree stores
the table t1 = max{h ® .. . ® f qiX EX\ NI}, i.e. t1(x.NI) = max{f(y)IY ED :

Finding most likely explanations 929

EXAMPLE 4 Let N be the acyclic hypergraph from example 3. Let Di = { 0, 1},
i = 1, ... , 5 and 0 be the + operator. Suppose that h is the empty table, i.e.
h(O = 0, ~ E D({X1,X2,X5}), and the remaining tables are given below.

X1 X3 xs !4 X! X2 h X2 X4 xs h
0 0 0 1 0 0 4 0 0 0 0
0 0 1 3 0 1 8 0 0 1 5
0 1 0 5 1 0 0 0 1 0 6
0 1 1 8 1 1 5 0 1 1 3
1 0 0 2 1 0 0 5
1 0 1 6 Table 2 1 0 1 1
1 1 0 2 1 1 0 4
1 1 1 4 1 1 1 3

Table 1 Table 3

Recall that according to the RIP the nodes N4 and N3 are children of N2,
which is a child of the root N1. According to the procedure, the nodes N4 and N3
send their messages m4-+2, m3-+2 to the parent N2. The messages are defined
on the domains of the variables belonging to the appropriate separators, and the
maximization is done over the variables belonging to the residuals, respectively,
R4 = {X3} and R3 = {X4}.

X! Xs m4-2(x~, xs) X2 xs m3-2(x2, xs)

0 0 max(1, 5) = 5 0 0 max(0,6) = 6
0 1 max(3, 8) = 8 0 1 max(5,3) = 5
1 0 max(2, 2) = 2 1 0 max(5,4) = 5
1 1 max(6,4) = 6 1 1 max(1,3) = 3

Table 4 Table 5

Both messages modify the original table h which now, according to our
convention, equals t2(x1, x2, x5) = h(xl, x2, x5) +m4-+2(xl, x5) +m3-+2(x2, x5),
see Table 6. Now, the node N2 can send the message m2-+1 (Table 7) which adds
to h. The resulting table t1 takes the form given in Table 8.

X! X2 xs t2(X1,X2,X5)

0 0 0 0+5+6=11
0 0 1 0 + 8 + 5 = 13
0 1 0 0+5+5=10
0 1 1 0+8+3=11
1 0 0 0+2+6=8
1 0 1 0+6+5=11
1 1 0 0+2+5=7
1 1 1 0+6+3=9

930 S.T. WIERZCHON, M.A. KLOPOTEK

Xl X2 m2-1(X1,X2) Xl X2 t1(X1 1 X2) = fi(x l,X2) + m2-1(X1,X2)

0 0 max(11, 13) = 13 0 0 4 + 13 = 17
0 1 max(lO, 11) = 11 0 1 8 + 11 = 19
1 0 max(8, 11) = 11 1 0 0+11=11
1 1 max(7, 9) = 9 1 1 5 + 9 = 14

Table 7 Table 8

3.3. Identification of t he configu ration

To characterize backward part, suppose we have found the first optimal config
uration x 1 .(N1 U ... UNj_ 1). To extend it to the configuration x1 .(N1 U ... UNi)
we search for such an assignment ~ of variables in Nj t hat ~.Sj = x 1.Si and
~ maximizes the table ti.

EXAMPLE 4 (continuation) We find the maximal value in Table 8, namely 19,
achieved for the configuration x1 = 0, x2 = 1. Now, according to the recipe, we
move back to the table t2 and we search for the configuration (x 1 = 0, x2 = 1,
x5 =?) such that t2 (x1 = 0, x2 = 1, x5 =?) takes its maximum; this is achieved
for X5 = 1. Proceeding similarly with the tables t3 = h and t4 = f4 we state
that X3 = 1, X4 = 1, i.e. the optimal configuration x1 = (x1 = 0, x2 = 1, X3 = 1,
x4 = 1, X5 = 1), and indeed, f(x 1) = h(xl = 0, x2 = 1) + h(x2 = 1, x4 = 1,
X5 = 1) + f4(X1 = 0, X3 = 1, X5 = 1) = 8 + 5 + 8 = 19.

LEMMA 3 Let x 1 be the first optimal configuration.

a) mq p(x1 .Sq) = tq(x 1 .Nq) = fq(x 1 .Nq)
b) ti(x1.Ni) = max{Q9iET(Ni) fi(y.NJ)IY ED: y.Ni = x 1.Ni}

= fi(x 1.Ni) 0 (Q9NiED e(N;) lj(X 1.Nj)).

