PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Charge Density Distribution, Electrostatic Properties and Sensitivity of the Highly Energetic Molecule 2,4,6-Trinitro-1,3,5-triazine: A Theoretical Study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ab initio and density functional theory (DFT) calculations were carried out on the energetic propellant molecule 2,4,6-trinitro-1,3,5-triazine (TNTA) to understand its bond topology and its energetic properties using the theory of atoms in molecules (AIM). The DFT method predicts that the electron density ρ bcp (r) at the bond critical points of ring C-N bonds is ∼ 2.34 e Å -3 and the corresponding Laplacian ∇ 2 ρ bcp(r) is ∼ -24.4 e Å -5 ; whereas these values are found to be very small in the -NO2 group attached to C-N bonds [ρ bcp(r): ∼ 1.73 e Å -3 and Δ 2 ρ bcp (r): ∼ -14.5 e Å -5 ]. The negative Laplacian values of C-NO 2 bonds are significantly lower which indicates that the charges of these bonds are highly depleted. The C-NO2 bonds exhibit low bond order (∼ 0.8), as well as low (∼ 56.4 kcal/mol) bond dissociation energy. As we reported in our earlier studies, we found high bond charge depletion for these bonds, which are considered the weakest bonds in the molecule. The frontier orbital energies exhibit a wide band gap, which is larger than those of existing molecules TATB, TNT and TNB. The impact sensitivity (H 50 %) (4.2 m) and oxygen balance (2.77%) were calculated and compared with related structures. Large negative electrostatic potential regions were found near the nitro groups where reaction is expected to occur. The relation between charge depletion ∇ 2 ρ bcp(r) and the electrostatic potential at the bond midpoints V mid reveals the sensitive areas of the molecule.
Rocznik
Strony
59--76
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
autor
Bibliografia
  • [1] (a) Butcher R.J., Bottaro J.C., Gilardi R., Ammonium 1,3,4,6-tetranitro-2,5- diazapentalene, Acta Cryst., 2003, E59, o1149-o1150; (b) Butcher R. J., Bottaro J.C., Gilardi R., 1-Nitro-7,8-diazapentalene, Acta Cryst., 2003, E59, o1777-o1779.
  • [2] (a) Butcher R.J., Bottaro J.C., Gilardi R., Potassium 1,3,4,6-tetranitro-2,5- diazapentalene, Acta Cryst., 2003, E59, m591-m593; (b) Butcher R.J., Bottaro J.C., Gilardi R., 1,3,4-Trinitro-7,8-diazapentalene, Acta Cryst., 2003, E59, o1780-o1782.
  • [3] Muray J.S., Lane P., Politzer P., Relationships Between Impact Sensitivities and Molecular Surface Electrostatic Potentials of Nitroaromatic and Nitroheterocyclic Molecules, Mol. Phys, 1995, 85(1), 1-8.
  • [4] Rice B.M., Hare J.J., A Quantum Mechanical Investigation of the Relation between Impact Sensitivity and the Charge Distribution in Energetic Molecules, J. Phys. Chem. A., 2002, 106, 1770-1783.
  • [5] Agrawal J.P., High Energy Materials, Wiley-VCH, Weinheim, 2011.
  • [6] Klapötke T.M., Chemistry of High–Energy Materials, Wdeg, Berlin, 2011.
  • [7] (a) David Stephen A., Kumaradhas P., Pawar R.B., Charge Density Distribution, Electrostatic Properties, and Impact Sensitivity of the High Energetic Molecule TNB: A Theoretical Charge Density Study, Propellants, Explos., Pyrotech., 2011, 36, 168- 174; (b) David Stephen A., Revathi M., Asthana S. N., Pawar R.B., Kumaradhas P., Probing the Weakest Bond and the Cleavage of p-Chlorobenzaldehyde Diperoxide Energetic Molecule via Quantum Chemical Calculations and Theoretical Charge Density Analysis, Int. J. Quant. Chem., 2010, 111(14), 3741-3754.
