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Optymalizacja eksploatacji dla systemów z zależnymi  
zagrożeniami konkurującymi przy wykorzystaniu funkcji kopuły

This paper develops a joint copula reliability model for systems subjected to dependent competing risks caused by two degradation 
processes and random shocks. The two degradation processes follow gamma processes and the random shocks follow a non-ho-
mogeneous Poisson process (NHPP). Their interdependence relationship is modeled by a copula function, which is determined by 
a two-stage method based on simulated data. It is shown that the proposed model can provide more precise results than the model 
without considering the dependent relationship. Through the proposed reliability model, two maintenance models are studied and 
compared. It is found that the inspection cost has significant effects on the choosing of maintenance policy.
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W niniejszej pracy opracowano wspólny model niezawodności z użyciem kopuły dla systemów poddawanych zależnym zagroże-
niom konkurującym powodowanym przez dwa procesy degradacji i zaburzenia losowe. Owe dwa procesy degradacji reprezentują 
typ procesu gamma, podczas gdy zaburzenia losowe są typem niejednorodnego procesu Poissona (non-homogeneous Poisson pro-
cess - NHPP). Ich związek wzajemnej zależności modelowany jest przy użyciu funkcji kopuły, która jest wyznaczana na podstawie 
dwuetapowej metody opartej o dane symulowane. Wykazano, iż proponowany model może zapewnić bardziej precyzyjne wyniki 
niż model, w którym nie ujęto związku zależności. W oparciu o proponowany model niezawodności, badane i porównywane są dwa 
modele eksploatacji. Stwierdzono, iż koszt przeglądu ma duży wpływ na wybór polityki eksploatacyjnej.

Słowa kluczowe: zależne ryzyka konkurujące, funkcja kopuły, dane symulowane, degradacja, zaburzenia losowe, 
optymalizacja eksploatacji.
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1. Introduction

Competing risks are quite common situations in industry for sys-
tems or components which can be subjected to more than one causes 
of failure at the same time and fail due to one of them [17,19]. There-
fore, it is beneficial to consider the competing risks for the mainte-
nance scheduling.

Many studies treat the competing risks as independent failure 
processes. Lehman [17] investigated a class of degradation-threshold-
shock models in which the failure is caused by the competing risks 
of degradation and trauma. Bocchetti et al. [2] proposed a model to 
describe the competing risks caused by wear degradation and thermal 
cracking for the cylinder liners in marine diesel engine. Due to the 
complex features of lifetime data, Jiang [13] developed a compet-
ing risk model involving a geometric distribution and an exponential 
Poisson distribution to model bus-motor failure data. Li and Pham 
[18] presented an inspection-maintenance model for systems subject-
ed to two degradation processes and random shocks. Zhu et al. [34] 
presented a maintenance model that maximizes the unit availability 
by determining the degradation threshold level and the time to per-
form preventive maintenance (PM). Kharoufeh et al. [14] derived the 
system lifetime distribution and the limiting average availability for a 
periodically inspected system, which is subjected to degradation and 
random shocks modulated by a homogeneous Poisson process. Wang 
et al. [30] studied the impact of shocks on the product and found that 
the shocks had a significant impact on the product reliability.

The assumption of s-independence between compet-
ing risks may cause underestimation or overestimation of 
the system reliability and has substantial impacts on main-
tenance optimization [3]. Therefore, it is essential to take 
account of the dependent relationship in order to model 
the reliability more accurately and make more appropriate 
maintenance strategy.

Some recent papers have incorporated the dependent 
relationship into the reliability modeling process. Su and 
Zhang [26] studied the reliability assessment for GaAs la-
sers based on competing risk model. The results show that 
the dependence between the traumatic failure and degrada-
tion has a great influence on the accuracy of reliability as-
sessment. Considering the dependency between wear failure 
and shock failure, Jiang and Coit [12] developed reliability 
models with two classes of shock processes and a linear deg-
radation process. The arrival of each shock impacts both the 
soft failure process and the hard failure process. Pan and 
Balakrishnan [21] proposed to use a bivariate Brinbaun-
Saunders distribution to describe the dependent relationship 
between the two gamma degradation processes and devel-
oped an inferential method for the corresponding model 
parameters. Singpurwalla [25] proposed a general frame-
work for an appreciation of competing risks and degrada-
tion involving interdependent stochastic processes under the 
notion of a hazard potential. Pan and Zhao [22] treated the 
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problem of accelerated failure with competing causes of a degradation 
failure mode and multiple traumatic failure modes. Abbring and van 
den Berg [1] studied the dependent competing risks models with a 
mixed proportional hazard for each risk. Wang and Coit [27] proposed 
a general modeling and analysis approach for reliability prediction 
based on multiple degradation measures and illustrated the approach 
with multivariate Normal distributions. 