Proof. (a) mq_,p(x1.Sq) = max{fq(y.Nq)IY ED : y.Sq = x 1 .Sq}, hence
the table is maximized over the variables in residual Rq. But according to the
construction of x 1 this maximum is achieved for the values x 1.Rq. Hence the
result.

(b) is left as a simple exercise. •

4. Finding t he second maximum

Let x1 be the optimum configuration and let x2 stand for the "second-best"
configuration, i.e. f(x 2) = max{f(x)lx E D \ {x1 }} . Suppose that x1 and x2

differ on at least one position corresponding to a variable, say, Xk. Let Nj be
a node such that Xk E NJ and Xk does not belong to any node outside the
subtree T(NJ)· Obviously, if Xk E Ni = Si uRi then X k must be a member
of the residual Ri. Indeed, if Xk E Si then Xk must belong to the parent

Finding most likely explanations 931

in T \ T(Nj)· From Corollary 1 we know that the combination of functions fJ
belonging to the current tree, i.e. with j E A(r), r E [1, q] is just the maximum
off over D(Rr+l U ... U Rq)· To find f(xz) we must review the maximal values
of f over the sets

Di = {y ED: y.(N1 U ... U Ni-d = x1.(N1 U ... U Nj-1),

y.Ri =j; x 1.Ri}, j = 2, ... ,q

D 1 = {y ED: y.N1 =j; x1.RI}, since 81 = 0 and R1 = N1 \81 = N1

each time obtaining maximum value of fi over the set D(Rj+1 U .. . URq)· Hence
max{f(x)lx ED\ {x1}} = max{filj = 1, ... ,q}. Applying again Corollary 1,
we state that fJ can be computed as

. 1 1
max{flx E D 1 } = [t1(x .NI) ® ... ® tj-1(x .Nj-1)]

® max{ti(y.Ni)IY E D(Nj): y.Si = x 1.Sj, y.Ri =j; x 1.Ri}·

To find the first term in this equation we use Lemma 3

Hence

t1 (x 1.NI) ® ... ® tj-1 (x 1.Nj_I) = f(x 1) ® tj(x1.Nj)·

and finally

max{flx E Di} = [f(x1) ®ti(x1.Ni)J ® max{ti(y.Ni)IY E D(Ni):

y.Si = x 1.Si, y.Ri =I x 1.Ri} ·

This way we have proved the very important lemma allowing the use of local
search for determining the maximum of f over the sets Di:

LEMMA 4 Let N be an acyclic hypergraph representing factored function f with
hypernodes ordered such that the RIP is fulfilled. Let (®, R) be an abelian group.
Then the maximal value of the function f over the set Di equals

max{flx E Dj} = [f(x1) ® tj(x1.Nj)] ® max{tj(y.Ni)IY E D(Nj):

y.Si = x 1.Sj, y.Ri =I x 1 .Rj}

This lemma has been first published by Nilsson (1996) but in the context of
the HUGIN architecture. Our proof uses a much simpler propagation scheme,
and it allows to solve the problem of finding max {fix E Di} in the cases when
®does not have the inverse operator,@. This is shown in Lemma 5.

LEMMA 5 Let N be an acyclic hypergraph representing factored function f with
hypernodes ordered such that the RIP is fulfilled. Let (®, R) be a commutative

932 S.T. WIERZCHON, M.A. KLOPOTEK

the root to the node Ni in the junction tree, let NP be the parent of Ni. Denote
by F = U{ Ch(Ni)li E TI(Nj)} \ TI(Ni) the set of children of the nodes belonging
to the path excluding the nodes from this path. Then the maximal value of the
function f over the set Di equals

max{flx E Di} = (@tk(x1 .Nk)) ® (@ f1(x1 .Nt))
k E F !Ell (Nj)\ {j}

® max ti(y.Ni)
yED(Nj):y.Sj=xi.Sj, y.Rrfcxl.Rj

Proof. After the message passing algorithm has been finished the set of
blocked nodes equals B(O), i.e. it contains all the nodes from the junction tree.
Let us remove from B(O) all the nodes belonging to the path from N1 to Ni.
If Np(j) is the parent of Ni then, by Lemma 3b, the table tp(j) is recomputed
as follows: t~(j)(x 1 .Np(j)) = fp(j) ® {0tc(x1.Nc)lc E Ch(Np(j)) \ {j}} ® tj(z)
where z is a configuration from D(Ni) such t hat ti(z) = max{ti(Y)IY E D :
y.Si = x 1 .Si, y.Ri ::p x1.Rj}· Certainly this new value t~(j)(x 1 .Np(j)) is dif