  • [8] David Stephen A., Pawar R.B., Kumaradhas P., Exploring the Bond Topological Properties and the Charge Depletion-impact Sensitivity Relationship of High Energetic TNT Molecule via Theoretical Charge Density Analysis, J.Mol. Struct. (THEOCHEM)., 2010, 959, 55-63.
  • [9] Srinivasan P., Asthana S.N., Pawar R.B., Kumaradhas P., A Theoretical Charge Density Study on Nitrogen-rich 4,4’,5,5’-Tetranitro-2,20-bi-1H-imidazole (TNBI) Energetic Molecule, Struct. Chem., 2011, 22, 1213-1220.
  • [10] Korkin A.A., Bartlett R.J., Theoretical Prediction of 2,4,6-Trinitro-1,3,5-triazine (TNTA). A New, Powerful, High-Energy Density Material?, J. Am. Chem. Soc. 1996, 118, 12244-12245.
  • [11] Li J., An Ab Initio Theoretical Study of 2,4,6-Trinitro-1,3,5-Triazine, 3,6-Dinitro- 1,2,4,5-Tetrazine, and 2,5,8-Trinitro-Tri-s-Triazine, Propellants, Explos. Pyrotech., 2008, 33, 443-447.
  • [12] Kohn W., Sham L.J., Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev., 1965, 140, A1133-A1138.
  • [13] Gillespie R.J., Popelier P.L.A., Chemical Bonding and Molecular Geometry, Oxford University Press, 2001.
  • [14] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery J.A., Vreven Jr., Kudin K.N., Burant J.C., Millam J.M., Iyengar S.S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G.A., Nakatsuji H., Hada M., Ehara M.P., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J.E., Hratchian H.P., Cross J.B., Adamo, Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Ayala P.Y., Morokuma., Voth G.A., Salvador P., Dannenberg J.J., Zakrzewski V.G., Dapprich S., Daniels A.D., Strain M.C., Farkas O., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Ortiz J.V., Cui Q., Baboul A.G., Clifford S., Cioslowski J., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R.L., Fox D.J., Keith T., Al-Laham M.A., Peng C.Y., Nanayakkara A., Challacombe M., Gill P.M.W., Johnson B., Chen W., Wong M.W., Gonzalez C., Pople J.A., Gauss an 03, Revision D.1, Gaussian, Inc., Wallingford, CT, 2005.
  • [15] Cheeseman J., Keith T.A., Bader R.F.W., AIMPAC Program Package, McMaster University Hamilton, Ontario, 1992.
  • [16] Wiberg K.B., Application of the Pople-santry-segal CNDO Method to the Cyclopropylcarbinyl and Cyclobutyl Cation and to Bicyclobutane, Tetrahedron, 1968, 24(3), 1083-1096.
  • [17] Koritsanszky T., Macchi P., Gatti C., Farrugia L.J., Mallinson P.R., Volkov A., Richter T., XD-2006. A Computer Program Package for Multipole Refinement and Topological Analysis of Charge Densities and Evaluation of Intermolecular Energies from Experimental or Theoretical Structure Factors, Version 5.33, 2007.
  • [18] Gillespie R.J., Popelier P.L.A., Chemical bonding and molecular geometry, Oxford University Press, New York, 2001.
  • [19] Coppens P., X-ray charge densities and chemical bonding, Oxford University Press, New York., 1997.
  • [20] Stash A., Tsirelson V., WinXPRO: a Program for Calculating Crystal and Molecular Properties Using Multipole Parameters of the Electron Density, J. Appl. Cryst., 2002, 35, 371-373.
  • [21] Muzet N., Artacho E., Lecomte C, Jelsch C., Guillot B., Muzet N., Artacho E., Experimental and Theoretical Electron Density Studies in Large Molecules: NAD+, β-Nicotinamide Adenine Dinucleotide, Benoît Guillot, J. Phys. Chem., 2003, B107, 9109-9121.
