PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Past, Present & Future of Thermally Stable Explosives

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Explosives with improved high temperature properties are usually referred to as 'thermally stable explosives' or heat-resistant explosives. They are safer, more reliable and more stable at elevated temperatures and find applications in modern Ordnance, Space and Nuclear applications. This paper discusses general approaches for the synthesis of thermally stable explosives, their properties and specific applications. This paper also gives a comparative account of the properties of some of the most thermally stable explosives reported so far. Based on their ease of synthesis, properties (mainly stability at elevated temperatures and insensitivity to impact, friction and percussion) and cost, TATB is considered as a benchmark, thermally stable explosive which is discussed in detail. Furthermore, this review also describes the synthesis and properties of BTDAONAB which does not melt below 550 °C and is considered a better thermally stable explosive than TATB. Finally, a new line of research in this field in the years to come is also highlighted.
Rocznik
Strony
273--290
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
Bibliografia
  • [1] Cumming A.S., New Directions in Energetic Materials, J. Def. Sci., 1996, 1(3), 319-321.
  • [2] Plets V., Relation between Explosive Properties and Chemical Structure, Zh. Obshch. Khim., 1935, 5, 173-178; Urbański T., Chemistry and Technology of Explosives, Vol.1, Pergamon, Oxford, 1964.
  • [3] Agrawal J.P., Recent Trends in High Energy Materials, Progress in Energy & Combustion Science, USA, 1998, 24, 1-30.
  • [4] Agrawal J.P., Some New High Energy Materials and Their Formulations for Specialized Applications, Propellants Explos. Pyrotech., 2005, 30, 316-326.
  • [5] Dunstan I., Chem. Britain, 1971, 7(2), 62-69.
  • [6] Urbański T., Vasudeva S.K., Heat Resistant Explosives, J. Sci. Ind. Res., 1978, 37(5), 250-255.
  • [7] Lu C.X., Development and Present Situation of Heat-Resistant Explosives, Kogyo Kayaku, 1990, 51(5), 275-279.
  • [8] Gilbert E.E., The Preparation of Hexanitrobibenzyl from TNT with Sodium Hypochlorite, Propellants & Explosives, 1980, 5(1),15-19.
  • [9] Agrawal J.P., Hodgson R.D., Organic Chemistry of Explosives, John Wiley & Sons, UK, 2007.
  • [10] Agrawal J.P., High Energy Materials, Propellants Explos. Pyrotech., Wiley-VCH, Germany, 2010.
  • [11] Coburn M.D., Jackson T.E., Picrylamino-Substituted Heterocycles. III. 1,2,4-Triazoles, J. Heterocycl. Chem., 1968, 5(2), 199-203.
  • [12] Ayres J.N., Montesi L.J., Bauer R.J., Small Scale Gap Test (SSGT) Data Compilation: 1959-1972. Vol. 1. Unclassified Explosives, Naval Ordnance Laboratory, Technical Report (NOLTR) No. 73-132, 1973.
  • [13] Gibbs T.R., Popolato A., LASL Explosive Property Data, University of California Press, Los Angeles, 1980, pp. 38, 157.
  • [14] Zeman S., The Thermoanalytical Study of some Amino Derivatives of 1,3,5-Trinitrobenzene, Thermochim. Acta, 1993, 216, 157-168.
  • [15] Shipp K.G., Reactions of α-Substituted Polynitrotoluenes. I. Synthesis of 2,2’,4,4’,6,6’-Hexanitrostilbene, J. Org. Chem., 1964, 29, 2620-23.
  • [16] Shipp K.G., Kaplan L.A., Reactions of α-Substituted Polynitrotoluenes. II. The Generation and Reactions of 2,4,6-Trinitrobenzyl Anion, J. Org. Chem., 1966, 31, 857-861.
  • [17] Sollott G.P., Conversion of 2,4,6-Trinitrobenzyl Chloride to 2,2’,4,4’,6,6’-Hexanitrostilbene by Nitrogen Bases, J. Org. Chem., 1982, 47, 2471-74.
  • [18] Shipp K.G., Golding P., Hayes G.F., Studies on the Synthesis of 2,2’,4,4’,6,6’-Hexanitrostilbene, Propellants & Explosives, 1979, 4, 115-120.
  • [19] Bement L.J., Application of Temperature Resistant Explosives to NASA Missions, Proc. Symp. on Thermally Stable Explosives, Whiteoak, MD Naval Ordnance Laboratory, 1970.
  • [20] O’Keefe D.M., Hexanitrotetrachloroazobenzene Explosive and Method of Preparation, US 4751289, 1988; Chem. Abstr.,1988, 109, 152561r.
  • [21] Coburn M.D., PATO, US 3483211, 1969; Chem. Abstr., 1970, 72, 55458x.