ferent from the value tp(j)(x1 .Np(j)) computed during the original absorption
stage. Hence, to find new value t~(p(j)) (x 1 .Sp(p(j))) for the parent p(p(j)) of
the node p(j) we must use again the procedure similar to that described above,
i.e. t~(p(j))(x 1 .Np(p(j))) = fp(p(j)) ® {0tc(x1.Nc)lc E Ch(Np(p(j))) \ {p(j)}} ®

t~(j)(x 1 .Np(j))· •

EXAMPLE 5 (illustration of Lemma 5) Suppose that N = { N1, ... , N7} and
N1 = {A, B , C}, N2 = {A , B , D}, N3 = {B, C, E}, N4 = {B , D, F}, Ns =
{A,D , G}, N6 = {B ,C, H} , N7 = {C,E , I}. The nodes are ordered such that
the RIP holds. Suppose that all the variables are binary, and the optimal
solution is x1 = (a = 0, b = 1, c = 0, d = 0, e = 0, f = 1, g = 1,
h = 1, i = 0). Let us find the maximum value of a factored function over
the set D6. According to our convention TI(N6) = {1, 3,6} and F = {2, 7}.
Hence max {fixE Di} = [t2(0, 1, 1)®t7(0, 0, 0)] ®[fi(O, 1, 0) ® h(1 , 0, 0)] ®t6(z)
where z = (1, 0, 0).

The next example shows how to use Lemma 4 to find x 2 knowing the con
figuration x1 computed in Example 4.

EXAMPLE 6 Consider the tables t 1 , ... , t4 from Example 4. Here the sets D 1, ...

... ,D4 are: D 1 = {(yl,Y2, y3, Y4,Ys) ED: (y1,y2) ::J (0,1)}, D 2 = {(y1,y2 , y3,
Y4,Ys) ED: (yl,Y2) = (0,1), Ys ::J 1}, D3 = {(yl,Y2,Y3,Y4,Ys) ED:
(yl,Y2,Ys) = (0, 1, 1), Y4 ::J 1}, D4 = {(yl,Y2,Y3,Y4,Ys) ED: (yl,Y2,Ys,Y4) =
(0, 1,1,1) , Y3 ::J 1}. To find the maximum off over D 1 we simply review
the table h over all configurations (Yl> Y2) different from (0, 1). We state that
max{fly E D 1

} = max{tli(Yl,Y2): (Yl>Y2) ::j; (0, 1)} = t1(Y1 = 0, Y2 = 0) = 17.

Finding most likely explanations 933

Lemma 4 to find max {fly E D 2} we must compute first [f(x1) ® t2(x1.N2)].
But f(x 1) = 19, x1.N2 = (xt = 0, x~ = 1, xg = 1), and [f(x1) ® t2(x1.N2)] =
19-t2(0, 1, 0) = 19-11 = 8. Because all the variables are binary then Ds \ {Ys =
1} = {ys = 0} and max{t2(y.N2)Iy E D(N2): y.S2 = x1.Sj, y.R2 "# x1.R2} =
t2(0, 1, 0) = 10 from which it follows that max {fly E D2} = 8 + 10 = 18. Sim
ilarly max{fly E D 3} = [19- t3(1, 1, 1)] + t3(1, 0, 1) = (19- 3) + 1 = 17, and
max{fly E D 4 } = [19- t4(0, 1, 1)] + t4(0, 0, 1) = (19- 8) + 3 = 14. The greatest
value among these maxima is 18 and this value has been achieved on the set D 2 .

It is obvious that when the maximum is achieved on the set, say Di , we
know the partial optimal configuration x2 such that x2 .(N1 U ... U N1_ 1) =
x1.(N1 U ... U N1_t) , x2 .R1 equals the value that maximizes the table tj over
the set D(S1) U (D(Rj) \ { x1.R1}). In our case the maximum is achieved on D 2 ,

that is, x2 .N2 = (xr = 0, x~ = 1, xg = 0). To find the values of (x~,x~) we use
the backward part of the algorithm from Section 3 taking the subtree rooted
in N2. In our case we find that (x~, x~) = (1, 0).