There has also been a growing interest in considering the main-
tenance optimization with dependent competing risks in recent years. 
Klutke and Yang [15] studied the average availability of maintained 
systems subject to shocks and graceful degradation with hidden fail-
ures. Huynh et al. [10] developed a dependent competing risk model 
by assuming the arrival rate of shocks as a function of the degradation 
level, and proved the value of condition monitoring to the mainte-
nance decision-making. Later Huynh et al. [11] developed age-based 
maintenance strategies with minimal repairs for systems based on the 
same competing risk model. Wang and Pham [28] studied a multi-
objective optimization problem of imperfect preventive maintenance 
policy for a single-unit system subjected to the dependent competing 
risks, by simultaneously maximizing the system asymptotic availabil-
ity and minimizing the system cost rate. It is assumed that fatal shocks 
will cause the system to fail immediately, whereas nonfatal shocks 
will increase the system degradation level by a certain cumulative 
shock amount. In order to give a more explicit dependent relation-
ship, Chen [7] used the degradation level as a variable of the arrival 
rate function of the fatal shock, and an inspection/replacement policy 
is discussed based on the proposed model. Castro [4] developed a 
dependent relationship for two competing failure modes in which 
the non-maintainable failure number affects the maintainable failure 
rate. The optimal number of PMs and the interval between successive 
PMs are determined with the objective of minimizing the expected 
cost rate. Zequeira and Bérenguer [32] studied the imperfect mainte-
nance policies with the consideration of two competing failure modes, 
where the hazard rate of the maintainable failure mode depends on the 
hazard rate of the non-maintainable failure mode. Deloux et al. [9] 
considered a system with two failure mechanisms due to an excessive 
deterioration level and a shock. The optimal maintenance strategy is 
studied in an approach which combines statistical process control and 
condition-based maintenance. Peng et al. [23] presented a preven-
tive maintenance policy for systems subjected to multiple competing 
failures where the external random shocks contribute to the internal 
degradation.

Previous researches have mainly investigated the dependence re-
lationships among degradation processes by multivariate normal dis-
tribution, and modeled the failure rate with covariates etc. Though the 
system reliability functions can be deduced directly, these approaches 
are insufficient to cope with the complexity of the modern system in 
reality [29, 33]. 

Copula is a powerful tool to model the dependence of random 
variables, and the copula based models allow for flexible specification 
of the dependence structure between competing random variables [3, 
24]. Zhou [33] proposed a bivariate degradation modeling framework 
based on gamma processes and copula function is used to describe 
the dependence between performance characteristics. Wang and 
Pham [29] developed a flexible s-dependent competing risk model 
to describe the dependence between random shocks and the degrada-
tion process by employing time-varying copulas. Lo and Wilke [20] 
extended the copula graphic estimator to model multiple dependent 
competing risks and applied the model to the unemployment dura-
tion data from Germany. However, copula function has seldom been 
applied to model the dependence structure in maintenance optimiza-
tion. 

In practice, systems are usually subjected to competing risks 
involving both degradation and shocks, as investigated by many 
researchers [6, 10, 12, 15 and 30]. In this paper, a system suffering 

dependent competing risks caused by two degradation processes and 
random shocks is studied. With the dependence structure modeled by 
copula function, a joint reliability function is developed based on the 
simulated data and the maintenance optimization is investigated. 

The remaining paper is organized as follows. Section 2 investi-
gates the system failure process and deduces the marginal reliability 
function for the system suffering two degradation failure processes 
and random shocks. Section 3 develops the system reliability model 
based on a copula function and provides a parameter estimation pro-
cedure based on simulated data. Section 4 presents two maintenance 
models based on the joint copula reliability function. In Section 5, 
a numerical example is presented to illustrate the procedure to de-
termine the joint reliability function and investigate the maintenance 
optimization for the two maintenance policies.