  • [22] Li J., Chen B., Ou Z., Modified Preparation and Nitration of 3-Picrylamino-1, 2,4-triazole, Proc. 17th Int. Pyrotech. Seminar (Combined with the 2nd Beijing Inst. Symp. on Pyrotechnics and Explosives), Beijing lnst. Tech. Press, Beijing, Vol. 1, 1991, pp. 196-199.
  • [23] Agrawal J.P, Mehilal, Prasad U.S., Surve R.N., Synthesis of 1,3-Bis(1,2,4-triazol-3-amino)-2,4,6-trinitrobenzene and Its Thermal & Explosive Behaviour, New Journal of Chemistry, UK, 2000, 24(8), 583-585.
  • [24] Bapat V.K., Surve R.N., Agrawal J. P., Synthesis, Characterization and Evaluation of Explosive Properties of 5-Picrylamino-1,2,3,4-Tetrazole, Proc. 2nd High Energy Materials Conference & Exhibits, IIT, Madras, Dec. 8-10, 1998, pp. 403-405.
  • [25] Makashir P.S., Bapat V.K., Mahajan R.R., Mehilal, Agrawal J.P., A Comparative Study of Thermal & Explosive Behaviour of 5-Picrylamino-1,2,3,4-Tetrazole (PAT) and 5,5’-Styphnylamino-1,2,3,4-Tetrazole (SAT), Proc. of International Workshop on Unsteady Combustion & Interior Ballistics, Vol. 1, St. Petersburg, Russia, June 25-30, 2000, pp 199-205.
  • [26] Mehilal, Sikder N., Sikder A.K., Agrawal J.P., N,N‘-Bis(1,2,4-triazol-3-yl)-4,4‘-diamino-2,2‘,3,3‘,5,5‘6,6‘-octanitroazo-benzene (BTDAONAB): A New Thermally Stable Insensitive High Explosive, Indian J. Eng. & Mater. Sci., 2004, 11, 516-520.
  • [27] Urbański T., Chemistry and Technology of Explosives, Vol. 4, Pergamon, Oxford, 1984, p. 206.
  • [28] Carboni R.A., Castle J.E., Dibenzo-1,3a, 4,6a-Tetraazapentalene: A New Heteroaromatic System, J. Amer. Chem. Soc., 1962, 84, 2453-2455.
  • [29] Harder R.J., Carboni R.A., Castle J.E., Aromatic Azapentalenes V: 1,1’- and 2,2’-bibenzotriazoles and Their Conversion to Dibenzotetraazapentalenes, J. Amer. Chem. Soc., 1967, 89, 2643.
  • [30] Coburn M.D., 2,6-Bis(picrylamino)-3,5-dinitropyridine and a Method for its Preparation, US 3678061, 1972; Chem. Abstr., 1972, 77, 139812z.
  • [31] Pallanck R.G., PYX Purification, US 4564405, 1986; Chem. Abstr., 1986, 104, 209534n.
  • [32] Agrawal J.P., Surve R.N., Mehilal, Bapat V.K. et.al., Development of High Density, High Velocity of Detonation and Thermally Stable Explosives, HEMRL Report No. HEMRL/99/6, 1999.
  • [33] Mitchell A.R., Hsu P.C., Coburn M.D., Schmidt R.D., Pagoria P.F., Lee G.S., Kwak S.S.W., Recent Progress on the Conversion of Surplus Picric Acid/Explosive ‘D’ to Higher Value Products, UCRL–CONF–205236, July 14, 2004.
  • [34] Bellamy A.J., Ward S.J., Golding P., A new Synthetic Route to 1,3,5-Triamino-2,4,6-trinitrobenzene (TATB), Propellants Explos. Pyrotech., 2002, 27, 49-58.
  • [35] Dressen S., Merrill D., Sanderson A., Velarde S., Pilot Plant Synthesis of TATB from a Novel Proces, IM/EM Technical Symposium, San Fransisco, CA, Nov. 15-17, 2004.
  • [36] Chaykovsky M., Adolph H.G., Synthesis and Properties of Some Trisubstituted Trinitrobenzenes: TATB Analogues, J. Energ. Mater., 1990, 8, 392-395.
  • [37] Wright S.B., Granular Explosive Molding Powder, US 3173817, 1965; Chem. Abstr., 1965, 62, 12968g.
  • [38] Wright S.B., Granulated Crystalline Plastic-Bonded Explosives, US 3296041, 1967; Chem. Abstr., 1967, 66, 87227p.
  • [39] Jackson R.K., Weingart R.C., Detonation Properties of the Insensitive Explosive TATB, U.S. NTIS, AD Report (AD-A026051), 1976; Chem. Abstr., 1976, 85, 179841.
  • [40] Dobratz B.M., Insensitive High Explosive Triaminotrinitrobenzene (TATB): Development and Characterization – 1888 to 1994, Los Alamos National Lab. Report LA – 13014-H, (University of California Report, UC-741), 1995
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT1-0043-0033
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.