  • [22] David Stephen A., Srinivasan P., Kumaradhas P., Bond Charge Depletion, Bond Strength and the Impact Sensitivity of High Energetic 1,3,5-Triamino- 2,4,6-trinitrobenzene (TATB) Molecule: A Theoretical Charge Density Analysis, Comput. Theo. Chem., 2011, 967, 250-256.
  • [23] (a) Bader R.F.W., Atoms in Molecule: A Quantum Theory; Clarendon press: Oxford, UK, 1990; (b) Popelier P.L.A., Atom in Molecules an Introduction, Pearson Edition: Harlow, UK, 1999.
  • [24] Owens F.J., Calculation of Energy Barriers for Bond Rupture in Some Energetic Molecules, J. Mol. Struct. (THEOCHEM), 1996, 370(1), 11-16.
  • [25] Chung G., Schmidt M.W., Gordon M.S., An Ab Initio Study of Potential Energy Surfaces for N8 Isomers, J. Phys. Chem., 2000, A104, 5647-5650.
  • [26] Ghule V.D., Sarangapani R., Jadhav P.M., Pandey R.K., Computational Design and Structure–property Relationship Studies on Heptazines, J. Mol. Model., 2011, 17, 2927-2937.
  • [27] Fukui K., Yonezawa T., Shingu H., A Molecular Orbirtal Theory of Reactivity in Aromatic Hydrocarbons, J. Chem. Phys., 1952, 20, 722-725.
  • [28] Gobel M., Karaghiosoff K., Klapotke T.M., Piercey D.G., Stierstorfer J., Nitrotetrazolate-2N-oxides and the Strategy of N-Oxide Introduction, J. Am. Chem. Soc., 2010, 132(48),17216-17226.
  • [29] Thottempudi V., Gao H., Shreeve J.M., Trinitromethyl-Substituted 5-Nitro- or 3-Azo-1,2,4-triazoles: Synthesis, Characterization, and Energetic Properties, J. Am. Chem. Soc., 2011, 133(16), 6464-6471.
  • [30] Liu Y., Gong X., Wang L., Wang G., Xiao H., Substituent Effects on the Properties Related to Detonation Performance and Sensitivity for 2,2′,4,4′,6,6′-Hexanitroazobenzene Derivatives, J. Phys. Chem. A., 2011, 115(9), 1754-1762.
  • [31] Politzer P., Laurence P.R., Abrahmsen L., Zilles B.A., SjobergP., The Aromatic C–NO2 Bond as a Site for Nucleophilic Attack, Chemical Physics Letters., 1984, 111(1), 75-78.
  • [32] Cao C., Gao S., Two Dominant Factors Influencing the Impact Sensitivities of Nitrobenzenes and Saturated Nitro Compounds, J. Phys. Chem B, 2007, 111, 12399.
  • [33] Keshavarz M. H., Pouretedal H. R., Simple Empirical Method for Prediction of Impact Sensitivity of Selected Class of Explosives, J. Hazard. Mater., 2005, A124, 27.
  • [34] Draskovic B.M., Bogdanovic G.A., Neelakandan M.A., Chamayou A.C., Thalamuthu S., Avadhut Y.S., Banerjee S., Janiak D., N-o-Vanillylidene-L-histidine: Experimental Charge Density Analysis of a Double Zwitterionic Amino Acid Schiff-Base Compound., Cryst. Grow. Design, 2010, 10, 1665.
  • [35] Brinck T., Jin P., Ma Y., Murray J.S., Politzer P., Segmental Analysis of Molecular Surface Electrostatic Potentials: Application to Enzyme Inhibition, J. Mol. Model., 2003, 9, 77-83.
  • [36] Owens F.J., Jayasuriya K., Abrahmsen L., Politzer P., Computational Analysis of Some Properties Associated with the Nitro Groups in Polynitroaromatic Molecules, Chem. Phys. Lett., 1985, 116(5), 434-438.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT1-0041-0077
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.