2. Dependent competing risks

Consider a system subjected to competing risks due to two degra-
dation processes and random shocks. The two degradation processes 
have a dependent relationship with each other as each shock causes a 
sudden increment jump to both degradation processes simultaneously. 
The system fails if the cumulative deterioration of any degradation 
process exceeds a certain critical failure threshold.

2.1.	 Degradation processes without random shocks

Gamma processes have been extensively adopted to describe the 
gradual degradation phenomena e.g. corrosion [16], crack growth [5]. 

Let ( )iX t , ( 1, 2i = ) denote the accumulated deterioration for the i
th degradation process at time t , where the initial state of the system 

is perfect with (0) 0iX = . Assume that { }( ), 0iX t t ≥ , ( 1, 2i =  ) is a 

stationary gamma process where ( ) ( )i iX t X s−  is gamma distributed 
for all 0 s t≤ < . Without considering the influences of the shock 

process, ( ) ( )i iX t X s− , 0 s t≤ <  has a gamma probability density 
function (pdf) with shape parameter αi t s( )− > 0  and scale parameter 

βi > 0 : 
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 is the gamma function. { 0} 1
ixI ≥ =  if 

0ix ≥  and { 0} 0
ixI ≥ =  otherwise.

The average deterioration rate is ui i i=α β/ , and its variance is 

σ α βi i i
2 2= / . Though the constant deterioration rate may be unsuit-

able for the realistic degradation process, a monotonic transformation 
of the time scale can make the real deterioration rate constant [31]. 
With the choice of αi  and βi , such a process can be very flexible to 

model various deterioration behaviors of the system.
The stochastic process { ( ), 0}iX t t ≥  is time continuous and mo-

notonically increasing, and the system fails once ( )iX t  exceeds a 
predetermined failure threshold iL . Though the system may be still 
functioning after crossing the failure threshold, it cannot perform its 
function as required and is regarded as “failed” for economical or se-
curity reasons. The time to failure (TTF) of the i th degradation proc-
ess can be expressed as inf{ | ( ) }i i iTL t X t L= ≥ , and its cumulative 
distribution function (cdf) can be obtained as:
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The pdf for TTF of the i th degradation process is 
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Γ  is called the digamma function.

The reliability function corresponding to the i th degradation 
process is 
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2.2.	 Shock process

Shocks may be generated internally within components or in-
troduced externally from the environment outside. Most shocks are 
harmful to the system operation, and can reduce the system residual 
useful life. In this paper, a cumulative shock model is employed to 
describe the shock process. The probabilities for the shock damages to 
occur in different time intervals are assumed to be independent.

The log-linear process (LLP) is very flexible and has been widely 
used to describe the occurrence of random events, such as the wear 
of cylinder liner [2]. Here the shock process is described by the LLP, 
and the random shocks are assumed to occur in a non-homogeneous 
Poisson process (NHPP) with intensity function

	 λ( ) et r ct= , (0, )r∈ ∞ , ( , )c∈ −∞ +∞ . 	 (5)

Let ( )N t  denote the number of shocks until time t, then the ex-

pected number of shocks until time t, denoted by ( )W t , is given by
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Further, the probability distribution of ( )N t  is
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The amount of damage caused by the k th shock to the i th deg-

radation process is denoted by ikS  and S Nik i i ( , )µ σ 2 . Furthermore, 
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where )()( zG j is the j-fold convolution with itself. 

2.3.	 Degradation processes with random shocks 

Section 2.1 investigated the reliability of the system subjected to 
the degradation process, without considering the influences induced 
by the shock process. In practical applications, the random shocks 
may exist and have impacts on the degradation processes. [29] 

In this paper, the random shocks will induce a sudden increment 
to the degradation process. Considering the dependent relationship of 
degradation processes and random shocks, the i th degradation proc-
ess state ( )iY t  includes two parts: the wear caused by the system ag-

ing and the sudden increments induced by the random shocks. The 
i  th degradation at time t can be expressed as Y t X t Z ti i i( ) ( ) ( )= + . 

