PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Studies on Empirical Approaches for Estimation of Detonation Velocity of High Explosives

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Despite many computer based codes like CHEETAH, TIGER, RUBY, BKW, etc. the velocity of detonation (VOD) for explosive molecules and explosive mixtures (formulations) is estimated by several empirical formulations. This article discusses various approaches for the estimation of the velocity of detonation by empirical mathematical equations. The formulation proposed by Kamlet in 1968 is the oldest one and it is confirmed to be more reliable by many subsequent researchers. The method proposed by Rothstein (1978), Xiong (1985), Stein (1990), Keshavarz (2006) are discussed and compared for conventional explosive molecules like RDX, HMX, TNT, PETN, and HNS. The values of the velocity of detonation for these molecules are found to be very close to each other. Further comparison of empirical mathematical formulations was carried out for four other explosive molecules of relatively recent origin (CL-20, FOX-7, TATB and NTO). These molecules were selected as they were unknown at the time of the proposed formulations except that by Keshavarz (2006). For CL-20, the velocity of detonation by different methods is 9345.1 m/s (Kamlet), 9378.8 m/s (Rothstein), 9116.0 m/s (Xiong), 9383.7 m/s (Stein) and 9887.9 m/s (Keshavarz) respectively. The method proposed by Keshavarz gives a higher value of the velocity of detonation than the others. For FOX-7, the values are 8636.6 m/s (Kamlet), 8733.3 m/s (Rothstein), 8766.1 m/s (Xiong), 8645.0 m/s (Stein) and 8245.3 m/s (Keshavarz) respectively. In this case the Keshavarz approach gives a lower value of the velocity of detonation. For these molecules, the results by the Xiong method is very close to that obtained by the Kamlet method. Deviation, as well as dispersion of the calculated values by other methods, is on the high side.
Rocznik
Strony
39--48
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
Bibliografia
  • [1] Levine H.B., Sharples R.E., Operator’s Manual for RUBY, Lawrence Livermore Laboratory Report UCRL-6815, Livermore CA, 1962.
  • [2] Cowperthwaite M., Zwister M.W.H., TIGER Computer Program Documentation, Stanford Research Institute, SRI Publication number 2106, 1973.
  • [3] Fried L.E., Howard W.M., Souers P.C., CHEETAH 2.0 user’s manual, Lawrence Livermore National Laboratory Report , Livermore CA, 1998.
  • [4] Mader C.L., Numerical Modeling of Explosives and Propellants, Second Edition, CRC Press, 1998.
  • [5] Kamlet Mortimer J., Jacobs S.J., Chemistry of Detonations I. A Simple Method for Calculating Detonation Properties of C-H-N-O explosives, J. Chem. Phys., 1968, 48(1), 23-35.
  • [6] Hardesty D.R., Kennedy J.E., Thermochemical Estimation of Explosive Energy Output, Combust. Flame, 1977, 28, 45-59.
  • [7] Zhou Xing Xi, Yu Yong Zhong, Analysis on Computation of Kamlet Parameter ϕ for CHNO Explosive Mixture, J. Energ. Mater., 1991, 9, 283-296.
  • [8] Keshavarz M.H., Pouretedal H.R., An Empirical Method for Predicting Detonation Pressure of CHNOFCl explosives, Thermochem. Acta, 2004, 414, 203-208.
  • [9] Keshavarz M.H., Pouretedal H.R., Estimation of Detonation Velocity of CHNOFCl Explosives, High Temp. – High Pressures, 2006, 35/36, 593-600.
  • [10] Politzer P., Murray J.S., Some Perspectives on Estimating Detonation Properties of C,H,N,O compounds, Cent. Eur. J. Energ. Mater., 2011, 83, 209-220.
  • [11] Rothstein L.R., Petersen R., Predicting High Explosives Detonation Velocity of from their Composition and Structure, ADA 062265, Naval Weapon Station, Verginia, 1978.
  • [12] Muthurajan H., Sivabalan R., Talwar M.B., Asthana S.N., Computer Simulation for Prediction of Performance and Thermodynamic Parameters of High Energy Materials, J. Hazard. Mater., 2004, A112, 17-33.
  • [13] Muthurajan H., Sivabalan R., Talwar M.B., Venugopalan S., Gandhe B.R., Computer Code for the Optimization of Performance Parameters of Mixed Explosive Formulations, J. Hazard. Mater., 2006, A136, 475-481.
  • [14] Wu Xiong, A Simple Method for Calculating Detonation Parameters of Explosives, J. Energ. Mater., 1985, 3(4), 263-277.
  • [15] Stine J.R., On prediction of Properties of Explosives – Detonation Velocity, J. Energ. Mater., 1990, 8(1-2), 41-73.
  • [16] Keshavarz M.H., Prediction of the Principal Performance Parameters if Explosives over a Wide Range of Initial Densities, Asian J. Chem., 2005, 17(4), 2085-2092.
  • [17] Keshavarz M.H., Prediction of Detonation Velocity of Non-metal Nitrated Explosives by Simple Method, Asian J. Chem., 2005, 17(4), 2223-2228.
  • [18] Keshavarz M.H., A Simple Approach for Determining Detonation Velocity of High Explosive at any Loading Density, J. Hazard. Mater., 2005, A121, 31-36.
  • [19] Keshavarz M.H., Mofrad R.T., Alamadan R.F., Moghadas M.H., Mostofizadeh A.R., Sadeghi H., Velocity of Detonation at any Initial Density without using Heat of Formation of Explosives, J. Hazard. Mater., A137, 2006, 1328-1332.
  • [20] Lemi Türker, Velocity of Detonation-A Mathematical Model, Acta Chim. Slov., 57, 2010, 288-296.
  • [21] Volk F., Bathelt H., ICT Thermochemical Database, Fraunhofe-Institut für Chemische Technologie, Version 3.0, 2001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT1-0041-0075
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.