PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of different mesh schemes and turbulence models in cfd modelling of stirred tanks

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper focuses on the effects of grid schemes and turbulence models on the CFD modelling of stirred tanks. The economical grid was determined by examining the dimensionless wall distance and the skewness of elements. The grid independency study ensured that the independency of numerical predictions. Also, three categories of turbulence models were compared for prediction of flow pattern. The grid sensitivity study highlighted that the quality of control volumes in the bulk and near the wall regions are significant for obtaining the consistent solutions. It was also found that for the prediction of velocity components and the turbulent quantity the RANS based models are more efficient.
Rocznik
Strony
513--531
Opis fizyczny
Bibliogr. 23 poz. fig.
Twórcy
autor
autor
  • Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa, karimi@sun.ac.za
Bibliografia
  • 1. ANSYS Inc, 2009, ANSYS FLUENT 12.0 Theory Guide. ANSYS Inc,.
  • 2. ARMENANTE, P.M., LUO, C., CHOU, C.-C., FORT, I., MEDEK, J., 1997, Velocity profiles in a closed, unbaffled vessel: comparison between experimental LDV data and numerical CFD predictions, Chemical Engineering Science 52(20), 3483-3492.
  • 3. AUBIN, J., FLETCHER, D.F., XUEREB, C., 2004, Modeling turbulent flow in stirred tanks with CFD: the influence of the modeling approach, turbulence model and numerical scheme, Experimental Thermal and Fluid Science 28(5), 431-445.
  • 4. BAKKER, A., OSHINOWO, L.M., 2004, Modelling of Turbulence in Stirred Vessels Using Large Eddy Simulation, Chemical Engineering Research and Design 82(9), 1169-1178.
  • 5. BAKKER, A., OSHINOWO, L.M., MARSHALL, E., 2000, The use of Large Eddy Simulation to study stirred vessel hydrodynamics, In 10th European Conference on Mixing, 247-254.
  • 6. CORONEO, M., MONTANTE, G., PAGLIANTI, A., MAGELLI, F., 2011, CFD prediction of fluid flow and mixing in stirred tanks: numerical issues about RANS simulation,Computer & Chemical Engineering 35(10), 1959-1968.
  • 7. DEGLON, D.A., MEYER, C.J., 2006, CFD modelling of stirred tanks: Numerical considerations, Minerals Engineering 19(10), 1059-1068.
  • 8. DONG, L., JOHANSEN, S.T., ENGH, T.A., 1994a, Flow induced by an impeller in an unbaffled tank--I. Experimental, Chemical Engineering Science 49(4), 549-560.
  • 9. DONG, L., JOHANSEN, S.T., ENGH, T.A., 1994b, Flow induced by an impeller in an unbaffled tank--II. Numerical modelling, Chemical Engineering Science, 49(20), 3511-3518.
  • 10. HINZE, J.O., 1975. Turbulence, Mc-Graw-Hill Publishing Co, New York.
  • 11. KIM, W.-W., MENON, S., 1997, Application of the localized dynamic subgrid-scale model to turbulent wall-bounded flows, American Institute of Aeronautics and Astronautics.
  • 12. LANE, G.L., SCHWARZ, M.P., EVANS, G.M., 2000, Comparison of CFD methods for modelling of stirred tanks, In 10th European Conference on Mixing, 273-280.
  • 13. LAUNDER, B.E., SPALDING, D.B., 1972, Lectures in Mathematical Models of Turbulence, Academic Press, London, England.
  • 14. MENTER, F.R., 1994, Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications, AIAA 32(8), 1598-1605.
  • 15. MYERS, K.J., WARD, R.W., BAKKER, A., 1997, A digital particle image velocimetry investigation of flow field instabilities of axial flow impellers, Journal of Fluids Engineering 119, 623-632.
  • 16. NICOUD, F., DUCROS, F., 1999, Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor, Flow, Turbulence, and Combustion 62(3), 183-200.
  • 17. ORSZAG, S.A., YAKHOT, V., FLANNERY, W.S., BOYSAN, F., CHOUDHURY, D., MARUZEWKI, J., PATEL, B., 1993, Renormalization Group Modelling and Turbulence Simulations, In International Conference on Near-Wall Turbulent Flows, Tempe, Arizona.
  • 18. OSHINOWO, L., JAWORSKI, Z., DYSTER, K.N., MARSHALL, E., NIENOW, A.W., 2000. Predicting the tangential velocity field in stirred tanks using the Mulkle Reference Frames (MRF) model with validation by LDV measurements, In 10th European Conference on Mixing, 281-288.
  • 19. SHIH, T.-H., LIOU, W.W., SHABBIR, A., YANG, Z., ZHU, J., 1995, A new k-ε eddy viscosity model for high reynolds number turbulent flows, Computers & Fluids 24(3), 227‒238.
  • 20. SHUR, M., SPALART, P., STRELETS, M., TRAVIN, A., 1999, Detached-Eddy Simulation of an Airfoil at High Angle of Attack, In 4th Int. Symposium on Eng. Turb. Modeling and Experiments, Corsica, France.
  • 21. SMAGORINSKY, J., 1963, General Circulation Experiments with Primitive Equations. I, The Basic Experiment. Month. Wea. Rev 91, 99-164.
  • 22. WILCOX, D.C., 1998, Turbulence Modelling for CFD, DCW Industries Inc., La Canada, California.
  • 23. YOON, H.S., SHARP, K.V., HILL, D.F., ADRIAN, R.J., BALACHANDER, S., HA, M.Y., KAR, K., 2001. Integrated experimental and computational approach to simulation of flow in a stirred tank, Chemical Engineering Science 56(23), 6635-6649.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT1-0043-0089
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.