Denote the TTF for the i th degradation by iT . The reliability function 

for the i th degradation process with random shock damages is given 
by
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The pdf of TTF for the ith degradation process with random 
shocks can be expressed as 

	 ( )
( ) i

i
dR t

f t
dt

= − .	 (10)

3. System reliability analysis

The system failure occurs if any of the degradation processes 
( )iY t  reaches the failure threshold iL . Therefore, the system reliabil-

ity at time t  is 

1 1 2 2 1 1 1 2 2 2( ) ( ( ) , ( ) ) ( ( ) ( ) , ( ) ( ) )R t P Y t L Y t L P X t Z t L X t Z t L= < < = + < + <

(11)

If the two degradation processes are independent, the system reli-
ability function can be written as 

	 1 2( ) ( ) ( )R t R t R t= .	 (12)

However, Eq. (12) is unable to provide the accurate system reli-
ability estimation for our case, as there is dependency between the 
two degradation processes due to the random shocks. It is difficult to 
calculate ( )R t  by Eq. (11) directly, so we need to find another way 
to predict the reliability of the system subject to dependent competing 
failures.

(9)
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3.1.	 A Copula approach

A Copula function is a powerful tool to model the dependence 
structure of the competing failure processes. One advantage of the 
copula function is that the joint reliability function can be modeled 
directly through the univariate marginal reliability functions of the 
individual failure processes, (i.e. 1( )F t , 2 ( )F t ) and the copula has no 

constraints on the univariate marginal distribution.
The cdf of TTF for the two degradation processes can be ex-

pressed as ( ) 1 ( )i iF t R t= −  ( 1, 2i = ), and the joint cdf of 1T  and 2T  
is denoted by 1 2( , )H t t . According to Sklar’s theorem, there exists a 

unique copula C such that

	 P T t T t H t t C F t F t( , ) ( , ) ( ( ), ( ), )1 1 2 2 1 2 1 1 2 2≤ ≤ = = Θ ,	 (13)

where Θ  is the parameter vector of the copula function.

Meanwhile, the joint reliability function of the system with 1t  and 

2t  can be expressed as

	 1 2 1 1 2 2( , ) ( , )H t t P T t T t= > > .	 (14)

Because 1( )R t  and 2 ( )R t  are decreasing functions, the system 

reliability at time t  ( 1 2t t t= = ) can be expressed with the survival 

copula function as [8, 24]
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There is another approach to construct the system reliability with 
a copula function, as shown in [29]. The joint reliability function can 
be directly modeled by a copula function and can be written as 

R t H t t C R t R t C R t Rt t t t t t( ) ( , ) | ( ( ), ( ), ) | ( ( ),= = == = = =1 2 1 1 2 2 11 2 1 2
Θ 22( ), )t Θ . (16)

The results of Eq. (15) and (16) may be different, and we will 
compare the two approaches in Section 5.

3.2.	 Parameter estimation

Assume that the parameters of the marginal reliability functions 
for the degradation processes are already given. In order to predict the 
system reliability, we need to estimate the copula parameters based on 
the known marginal distributions. The pdf of the joint distribution 

1 2( , )H t t  can be denoted as ( )f t  as 1 2t t t= = . Further, we can ob-

tain ( )f t  from Eq. (15) as
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copula density function.

Similarly, ( )f t  for Eq. (16) is given as 

	 f t f t t c R t R t f t f tt t t t t( ) ( , ) | ( ( ), ( ), ) ( ) ( ) |= = −= = =1 2 1 1 2 2 1 1 2 21 2 1
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In this paper, the simulated data are used to estimate the parame-
ters of the copula function and validate the effectiveness of the copula 
method. The proposed method can be divided into two stages. 

In the first stage, we need to simulate the competing failure proc-
esses to obtain the system marginal reliability sample with the under-
lying dependent relationship between the degradation processes and 
the shock process at discrete times. The procedures are described as 
follows:

Compute the degradation increment •	 ( )iX t  ( 1, 2)i =  of each 
degradation process at t m t= ∆  ( m =1,2,…), where t∆  is the 
time step for the degradation process simulation.
Generate the shock arrival times following NHPP •	 1 2{ , ,...., }nt t t , 
( nt t≤ ) and the corresponding shock damages to each degra-

dation process 1 2{ , ,..., }i i ins s s . 

Compute the accumulated shock damage at time •	 t  as 

1
( )

n

i ik
k

Z t s
=

= ∑  for each degradation process.

Compute the system reliability    	  •	

{ ( ) ( ) }
ˆ ( ) /

i j i j iX t Z t L
j Num

R t I Num+ ≤
=

= ∑ ,where I  is an indicator 

function. 1I = , if ( ) ( )i i iX t Z t L+ ≥  and 0I =  otherwise. 
Num  is the total number of simulations.

