PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Review of the Photodecomposition of Some Important Energetic Materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The photodecomposition mechanisms of energetic materials vary with molecular structure, photodissociation wavelength, the phase of the material, experimental pressure and temperature etc. In this paper, the significant progress on photodecomposition studies of some important energetic materials achieved in recent years is introduced in detail, including nitromethane, DMNA (dimethylnitramine), TATB (1,3,5-triamino-2,4,6-trinitrobenzene), RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), HMX (1,3,5,7-tetranitro-1,3,5,7- tetrazacycloctane) and CL-20 (2,4,6,8,10,12-hexanitrohexaazaisowurtzitane). The difficulties and prospects of photodecomposition research of energetic materials are also indicated.
Rocznik
Strony
411--423
Opis fizyczny
Bibliogr. 32 poz., fig.
Twórcy
autor
autor
autor
autor
autor
autor
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang Sichuan, 621900, People's Republic of China, syjfree@sina.com
Bibliografia
  • [1] Darren L.W., James C.T., James D. W., et al., UV-Induced Degradation Rates of 1,3,5-Triamino-2,4,6-Trinitrobenzene (TATB), J. Phys. Chem. A, 2003, 107(44), 9491-9494.
  • [2] Lm H.S., Bernstein E.R., On the Initial Steps in the Decomposition of Energetic Materials from Excited Electronic States, J. Chem. Phys., 2000, 113(18), 7911-7918.
  • [3] Glascoe E.A., Zaug J.M., Armstrong M.R., et al., Nanosecond Time-Resolved and Steady-State Infrared Studies of Photoinduced Decomposition of TATB at Ambient and Elevated Pressure, J. Phys. Chem. A, 2009, 113(20), 5881-5887.
  • [4] Shu Yuanjie, Thermal Decomposition of Nitramine High Explosives, National Defense Industry Press, Beijing, 2010.
  • [5] Sharma J., Garrett W.L., Owens F.J., et al, X-ray Photoelectron Study of Electronic Structure and Ultraviolet and Isothermal Decomposition of TATB, J. Phys. Chem., 1982, 86(9) 1657-1661.
  • [6] Mconald J.W., Schenkel T., Newman M.W., et al., The Effects of Radiation on (1,3,5-triamino-2,4,6-trinitrobenzene) TATB Studied by Time-of-Flight Secondary Ion Mass Spectrometry, J. Energ. Mater., 2001, 19, 101-118.
  • [7] Guo Y.Q., Bhattacharya A., Bernstein E.R.. Photodissociation Dynamics of Nitromethane at 226 and 271 nm at Both Nanosecond and Femtosecond Time Scales, J. Phys. Chem. A, 2009, 113(1), 85-96.
  • [8] Bhattacharya A., Guo Y.Q., Bernstein E.R., Experimental and Theoretical Exploration of the Initial Steps in the Decomposition of a Model Nitramine Energetic Material: Dimethylnitramine, J. Phys. Chem. A, 2009, 113(5), 811-823.
  • [9] Greenfield M., Bernnstein E.R., Guo Y.Q., Ultrafast Photodissociation Dynamics of HMX and RDX from Their Excited Electronic States via Femtosecond Laser Pump-probe Techniques, Chem. Phys. Lett., 2006, 430, 277-281.
  • [10] Greenfield M., Excited Electronic State Decomposition Mechanisms and Dynamics of Nitramine Energetic Materials and Model Systems, Colorado State University, Fort Collins, Colorado, 2007.
  • [11] Guo Y.Q., Greenfield M., Bernnstein E.R., Decomposition of Nitramine Energetic Materials in Excited Electronic States: RDX and HMX, J. Chem. Phys., 2005, 122, 244310.
  • [12] Bhattacharya A., Guo Y.Q., Bernstein E.R., Unimolecular Decomposition of Tetrazine -N-oxide Based High Nitrogen Content Energetic Materials from Excited Electronic States, J. Chem. Phys., 2009, 131, 194304.
