PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Crystal Structure Prediction and Charge Density Distribution of Highly Energetic Dimethylnitraminotetrazole: a First Step for the Design of High Energy Density Materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The crystal structure of dimethylnitraminotetrazole has been predicted, based on systematically searching for densely packed structures within common organic crystal coordination types, followed by lattice energy minimization. The predicted crystal structures almost match the reported crystal structure determined by X-ray diffraction analysis. To understand the effect of the initial molecular geometry on the crystal packing, the crystal structure simulation was carried out for molecules taken from different environments, such as the X-ray structure (crystal field) and also from ab initiocalculations (gas phase). The predicted crystal structures from both environments are very similar to the reported X-ray structure with a maximum deviation of 4.5%. The crystal density predicted from both methods is close to that reported. The bond topological, energetic and electrostatic properties of the isolated molecule from the predicted crystal structure have been determined using Bader's theory of atoms in molecules. The bond topological characterization reveals that the C-N bond is the weakest bond in the molecule. A large electronegative potential is found in the vicinity of the NO2group and the nitrogen-rich region of the tetrazole ring; these are probably the reactive sites of this molecule.
Rocznik
Strony
201--217
Opis fizyczny
Bibliogr. 45 poz., fig., tab.
Twórcy
autor
  • Rajesh B. Pawar and Poomani Kumaradhas Department of Physics, Periyar University, Salem 636 011, India 2 High Energy Materials Research Laboratory, DRDO, Sutarwadi, Pune 411 021, India
Bibliografia
  • [1] Price S.L., Computed Crystal Energy Landscapes for Understanding and Predicting Organic Crystal Structures and Polymorphism, Acc. Chem. Res., 2009, 42, 117-126.
  • [2] Hulme A.T., Price S.L., Tocher D.A., A New Polymorph of 5-Fluorouracil Found Following Computational Crystal Structure Predictions, J. Am. Chem. Soc., 2005, 127, 1116-1117.
  • [3] Vishweshwar P., McMahon J.A., Oliveira M., Peterson M.L., Zaworotko M.J., The Predictably Elusive Form II of Aspirin, J. Am. Chem. Soc., 2005, 127, 16802-16805.
  • [4] Sorescu D.C., Rice B.M., Thompson D.L., Intermolecular Potential for the Hexahydro-1,3,5-trinitro-1,3,5-s-triazine Crystal (RDX): A Crystal Packing, Monte Carlo, and Molecular Dynamics Study, J. Phys. Chem. B, 1997, 101, 798-808.
  • [5] Block-Bolten A., Lee J., A Correlation Between the Chemical and Physical Properties of C, H, N, O Explosives, J. Energ. Mater., 1988, 6, 107-128.
  • [6] Rice B.M., Sorescu D.C., Assessing a Generalized CHNO Intermolecular Potential through ab initio Crystal Structure Prediction, J. Phys. Chem. B, 2004, 108, 17730-17739.
  • [7] Bayer T., Lewis T., Price S.L., Which Organic Crystal Structures are Predictable by Lattice Energy Minimization?, Cryst. Eng. Comm., 2001, 44, 178-212.
  • [8] Lommerse J.P.M., Motherwell W.D.S., Ammon H.L., Dunitz J.D., Gavezzotti A., Hofmann D.W.M., Leusen F.J.J., Mooij W.T.M., Price S.L., Schweizer B., Schmidt M.U., Van Eijck B.P., Verwer P., Williams D.E., A Test of Crystal Structure Prediction of Small Organic Molecules, Acta Crystallogr. B, 2000, 56, 697-714.
  • [9] Cady H.H., Report LA-7760-M.S., Los Alamos Scientific Laboratory, N.M., Chem. Abstr., 1980, 92, 149480-149505.
  • [10] Marchand A.P., Zope A., Zaragoza F., Bott S.G., Ammon H.L., Du Z., Synthesis, Characterization and Crystal Density Modeling of Four C24H28 Cage-functionalized Alkenes, Tetrahedron, 1994, 50, 1687-1698.
  • [11] Marchand A.P., Vidyanand D., Liu Z., Kumar K.A., Zaragoza F., Talafuse L.K., Bott S.G., Watson W.H., Kashyap R.P., Ammon H.L., Synthesis, Characterization and Crystal Density Modeling of Polycarbocyclic Oxiranes, Tetrahedron, 1996, 52, 9703-9712.
  • [12] Holden J.R., Du Z., Ammon H.L., Prediction of Possible Crystal Structures for C-, H-, N-, O-, and F-containing Organic Compounds, J. Comp. Chem., 1993, 14, 422-437.
  • [13] Karaghiosoff K., Klapötke T.M., Mayer P., Piotrowski H., Polborn K., Willer R.L., Weigand J.J., N-Nitroso- and N-Nitraminotetrazoles, J. Org. Chem., 2006, 71, 1295-1305.
  • [14] Adam D., Karaghiosoff K., Klapötke T.M., Holl G., Kaiser M., Triazidotrinitro Benzene: 1,3,5-(N3)3-2,4,6-(NO2)3C6, Propellants Explos. Pyrotech., 2002, 27, 7-11.
  • [15] Karaghiosoff K., Klapötke T.M., Michailovski A., Nöth H., Suter M., Holl G., 1,4-Diformyl-2,3,5,6-Tetranitratopiperazine: A New Primary Explosive Based on Glyoxal, Propellants Explos. Pyrotech., 2003, 28, 1-6.