In the second stage, the Maximum likelihood estimator (MLE) is 
used to estimate the copula function parameters based on the simu-
lated marginal reliability sample. Below are the procedures:

Consider 1N  simulated results for the degradation processes, 
which are denoted by { }

1
1 2 1,
( ), ( )j j j N

F t F t
= 

. With Eq. (17) and (18), 

the log-likelihood function for the bivariate copula can be expressed 
respectively as
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N
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1
,	 (19)

	 ln ( ) ln ( ( ), ( ), )L c R t R tj j
j

N
Θ Θ=

=
∑ 1 2

1

1

.	 (20)

Using MLE, the copula parameters can be estimated as

	


Θ Θ= ArgMax L{ln ( )} .	 (21)

4. Maintenance models

This section presents two kinds of maintenance policies based 
on the joint copula reliability function for a non-repairable system. 
The first policy is a periodic inspection/replacement policy and the 
decision variable for maintenance decision maker is the inspection 
interval. The second policy is an age-based maintenance policy and 
the decision variable is the replacement age to be specified. For both 
maintenance policies, the objective is to minimize the average main-
tenance cost rate in long run. 
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4.1.	 Periodic inspection/replacement policy

Due to cost reasons and other practical issues, the system is in-
spected at a periodic interval τ. The inspection is perfect and instan-
taneous with a cost IC  incurred. When any of the two degradation 
processes with the underlying shock damages exceeds the pre-set 
threshold, the system is deemed as failed though it still runs until the 
failure is identified at the next inspection. In case when a system fail-
ure is identified at an inspection, it is replaced instantly with a new 
one and the replacement time is negligible. The replacement can be 
seen as a renewal.

Denote the accumulative maintenance cost until time t  as ( )C t . 

According to the renewal theory, we have

	 ( ) [ ]lim
[ ]t

C t E CR
t E TR→∞

= ,	 (22)

where [ ]E CR  is the expected total maintenance cost in a renewal 

cycle, [ ]E TR  is the expected length of a renewal cycle.

The maintenance costs in a renewal cycle are composed of in-
spection cost, replacement cost and the delay time cost during system 
failure period. The delay time cost is incurred by the loss of system 
performance during the system failure period. The expected total cost 
in a renewal cycle can be expressed as 

	 E CR C E N C E CI I D R[ ] [ ] [ ]= + +ξ ,	 (23)

where IC  is the cost associated with each inspection, DC  is the delay 

time cost rate for the system failure duration, RC  is the replacement 

cost after the system failure, [ ]IE N  is the expected inspection 

number in a renewal cycle, E[ ]ξ  is the expected time that the system 

spends in failed state in a renewal cycle.
Denote the failure time of the system as 1 2min( , )T T T= . If there 

are i  inspections in a renewal cycle, then we have 
{ } {( ) }N i i T iI = = − < ≤1 τ τ . Therefore, the expected number of in-

spections in a renewal cycle is given as

E N iP N i iP i T i i F i F iI I
i i

T T[ ] ( ) (( ) ) ( ( ) (( )= = = − < ≤ = − −
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∞
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∞
∑

1
,(24)

where ( )TF t  is the cdf of the TTF of the system, which can be calcu-

lated by 1 ( )R t−  based on Eq. (15) and (16).

If the system is identified as failed at the i th inspection, then the 
delay time is ξ τ= −i T . Therefore, the expected delay time of the 
system in a renewal cycle is 

	 E E N i P N i i t dF tI
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1 111
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The expected length of a renewal cycle can be expressed as

E TR i P N i i F i F iI
i

T T
i
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=

∞

=

∞
∑ ∑τ τ τ τ

1 1
1 .       (26)

Based on Eq. (22)-(26), the average maintenance cost rate in long 
run is given as a function of τ as

AVC
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i F i F i

1

1
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.(27)

To minimize the average maintenance cost rate in long run, we 
can calculate the derivative of AVC( )τ , as detailed in Appendix 1. By 
setting AVC '( )τ = 0 , the optimal interval τ can be obtained for the 

periodic inspection policy. 

4.2.	 Age-based replacement policy

Under this maintenance policy, the system is replaced at a speci-
fied age Ψ  without any inspection. When the system fails before Ψ , 
there will be a period of delay time for the system until Ψ  at a cost 
rate DC , and the system will be correctively replaced with a cost RC . 

Otherwise, the system will be preventively replaced with a cost PC  at 
Ψ . Both the preventive replacement and the corrective replacement 
restore the system to as-good-as new state.

