PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Explosive Characteristics and Shaped Charge Applications of Nitromethane (NM): A Review

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nitromethane (NM or CH3NO2 ) has a wide range of applications as a detonating homogeneous liquid explosive. Although, its use as a liquid propellant is more pronounced, the determination and characterization of NM and its mixtures for their various detonation properties has gained in importance. Various researchers have performed initiation studies of NM by shock and jet, and the presence of a superdetonation zone has also been debated. The opacity or otherwise of the reaction and detonation zones has been investigated experimentally. Sensitization or dilution of NM by various additives and the effect on the detonation behavior has also been investigated. In recent times, the use of NM as a field-filled homogeneous filling in shaped charges for the disposal of unexploded ordnance has gained in importance. The experimental observations and related theoretical aspects for the use of NM as a filling for shaped charges are illustrated in this article. Overall, NM can be thought suitable as a viable future alternative for both commercial and military applications.
Rocznik
Strony
87--97
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
Bibliografia
  • [1] Eckl W., Weiser V., Weindel M., Eisenreich N., Spectroscopic Investigation of Nitromethane Flames, Propellants, Explos., Pyrotech., 1997, 22, 180-183.
  • [2] Kelzenberg S., Eisenreich N., Eckl W., Weiser V., Modelling Nitromethane Combustion, Propellants, Explos. Pyrotech., 1999, 24, 189-194.
  • [3] Hopkins N.M., Liquid Explosives, US 2298255, 1942.
  • [4] Schaad R.E., Nitrohydrocarbon Gels, US 2891852, 1959.
  • [5] Pool J.E., Foamed Liquid Explosive Composition, US 2967099, 1961.
  • [6] Beegle R.E., Brown R.C., James C.M., Sensitized Nitroparafins, US 3132060, 1964.
  • [7] Laurence E.A., Stabilized explosive Containing Nitromethane and Amine, US 3239395, 1966.
  • [8] Audrieth L.F., Eriksen L.H., Tomlinson W.R., Liquid Explosive Mixture Containing Nitromethane and Ethylenediamine, US 3309251, 1967.
  • [9] Fast C.R., Thickened Nitromethane Explosive Containing Encapsulated Sensitizer, US 3713915, 1973.
  • [10] Gruzdkov Y.A., Gupta Y.M., Mechanism of Amine Sensitization in Shocked Nitromethane, J. Phys. Chem. A, 1998, 102, 2322-2331.
  • [11] Sullivan J.D., Wade P.A., Turetsky A.L., Liquid Explosive Composition, US 6007648, 1999.
  • [12] Nixon III W.P., Shelby E., Multi Component Liquid Explosive Composition and Method, US 6960267, 2005.
  • [13] Zeman S., Atalar T., Friedl Z., Xue-Hai Ju, Accounts of the New Aspects of Nitromethane Initiation Reactivity, Cent. Eur. J. Energ. Mater., 2009, 6(1), 119-133.
  • [14] Nitromethane: Method 2527, NIOSH Manual of Analytical Methods (NMAM), 4th Ed., Issue 2, 1994.
  • [15] Mader Ch.L., The Hydrodynamic Hot Spot and Shock Initiation of Homogenous Explosives, Report LA-2703, USA, July 1972.
  • [16] Mader Ch.L., Forest Ch.A., Two Dimensional Homogeneous and Heterogeneous Detonation Wave Propagation, Report LA-6259, USA, June 1976.
  • [17] Sheffield S.A., Engelke R., Alcon R.R., Gustavsen R.L., Robins D.L., Stahl D.B., Stacy H.L., Whitehead M.C., Particle Velocity Measurements of the Reaction Zone in Nitromethane, Research report LA-UR-02-4331, (Los Almos National Laboratory, 2002).
  • [18] Reed E.J., Riad M., Fried L.E., Glaesemann K.R., Joannopoulos J.D., A Transient Semimetallic Layer in Detonating Nitromethane, Nature Physics, 2008, 4, 72-76.
  • [19] Dattelbaum D.M., Sheffield S.A., Stahl D.B., Dattelbaum A.M., Hot Spot-Derived Shock Initiation Phenomena in Heterogeneous Nitromethane, Paper intended for 2009 Joint Army-Navy-NASA-Air Force (JANNAF) meeting, La Jolla, CA, Dec. 7-11, 2009.