  • [16] Klapötke T.M., Chemistry of High-Energy Materials, Walter de Gruyter, Berlin, 2011.
  • [17] Deal W.E., Measurement of Chapman-Jouguet Pressure for Explosives, Temperature Dependence of Hammett Reaction Constants, J. Chem. Phys., 1957, 27, 796-800.
  • [18] Mader C.L., Report L.A.-2900, Los Alamos Scientific Laboratory, N.M., 1963.
  • [19] Urbański T., Chemistry and Technology of Explosives, Pergamon, England, 1985.
  • [20] Miller R.L., Technical Report, A.D.A., 182898, Morton Thiokol, Elkton, 1987.
  • [21] Bader R.F.W., Atoms in Molecules, Acc. Chem. Res., 1985, 18, 9-15.
  • [22] Perdew J.P., Density-functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas., Phy. Rev. B, 1986, 33, 8822-8824.
  • [23] Becke A.D., Density-functional Thermochemistry. III. The Role of Exact Exchange, J. Chem. Phys., 1993, 98, 5648-5652.
  • [24] Frish A., Leen E., Nielson A.B., Holder A.J., Roy Dennigton R.D., Keith T.A., Gaussian Incorporated, Pittsburgh PA, 2005.
  • [25] Holden J., Du Z., Ammon H.L., Prasad S., Wells E., Albu N., Structure Predictions with MOLPAK, WMIN and PMIN, 2009.
  • [26] Busing W.R., WMIN – a Computer Program to Model Molecules and Crystals in Terms of Potential Energy Functions, Report ORNL-5747, Oak Ridge National Laboratory, Oak Ridge, 1981.
  • [27] Cheeseman J., Keith T.A., Bader R.F.W., AIMPAC Program Package McMaster University Hamilton, Ontario, 1992.
  • [28] Keith T.A., AIMAll 2009, (Beta Version 09.08.26).
  • [29] Koritsanszky T., Macchi P., Gatti C., Farrugia L.J., Mallinson P.R., Volkov A., Richter T., XD-2006. A Computer Program Package for Multipole Refinement and Topological Analysis of Charge Densities and Evaluation of Intermolecular Energies from Experimental or Theoretical Structure Factors, 2007, Version 5.33.
  • [30] Hubschle C.B., Luger P., MolIso - a Program for Colour-mapped Iso-surfaces, J. Appl. Cryst., 2006, 39, 901-904.
  • [31] Coombes D.S., Price S.L., Willock D.J., Lesile M., Role of Electrostatic Interactions in Determining the Crystal Structures of Polar Organic Molecules. A Distributed Multipole Study, J. Phys. Chem., 1996, 100, 7352-7360.
  • [32] Coombes D.S., Nagi G.K., Price S.L., On the Lack of Hydrogen Bonds in the Crystal Structure of Alloxan, Chem. Phys. Lett., 1997, 265, 532-537.
  • [33] Allen F.H., Kennard O., 3D Search and Research Using the Cambridge Structural Database, Chem. Design Automation News, 1993, 8, 31-37.
  • [34] Savcenco V., Hundsdorfer W., Verwer J.G., A Multirate Time Stepping Strategy for Stiff ODEs, BIT Numer. Math., 2007, 47, 137-155.
  • [35] Allen F.H., Kennard O., Watson D.G., Brammer L., Orpen A.G., Taylor R.J., Tables of Bond Lengths Determined by X-ray and Neutron Diffraction. Part 1. Bond Lengths in Organic Compounds, Chem. Soc. Perkin Trans., 1987, 2, S1-S19.
  • [36] Cooper P.W., Explosive Engineering,Wiley-VCH, New York, 1996.
  • [37] Olah G.A., Squire D.A., Chemistry of Energetic Materials, Academic Press, Inc. London, 1991.
  • [38] Popelier P.L., Atoms in Molecules: An Introduction, Prentice Hall, U.K., 2000.
  • [39] Stephen A.D., Pawar R.B., Kumaradhas P., Exploring the Bond Topological Properties and the Charge Depletion-impact Sensitivity Relationship of High Energetic TNT Molecule via Theoretical Charge, Density Analysis, J. Mol. Struct. (THEOCHEM), 2010, 959, 55-61.
  • [40] Su Z., Coppens P., On the Mapping of Electrostatic Properties from the Multipole Description of the Charge Density, Acta Crystallogr. A., 1982, 48, 188-197.
  • [41] Molecular Electrostatic Potentials: Concepts and Application, (Mishra P.C., Kumar A., Murray J.S., Sen K.D., Eds.), Elsevier, Amsterdam, 1996.
  • [42] Volkov A., Gatti C., Abramov Y., Coppens P., Evaluation of Net Atomic Charges and Atomic and Molecular Electrostatic Moments Through Topological Analysis of the Experimental Charge Density, Acta Crystallogr. A, 2000, 56, 252-258.
  • [43] Mulliken R.S., Electronic Population Analysis on LACO-MO Molecular Wave Functions, J. Chem. Phys., 1995, 23, 1833-1840.
  • [44] Reed A.E., Weinstock R.B., Natural Population Analysis, J. Chem. Phys., 1985, 83, 735- 746.
  • [45] Bader R.F.W., Nguyen-Dang T.T., Quantum Theory of Atoms in Molecules – Dalton Revisited, Adv. Quantum Chem., 1981, 14, 63-124
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT1-0043-0028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.