In this case, the expected cost rate in long run is given by

0

( ) (1 ( )) ( )
( )

R T P T D TC F C F C F t dt
AVC

Ψ

Ψ + − Ψ +
Ψ =

Ψ

∫
, 0Ψ > .(28)

When Ψ  is very large, the cost rate will be large due to the high 
probability of failure and long delay time. On the other hand, when Ψ  
is very small, the cost rate will also be large due to the high frequency 
of preventive replacement. Therefore there exists an optimal Ψ  to 
achieve the minimum expected cost rate. The derivation of Eq. (28) is 
given by

0
2

( ( ) ( ) ( )) ( ( ) (1 ( )) ( ) )
'( )

R T P T D T R T P T D TC f C f C F C F C F C F t dt
AVC

Ψ

Ψ − Ψ + Ψ Ψ − Ψ + − Ψ +
Ψ =

Ψ

∫
. 

(29)

By setting '( ) 0AVC Ψ = , the optimal Ψ  can be obtained for the 

age-based maintenance policy.

5. Numerical example

In this section, the joint copula reliability model is constructed 
and the two maintenance policies are studied for a system subjected to 
two degradation processes and random shocks. The two degradation 
processes are governed by gamma processes with parameters α1 0 2= .

, β1 2= , α2 0 3= . , β2 2= . The failure thresholds for the two degra-

dation processes are 1 6L = , 2 8L = . The random shocks follow a 

NHPP process with 0.1r = , 0.01c = . The random shock damages to 

the two degradation processes follow 2
1, (0.2,0.1 )kS N  and 

2
2, (0.5,0.2 )kS N , respectively. The cost parameters are assumed 

as follows: IC =1 per inspection, PC =180 per PM, RC =200 per re-

placement, DC =100 per unit time.

5.1 Copula function selection

According to the copula function properties, we can use the mar-
ginal reliability function in Eq. (9) to construct the joint reliability 
function with the underlying dependent relationship. With the given 
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parameters, we can simulate the competing failure processes for the 
system to obtain the marginal reliability functions and the joint reli-
ability function with dependent competing risks (see table 1). In this 
paper, Gumbel copula, Clayton copula, Frank copula, Gaussian cop-
ula and t-copula are employed to fit the joint reliability distribution. 
Based on the simulated marginal reliability data in table 1, we can use 
MLE to estimate the parameters of the copula functions. 

Denote the joint reliability function in Eq. (15) by Type I reli-
ability function, and the joint reliability function in Eq. (16) by Type 
II reliability function. 

The results for Type I reliability function are given in table 2. The 
criteria, Log-likelihood (LL), Akaike information criterion (AIC) and 
Bayesian information criterion (BIC) are used to show the goodness 
of fit. AIC and BIC are two criterion functions with the difference that 
the BIC also takes account of the sample size.  Besides, the average 
relative error (ARE) criterion is used to judge the relative error be-
tween the fitted reliability data and the simulated reliability data, and 
determine which copula function has the highest precision to estimate 
the system reliability. The ARE is computed as 	  

ARE=
1

( ) ( )1
( )

N
sim i copula i

i sim i

R t R t
N R t=

−
∑ , where simR  is the simulated reli-

ability result, copulaR  is the reliability computed with the copula func-

tion, ti  corresponds to the time in table 1 and 1N =18 in this case.

The results for Type II reliability function are given in table 3.
From the results in table 1 and 2, it can be seen that the Clayton 

Copula is the most suitable copula function for fitting Type I reliabil-
ity function, the Gumbel Copula is the most suitable copula function 
for fitting Type II reliability function, but Gaussian copula has the 
highest precision for the system reliability estimation with Type I or 
Type II reliability function. The comparisons of the joint copula reli-
ability functions are shown in Fig.1.

