PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Mathematical Formulation and Validation of Muraour's Linear Burning Rate Law for Solid Rocket Propellants

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Linear variation of burning rate with pressure (burning rate, r = H + Sp), referred in the literature as Muraour's law, is adopted as the burning rate law for solid rocket propellants. The two constants 'H' and 'S' are the vacuum burning rate and the slope of burning rate variation, respectively. The conventional power law of the burning rate, r = apn, is also analyzed and its practical, anomalous behaviour such as zero burning rate at zero pressure, the reduction in pressure sensitivity of the burning rate at higher pressures, the lower burning rate for the high pressure index in typical situations etc, are explained with illustrations. Like the conventional power law of burning rate, the linear burning rate law considered here is also empirical but mathematically simpler than the power law. Using burning rate and pressure data from various literature sources similar regression coefficients are observed for the conventional power law as well as for the alternative linear burning rate law. The mathematical concept for the evolution of the pressure time profile with the considered linear burning rate law is developed and validated practically with the actual firing of rocket propellants as uninhibited, tubular configurations in a ballistic evaluation motor (BEM). Close matching of the firing curve, predicted by the conventional power law and by the proposed linear burning rate law validates the mathematical formulation. The considered linear burning rate law is simple, easy to apply and gives a better representation of the burning rate behaviour of solid rocket propellants.
Rocznik
Strony
353--364
Opis fizyczny
Bibliogr. 20 poz., fig.
Twórcy
autor
Bibliografia
  • [1] Bailey A., Murray S.G., Explosives Propellants and Pyrotechnics, Vol. 2, Brassey’s, UK, 1989.
  • [2] Williams F.A., Barrere M., Huang N.C., Fundamental Aspects of Solid Rockets, Technivision Services Slough, England, October 1969, pp. 192-193.
  • [3] Summerfield M., Sutherland G.S., Webb M.J., Taback H.J., Hell K.P., Burning Mechanism of Ammonium Perchlorate Propellants, ARS Preprint, 1958, pp. 737-58.
  • [4] Blair D.W., Bastress E.K., Hermance C.E., Hall K.P., Summerfield M., Some Research Problems in the Steady-State Burning of Composite Solid Propellants, Solid Propellant Rocket Research Conference, Princeton University, New Jersey, 28-29 January, 1960.
  • [5] Kubota N., Aoki I., Burning Rate Characterization of GAP/HMX Energetic Composite Materials, Propellants Explos. Pyrotech., 2000, 25(4), 168-171.
  • [6] Babuk V.A., Dolotkazin I.N., Glebov A.A., Burning Mechanisms of Aluminized Solid Rocket Propellants Based on Energetic Binders, Propellants Explos. Pyrotech., 2005, 30(4), 281-290.
  • [7] Guo X., Li F., Song H., Liu G., Kong L., Li M., Combustion Characteristics of a Novel Grain Binding High Burning Rate Propellant, Propellants Explos. Pyrotech., 2008, 33(4), 255-260.
  • [8] Pande S.M., Sadavarte V.S., Bhowmik D., Gaikwad D.D., Singh R.V., Singh H., Burning Rate − Pressure Relationship of NG-PE-PCP-based High Energy Propellants, Propellants Explos. Pyrotech., 2012, 37(2), 241-245.
  • [9] Anon, Solid Rocket Motor Performance Analysis and Prediction, NASA Report SP-8039, May 1971, N72-18785.
  • [10] Fry R.S., Solid Propellant Subscale Burning Rate Analysis Methods for U.S. and Selected NATO Facilities, The John Hopkins University, Chemical Propulsion Information Agency, Columbia, Maryland, Jan 2002.
  • [11] Cole R.B., Burning Rates of Solid Composite Propellants at Pressures up to 20000 psig (U), AD375686, Report No S-80, 23 Sept 1966.
  • [12] Raman K.V., Singh H., Rao K.R.K., Ballistic Modification of CMDB Propellants Containing Ammonium Perchlorate, Propellants Explos. Pyrotech., 1987, 12(1), 13-16.
  • [13] Xu L.-H., Wang M.-X., Wang E.-P., Tan H.-M., Chen B.-R, The Properties of 1,3,3,5,7,7-hexanitro-1,5-diazacyclooctane (HCO) and Its Application in Propellants, Propellants Explos. Pyrotech., 1988, 13(1), 21-24.
  • [14] Leu A.-L., Yeh T.-F., Chang F.-M., Liu C.-S., Huang C.-C., Liu F., Shih Y.-S., Burning Behaviour of Composite Solid Propellant Containing Porous Ammonium Perchlorate, Propellants Explos. Pyrotech., 1989, 14(3), 108-112.
  • [15] Kentgens H., Mackowiak H.P., Schooffl R., Short Action Solid Rocket Motors with Double-Base Propellants, Propellants Explos. Pyrotech., 1996, 21(3), 118-126.
  • [16] Ghorpade V.G., Dey A., Jawale L.S., Kotbagi A.M., Kumar A., Gupta M., Study of Burn Rate Suppressants in Ammonium Perchlorate Based Composite Propellants, Propellants Explos. Pyrotech., 2010, 35(1), 53-56.
  • [17] Oyumi Y., Inokami K., Yamazaki K., Matsumoto K., Burning Rate Augmentation of BAMO based Propellants, Propellants Explos. Pyrotech., 1994, 19(4), 180-186.
  • [18] Miller M. S., Burning-Rate Models and Their Successors: A Personal Perspective, US Army Research Laboratory, ARL-TR-2996, June 2003.
  • [19] Arvanetes J.C., Design and Implementation of an Emission Spectroscopy Diagnostic in a High-Pressure Strand Burner for the Study of Solid Propellant Combustion, M.Sc. Thesis, Department of Mechanical, Materials, and Aerospace Engineering, University of Central Florida, Orlando, Florida, 2006.
  • [20] McBurnett M., The Use of Flight Motors in Solid Rocket Propellant Characterization Experiments, Rocket Magazine, 2007, 2(5), 8-12.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT1-0043-0037
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.