  • [20] Idar D.I., Asay B.W., Ferm E.N., Improved Characterization of Nitromethane, Nitromethane Mixtures, and Shaped-Charge Jet Properties, Propellants, Explos., Pyrotech., 1999, 24, 1-6.
  • [21] Idar D.J., Asay B.W., Ferm E.N., Hypervelocity Jet Initiation Threshold Criteria of Nitromethane and Nitromethane Mixtures, Propellants, Explos., Pyrotech., 1999, 24, 7-16.
  • [22] Jetté F.-X., Yoshinaka A.C., Higgins A.J., Zhang F., Effect of Scale and Confinement on Gap Tests for Liquid Explosives, Propellants, Explos., Pyrotech., 2003, 28(5), 240-248.
  • [23] Sheffield S.A., Engelke R., Alcon R.R., In-Situ Study of the Chemically Driven Flow Fields in Initiating Homogeneous and Heterogeneous Nitromethane Explosives, 9th Symposium (International) on Detonation, Portland, OR, August 28 - September 1, 1989, 39.
  • [24] Fedorov A.V., Detonation Wave Structure in Liquid Homogenous, Solid Heterogeneous and Agitated HE, 12th International Detonation Symposium, San Diego, California, 11-16 Aug 2002.
  • [25] Tarver C.M., Urtiew P.A., Theory and Modeling of Liquid Explosive Detonation, J. Energ. Mater., 2010, 28(4), 299-317.
  • [26] Desbiens N., Bourasseau E., Maillet J.-B., Soulard L., Molecular Based Equation of State for Shocked Liquid Nitromethane, J. Hazard. Mater., 2009, 166, 1120- 1126.
  • [27] Kuo I.W., Bastea S., Fried L.E., Reactive Flow Modeling of Liquid Explosives via ALE3D/Cheetah Simulations, 14th International Detonation Symposium, Coeur d’Alene, ID, United States, April 11- 16, 2010, (Report No - LLNL-CONF-425371 dated March 11, 2010)
  • [28] Pujols H.-C., Pouligny B., On the Validity of the Thermal Explosion Model in Shock Wave Initiated Nitromethane, Propellants, Explos., Pyrotech., 1996, 21, 9-23.
  • [29] Bouyer V., Darbord I., Hervé P., Baudin G., Le Gallic Ch., Clément F., Chavent G., Shock-to-detonation Transition of Nitromethane: Time-resolved Emission Spectroscopy Measurements, Comb. Flame, 2006, 144, 139-150.
  • [30] Koldunov S.A., Ananin A.V., Garanin V.A., Sosikov V.A., Torunov S.I., Detonation Parameters of Nitromethane/Methanol Mixtures, Cent. Eur. J. Energ. Mater., 2009, 6(1), 7-14.
  • [31] Koldunov S.A., Ananin A.V., Detonation Characetristics of Nitromethane Diluted with Non-explosive Liquids, Int. J. Energ. Mater. Chem. Propulsion (IJEMCP), 2010, 9(4), 341-350.
  • [32] Cartwright M., Lloyd Roach D., Simpson P.J., Non Solid Explosives for Shaped Charges I: Explosive Parameters Measurements for Sensitized Liquid Explosives, J. Energ. Mater., 2007, 25(2), 111-127.
  • [33] Cartwright M., Liquid Explosive for Shaped Charges and Their Use in Explosive Ordnance Disposal (EOD), Explosive Engineering, Sept 2009, 7-11.
  • [34] Cartwright M., Lloyd Roach D., Simpson P.J., Non Solid Explosives for Shaped Charges II: Target Penetration with Metal Liner Devices Using Sensitized Nitromethane Liquid Explosive, J. Energ. Mater., 2009, 27(3), 145-165.
  • [35] Cartwright M., Simpson P.J., Non Solid Explosives for Shaped Charges III: Metal Liner Devices Used in Explosive Ordnance Disposal Operations, J. Energ. Mater., 2009, 27(3), 166-185.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT1-0041-0079
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.