Observe that the residuals of the children of the node Nj are disjoint from
the variables in this node. This means that the variables specified in these
residuals cannot occur in any node from the set T \ T(N1) , which follows from
the RIP. Hence the variables belonging to the nodes in T \ T(Ni) are already
instantiated and, in fact, we only need to instantiate the variables belonging to
the descendants of N1. This is substantial saving of computations in comparison
with the algorithm proposed by Nilsson (1996).

5. Finding i-th (i > 2) optimal configuration

Suppose we have determined the configurations x1 and x2 . To find the third
configuration, x3, we must search the space D \ { x1, x2}. To prepare further
refinement , D 1 (x2), . .. , Dq(x2), of this set one should observe, first, that if f(x2)
has been identified on the set Di it means that x2 .(N1 U . . . UNj) = x1.(N1 U ... U
Nj) and there is no need to search maxima over the sets D 1 (x2), ... , Di - 1 (x2).
The set Di(x2) has now the form

Di(x2) = {y ED: y.(N1 U ... U Nk-1) = x1.(N1 U .. . U Nk_t),

y.Rk "# x 1.Rk, y.Rk "# x2 .Rk}

and the sets Dk(x2), k = j + 1, ... , q are of the form

Dk(x2) = {y ED: y.(N1 U ... U Nk_t) = x2.(N1 U ... U Nk_t),

y.Rk "# x2.Rk}

because x2.(N1+l U .. . U Nq) is independent of x1.(N1+l U . .. U Nq).

EXAMPLE 7 We know that x1 = (x1 = 0, x2 = 1, X3 = 1, X4 = 1, Xs = 1),

934 S.T . WIERZCHON, M.A. KLOPOTEK

has been found on the set D2. It means that we must search the maximum values
over the sets D2 (x2

), D3 (x2) and D4 (x2). It is easy to verify that D2 j { x2 } = 0.
Continuing the computations we obtain

max{fly E D3} = [f(x2
)- t3(1, 0, 0)] + t3(1, 1, 0) = 18- 5 + 4 = 17

max{fly E D4
} = [f(x2

)- t4(0, 1, 0)] + t4(0, 0, 0) = 18- 5 + 1 = 14.

Now we choose among the next values (x means already exploited value):

solution node N1 node N2 node N3 node N4
xl 17 X 17 14
x2 17 14

Suppose we choose the value 17 from the first column. From Example 6 we
know that this value fixes the variables X1 and X2 at the values (0, 0). Using
backward part we identify the third configuration: x3 = (x1 = 0, x2 = 0, x3 = 1,
X4 = 0, xs = 1). Completing all necessary computations we find the table

solution node N1 node N2 Node N3 node N4
xl X X 17 14
x2 17 14
x3 11 15 15 12

from which we state that f (x4) = 17.

6. Summary

Let us summarize the algorithm. Suppose all the solutions x1, ... , xk are stored
in the table solutions. Suppose also that the information stored in the tables is
represented in a linked list . Each item of the list should contain the next data:
the number of a node, node_no, the number of a solution, soLno, from which the
maximal value of the table tnode_no on the set nnode_no(xsol_no) is computed,
and the number of configuration on which this maximum was achieved, conf_no.
For instance the information from the table above can be represented as follows
(observe that the solution x 1 has no predecessor, hence soLno = 0; similarly
the solution x3 has been obtained from x 1 , hence soLno = 1):

soLno node_no max conf_no
0 3 17 6
0 4 14 2
1 3 17 7
1 4 17 1
1 1 11 3
1 2 15 1
1 3 14 3

--

Finding most likely explanations 935

It is better to sort this list decreasingly, hence we always choose the first element
of the list. Suppose we have identified first k solutions and we are interested in
finding xk+1. If we know only first solution, x1 (it must be identified using the
method described in Example 4), we set node_no = 1. The algorithm can be
formulated as follows:

1. Choose the first element from the list. Block the configuration conf_no
in the table tnode_no and tracing back (using the field soL no)-block all
previous configurations on this node.

2. Compute maxima fi = Dj(xk), j = node_no, ... , q, and add them to the
list.

3. Find max= {filj = node_no, . .. ,q}.
4. Identify the solution, that is using the information from step 1, set

xk+1.(NI U ... U Nnode_no-d = xsoLno.(N1 U ... U Nnode_no-d and fill
in the remaining values of the variables by the backward step starting
from the node node_no).