  • [13] Guo Y.Q., Bhattacharya A., Bernnstein E.R.. Excited Electronic State Decomposition of Furazan Based Energetic Materials: 3,3’-Diamino-4,4’-azoxyfurazan and Its Model Systems, Diaminofurazan and Furazan, J. Chem. Phys., 2008, 128, 034303.
  • [14] Guo Y.Q., Greenfield M., Bhattacharya A. et al., On the Excited State Dissociation of Nitramine Energetic Materials and Model Systems, J. Chem. Phys., 2007, 127, 154301 (1-10).
  • [15] Hubertus G., Michael P., Radiation-Induced Decomposition of PETN and TATB under Extreme Conditions, J. Phys. Chem. A, 2008, 112, 3352.
  • [16] Hrischlaff E., Norrish R.G.W., A Preliminary Study of the Decomposition of Nitromethane and Nitroethane, J. Chem. Soc., 1936, 1, 1580.
  • [17] Pimental G.C., Rollefson G., Formation and Trapping of Free Radicals, Acadamic Press, 1960, ch. 4.
  • [18] Haugen G.R., Steinmetz L.L., Preliminary investigation of the ultra-violet pulse photolysis of nitromethane, Molecular Photochemistry, 1979, 9(6), 473-499.
  • [19] Schoen P.E., Marrone M.J., Schnur J.M. et al., Picosecond UV Photolysis and Laser-induced Fluorescence Probing of Gas-phase Nitromethane, Chem. Phys. Lett., 1982, 90(4), 272-276.
  • [20] Brown H.W., Pimentel G.C., Photolysis of Nitromethane and Methyl Nitrite in an Argon Matrix; Infrared Detection of Nitroxyl, HNO, J. Chem. Phys., 1958, 29(4), 883.
  • [21] Cundall R.B., Locke A.W., Street G.C., The Chemistry of Ionization and Excitation, Taylor and Francis Ltd., London, 1967.
  • [22] Mialocq J.C., Stephenson J.L., Picosecond Laser-induced Fluorescence Study of the Collisionless Photodissociation of Nitrocompounds at 266 nm, Chem. Phys. Lett., 1986, 106(2), 281-291.
  • [23] McQuaid M.J., Miziolek A.W., Sausa R.C., Photodissociation of Dimethylnitramine at 248 nm, J. Phys. Chem., 1991, 95, 2713-2718.
  • [24] Simeonsson, J.B., Sausa R.C., A Critical Review of Laser Photofragmentational Fragment Detection Techniques for Gas-phase Chemical Analysis, Appl. Spec. Rev., 1996, 31(1-2), 1-72.
  • [25] Kakar S., Nelson A.J., Treusch R., Heske C., Electronic Structure of the Energetic Material 1,3,5-Triamino-2,4,6-Trinitrobenzene, Phys. Rev. B, 2000, 62, 15666-15672.
  • [26] Britt A.D., Moniz W.B., Chingas G.C., et al., Free radicals of TATB, Propellants Explos. Pyrotech., 1981, 6, 94-95.
  • [27] Pace M.D., Kalyanaraman B., Spin Trapping of Nitrogen Dioxide Radical From Photolytic Decomposition of Nitramines, Free Radical Biol. Med., 1993, 15, 337-342.
  • [28] Pace M.D., Electron Paramagnetic Resonance of Ultraviolet Irradiated HMX Single Crystals, Mol. Cryst. Liq. Cryst., 1988, 156, 167-173.
  • [29] Capellos C., Papagiannakopoulos P., Liang Y., The 248 nm Photodecomposition of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine, Chem. Phys. Lett., 1989, 164, 533-538.
  • [30] Ou Y., Liu J., High Energy Density Compounds, National Defence Industry Press, Beijing, 2005.
  • [31] Pace M.D., EPR Spectra of Photochemical NO2 Formation in Monocyclic Nitramines and Hexanitrohexaazaisowurtzitane, J. Phys. Chem., 1991, 95, 5858-5864.
  • [32] Hawari J., Deschamps S., Beaulieu C., et al., Photodegradation of CL-20: Insights into the Mechanisms of Initial Reactions and Environmental Fate, Water Research, 2004, 38, 4055-4064.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT1-0043-0041
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.