PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Prediction of Detonation Pressure and Velocity of Explosives with Micrometer Aluminum Powders

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The data reported shows that the Chapman-Jouguet (CJ) detonation parameters of non-ideal explosives calculated from existing thermodynamic computer codes are significantly different from experimental results. We use CJ detonation theory to present a new approach predicting detonation pressure and velocity of aluminized explosives by thermodynamic detonation theory. There is no need to use the assumption of full and partial equilibrium of aluminum powder in reaction zones in the new approach. In this work the best agreement with experimental data was obtained by adjusting the parameter k in the Becker- Kistiakosky-Wilson equations of state (BKW-EOS). The detonation pressure and velocity values calculated by the present method agree well with the experimental results. All of the deviations for the calculated pressures of aluminized explosives are less than 9% and those for the detonation velocities are less than 7%.
Rocznik
Strony
77--86
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China, qzhang@bit.edu.cn
Bibliografia
  • [1] Keshavarz M.H., Mofrad R.T., Poor K.E., Shokrollahi A., Zali A., Yousefi M.H., Determination of Performance of Non-ideal Aluminized Explosives, J. Hazard. Mater., 2006, A137, 83-87.
  • [2] Keshavarz M.H., Motamedoshariati H., Moghayadnia R., Nazari H.R., Azarniamehraban J., A New Computer Code to Evaluate Detonation Performance of High Explosives and Their Thermochemical Properties, Part I, J. Hazard. Mater., 2009, 172, 1218-1228.
  • [3] Muthurajan H., Sivabalan R., Talawar M.B., Asthana S.N., Computer Simulation for Prediction of Performance and Thermodynamic Parameters of High Energy Materials, J. Hazard. Mater., 2004, A112, 17-33.
  • [4] Muthurajan H., Sivabalan R., Talawar M.B., Anniyappan M., Venugopalan S., Prediction of Heat of Formation and Related Parameters of High Energy Materials, J. Hazard. Mater., 2006, A133, 30-45.
  • [5] Muthurajan H., Sivabalan R., Talawar M.B., Venugopalan S., Gandhe B.R., Computer Code for the Optimization of Performance Parameters of Mixed Explosive Formulations, J. Hazard. Mater., 2006, A136, 475-481.
  • [6] Muthurajan H., Sivabalan R., Pon Saravanan N., Talawar M.B., Computer Code to Predict Heat of Explosion of High Energy Materials, J. Hazard. Mater., 2009, 161, 714-717.
  • [7] Mader C.L., Numerical Modeling of Explosives and Propellants, 2nd ed., CRC Press, 1998.
  • [8] Levine H.B., Sharples R.E., Operator’s Manual for RUBY, Lawrence Livermore Laboratory Report UCRL-6815, Livermore, CA, 1962.
  • [9] Cowperthwaite M., Zwisler W.H., TIGER Computer Program Documentation, Stanford Research Institute, SRI pub. No. 2106, 1973.
  • [10] Nichols A.L., Ree F.H., CHEQ 2.0 User’s Manual, UCRL-MA-106754, Lawrence Livermore National Laboratory, Livermore, CA, 1990.
  • [11] Fried L.E., Howard W.M, Souers P.C., CHEETAH 2.0 User’s Manual, Lawrence Livermore National Laboratory, Livermore, CA, 1998.
  • [12] Hobbs M.L., Baer M.R., Proc. 10th Symp. (Int.) on Detonation, Boston, MA, 1993.
  • [13] Mader C.L., Detonation Properties of Condensed Explosives Computed Using the Becker-Kistiakosky-Wilson Equation of State, Los Alamos Scientific Laboratory Report LA-2900, New Mexico, 1963.
  • [14] Tanaka K., Detonation Properties of High Explosives Calculated by Revised Kihara– Hikita Equation of State, Proc. 8th Symp. (Int.) on Detonation, Albuquerque/New Mexico/Washington, DC, 1985.
  • [15] Stiel L.I., Baker E.L., Capellos Ch., Study of Detonation and Cylinder Velocities for Aluminized Explosives, Proc. AIP Conf., 2006, 845, 475-478.
  • [16] Stiel L.I., Baker E.L., Capellos Ch., Jaguar Analyses of Experimental Detonation Values for Aluminized Explosives, Proc. AIP Conf., 2004, 706, 891-894.
  • [17] Luo Ai-min, Zhang Qi, Bai Chun-hua, Li Jian-ping, Temperature Response of Aluminum Particle Heated by Thermal Effects of Explosive Detonation, Chinese Journal of Explosives & Propellants.(in Chinese), 2005, 1, 35-38.
  • [18] Howard W.M., Fried L.E., Clark P., Souers Kinetic. Modeling of Non-Ideal Explosives with Cheetah, Proc. 11th Int. Detonation Symp., Snowmass CO, 1998.
  • [19] Victorov S.B., The Effect of Al2O3 Phase Transitions on Detonation Properties of Aluminized Explosives, Proc. 12th Int. Detonation Symp., San Diego, California, 2002.
  • [20] Fried L.E., Souers P.C., BKWC: An Empirical BKW Parameterization Based on Cylinder Test Data, Propellants, Explos., Pyrotech., 1996, 21, 215-233.
  • [21] Mader C.L., Numerical Modeling of Expolosive and Propellents, California, University of California Press, 1979.
  • [22] Zou L., Foundation of Explosion Chemistry (in Chinese), BIT Press, 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT1-0041-0078
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.