Of course to use it, we must first compute the configuration x1 by using the
message-passing algorithm.

It is important to notice also that when the function achieves its maximum
on the set Di, then in order to identify appropriate configuration we can restrict
the backward part to the nodes belonging to T(Ni) only, what follows from the
RIP. Particularly, when Ni is a leaf in the junction tree, the backward part is
not necessary.

References

BEERI, C. et al. (1983) On the desirability of acyclic database schemes. J. ACM,
30, 479-513.

BERTELE, U. and BRIOSCHI, F. (1972) Nonserial Dynamic Programming. Aca
demic Press, New York.

COOPER, G. (1990) The computational complexity of probabilistic inference
using Bayesian belief networks. Artif. Intell., 42, 3.95-405.

DECHTER, R. (1996) Bucket elimination: A unifying framework for probabilistic
inference algorithms. In Uncertainty in AI (UAI-96), 211- 219.

HENRION, M. (1990) An introduction to algorithm for inference in belief nets,
Uncertainty in Artificial Intelligence, 5.

JENSEN, F.V. (1996) An Introduction to Bayesian Networks. University College
Press, London.

KERAMARIS, V. and SY, B.K. (1990) A syllable based approach towards the
intelligibility study of impaired speech. Proc. 12th Annual International
Conference of IEEE-EMBS, Philadelphia, Penn ..

LAURITZEN, S.L. and SPIEGELHALTER, D .J . (1988) Local computations with
probabilities on graphical structures and their application to expert sys-

936 S.T. WIERZCHON, M.A. KLOPOTEK

NILSSON, D. (1996) An efficient algorithm for finding the M most probable
configurations in Bayesian networks. Institute for Electronic Systems, Aal
borg University, Denmark, Technical Report R-96-2020. A revised version
of this report will appear in Statistics and Computing.

PAL, N., BEZDEK, J. and HEMANISHA, R. (1992) Uncertainty measures for
evidential reasoning 1: a review. Int . J. Approx. Reas., 7 162-183.

PEARL, J . (1986) Fusion, propagation and structuring in Bayesian networks.
Artif. Intel., 28, 241- 288.

PEARL, J. (1988) Reasoning in Intelligent Systems: Networks of Plausible In
ference, Morgan Kaufmann Publishers.

SEROUSSI, B. and GOLMARD, J .1. (1994) An algorithm for finding the K most
probable configurations in Bayesian networks. Int. J. Approx. Reasoning,
8 17- 50.

SHAFER, G . (1996) Probabilistic Expert Systems, SIAM GEMS-NSF Regional
Conference Series in Applied Mathematics, Philadelphia, 67.

SHENOY, P .P. (1989) A valuation-based language for expert systems. Int. J.
Approx. Reas., 3 383- 411.

SHENOY, P.P . (1993) Conditional independence in valuation-based systems.
Int. J. Approx. Reas. , 10 203- 234.

SHIMONY, S.E. and CHARNIAK, E . (1990) A new algorithm for finding MAP
assignments to belief networks. Proc. Conference on Uncertainty in AI,
Cambridge, MA, 98-103.

SY, B.K. (1989) An AI based CAD/CAM approach to assess design methodol
ogy of a user-specified nonvocal communication device. Proc. 15th North
east Bioengine-ering Conference, Boston, Mass., 185- 192.

SY, B.K . (1993) A recurrence local computation approach towards ordering
composite beliefs in Bayesian belief networks. Int. J. Approx. Reasoning,
11 205- 233.

WIERZCHON, S.T . (1994) Constraint propagation over restricted space of con
figurations, and its use in optimization. In: R.R. Yager, J. Kacprzyk and
M. Fedrizzi (eds.), Advances in the Dempster-Shafer Theory of Evidence,
J . Wiley, New York, 375-394.

WIERZCHON, S.T ., KLOPOTEK, M.A. and MICHALEWICZ, M. (1997) Reason
ing and facts explanation in valuation based systems, Fundamenta Infor
maticae, 30 359-371.

Wu, T. (1990) A problem decomposition method for efficient diagnosis and
interpretation of mult iple disorders, Proc. 114th. Symp. Computer Appl.
in Medical Care, 86- 92.

YEN, J. (1990) Generalizing Dempster-Shafer theory to f zzy sets. IEEE Trans.
Syst. Man. Cybern. , 20 , 3, 559-570.