Through the comparison in Fig.1, we can see that the Gaussian 
copula is obviously better than other copula functions. Therefore, 
Gaussian copula is chosen to model the joint reliability of the sys-

Table 1.	 Simulated marginal reliability data with dependent relationship

Time 75 80 85 90 95 100 105 110 115

R1(t) 0.9999 0.9999 0.9999 0.9970 0.9880 0.9590 0.9180 0.8700 0.8300

R2(t) 0.9999 0.9999 0.9980 0.9890 0.9390 0.8780 0.7450 0.6130 0.4630

R(t) 0.9999 0.9999 0.9980 0.9860 0.9270 0.8370 0.6630 0.4830 0.2930

Time 120 125 130 135 140 145 150 155 160

R1(t) 0.7680 0.7580 0.7410 0.7440 0.7650 0.7460 0.7500 0.7480 0.7350

R2(t) 0.3960 0.3050 0.2960 0.2750 0.2500 0.2670 0.2590 0.2570 0.2760

R(t) 0.1640 0.0063 0.0037 0.0019 0.0015 0.0130 0.0090 0.0050 0.0110

Table. 2	 Results of copula fitting for Type I reliability function

Copula 
type

Parameter 
(Θ) LL AIC BIC ARE

Gumbel 1.9902 15.2297 -28.4593 -27.5689 0.4242

Clayton 0.6376 25.8857 -49.7713 -48.8809 0.4994

Frank 2.9086 3.0513 -4.1027 -3.2123 0.4823

Gaussian 0.9816 20.8389 -39.6779 -38.7875 0.4053

Student’s t 0.6103 22.2799 -42.5598 -41.6694 0.4945

Table 3.	 Results of copula fitting for Type II reliability function

Copula 
type

Param-
eter (Θ) LL AIC BIC ARE

Gumbel 1.3195 25.6364 -49.2728 -48.3824 0.4912

Clayton 0.94423 2.1686 -2.33719 -1.44682 0.4433

Frank 2.9086 3.05135 -4.1027 -3.2123 0.4823

Gaussian 0.9832 20.8389 -39.6779 -38.7875 0.4053

Student’s 
t 0.3226 22.2799 -42.5598 -41.6694 0.4816

Fig.1.	 Comparison between the copula reliability with the simulated system 
reliability data

(b) Type II reliability function

(a) Type I reliability function
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tem with dependent competing risks and Type II reliability function is 
chosen as the system reliability function for simplicity. 

Fig. 2 shows the comparison between the reliability computed by 
Gaussian copula reliability function in Eq. (16) and the independent 
reliability function in Eq. (12). It is shown that the proposed joint 
reliability function provides more precise results than the independent 
reliability function. 

5.2.	 Maintenance optimization

Based on the Gaussian copula reliability function, we can use Eq. 
(27) to obtain the optimal inspection interval τ * =0.2 with minimum 

AVC( )*τ =15. Fig.3 illustrates the average maintenance cost rate in 

long run as a function of τ.

For the age-based maintenance policy, we can use Eq. (29) to 
obtain the optimal replacement interval *Ψ =28 with the minimum 
expected cost rate achieved as 16.17. Fig.4 depicts the expected cost 
rate in long run as a function of Ψ .

By comparing the optimal results of the two maintenance policies, 
it is found that the periodic inspection/replacement policy is more 
profitable than the age-based replacement policy (15<16.17). Actual-
ly, appropriate inspection plan can effectively reduce the maintenance 
cost when the inspection cost is not very high. However, when the 
inspection action costs too much, the periodic inspection/replacement 

policy will not show superiority over the age-based maintenance pol-
icy. Fig.5 shows the maintenance cost rate versus the inspection inter-

val with IC =20. The optimal cost rate AVC( )*τ =60>16.17 is 

achieved at *t =0.2. This proves that the inspection cost is an impor-
tant factor for choosing the maintenance policy.

6. Conclusions

In this paper, we developed a joint copula reliability model for 
dependent competing risks with two degradation processes and ran-
dom shocks. The random shocks can cause additional shock damages 
to the two degradation processes. A two-stage estimation method is 
proposed to estimate the parameters of the copula function based on 

simulated data. Gaussian copula function is chosen to model the sys-
tem reliability with multiple dependent competing risks judging by 
the evaluation criteria. Based on the copula reliability model, we stud-
ied two maintenance policies for a non-repairable system. Through 
comparison, we find that the periodic inspection/replacement policy 
is superior over the age-based maintenance policy when the inspec-
tion cost is low. But when the inspection cost is high, the age-based 
maintenance policy will be more profitable than the periodic inspec-
tion/replacement policy. 

Fig.2. Gaussian copula reliability versus independent reliability

Fig.3.	 Average long-run maintenance cost rate versus inspection interval τ 
with CI=1

Fig.4. Evolution of expected cost rate versus  

Fig.5. Average long-run maintenance cost rate versus inspection interval τ with  
CI=20
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