PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Analysis of the Deflagration to Detonation Transition in Primary Explosives

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Theoretical models proposed in the literature for the deflagration-to- detonation transition (DDT) in cast explosives are evaluated for primary explosives (complex compounds) in this work. The one-dimensional model of burning (deflagration), consistent with the classical Chapman-Jouguet theory and a model of burning under the conditions of zero mass velocity behind the flame front are presented, and the physical phenomena accompanying the accelerating wave of flame in solid explosives are described. The results of calculations taken from the literature are presented for the cast high explosive (pentolite). The model of acceleration of the deflagration wave was used to estimate the time and distance at which the process of burning leads to the emergence of a shock wave in primary explosives. The influence of burning rate and the physical properties of an explosive on the distance of deflagration to detonation transition is analysed.
Rocznik
Strony
17--38
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
  • Military University of Technology, Faculty of Advanced Technology and Chemistry, Kaliskiego 2, 00-908 Warsaw, Poland, wtrzcinski@wat.edu.pl
Bibliografia
  • [1] Tarver C.M., Goodale T.C., Shaw R., Cowperthwaite M., Deflagration-to- Detonation Transition Studies for Two Potential Isomeric Cast Primary Explosives, Sixth Symposium (International) on Detonation, Office of Naval Research, White Oak, 1976, p. 231.
  • [2] Macek A., Transition from Deflagration to Detonation in Cast Explosives, J. Chem. Phys., 1959, 11(1), 162-167.
  • [3] McAfee J.M., Asay B.W., Campell A.W., Ramsay J.B., Deflagration to Detonation in Granular HMX, Ninth Symposium (International) on Detonation, Office of Naval Research, Portland, 1989, p. 265.
  • [4] McAfee J.M., Asay B.W., Bdzil J.B., Deflagration-to-Detonation in Granular HMX: Ignition, Kinetics, and Shock Formation, Tenth International Detonation Symposium, Office of Naval Research, Boston, 1993, p. 716.
  • [5] Parker G.R., Dickson P., Asay B.W., McAfee J.M., DDT of Hot, Thermally Damaged PBX 9501 in Heavy Confinement, Fourteenth International Detonation Symposium, Coeur d’Alene Resort, 2010, ID 41284.
  • [6] Gifford M.J., Proud W.G., Field J.E., Observation of type II deflagration-to-detonation transitions, CP620, Shock of Condensed Matter –2001, American Institute of Physics, 2002.
  • [7] Field J.E., Walley S.M., Pround W.G., Balzer J.E., Gifford M.J., Grantham S.G., Greenaway M.W., Siviour C.R., The Shock Initiation and High Strain Rate Mechanical Charcterization of Ultrafine Energetic Powders and Compositions, Mat. Res. Soc. Symp. Proc., vol. 800, AA5.4.1, Materials Research Society, 2004.
  • [8] Walley S.M., Field J.E., Greenaway M.W., Crystal Sensitivieties of Energetic Materials, Materials Science and Technology, 2006, 22(4), 402.
  • [9] Pround W.G., Walley S.M., Willianson D.M., Collins A.L., Addiss J.W., Recent Trends in Research on Energetic Materials in Cambridge, Cent. Eur. J. Energ. Mater., 2009, 6(1), 67-102.
  • [10] Bdzil J.B., Menikoff R., Son S.F., Kapila A.K., Steward D.S., Two-phase Modeling of Deflagration-to-Detonation Transition in Granual Materials: A Critical Examination Of Modeling Issues, Physics of Fluids, 1999, 11(2), 378-402.
  • [11] Kapila A.K., Menikoff R., Bdzil J.B. Son S.F., Steward D.S., Two-phase Modeling of Deflagration-to-Detonation Transition in Granual Materials: Reduced equations, Physics of Fluids, 2001, 13(10), 3002-3024.
  • [12] Narin B., Ozyoruk Y., Ulas A., Application of Parallel Processing to Numerial Modeling of Two-phase Deflagration-to-Detonation (DDT) Transition Phenomenon, in: Parallel Computation Fluid Dynamics (I.H. Tuncer et al.) 2007; DOI: 10.1007/978-3-540-92744-0_15, Springer-Verlag Berlin Heidelberg 2009.
  • [13] Fogelzang A.E., Sinditski V.P., Egorshev V.Y., Serushkin V.V., Effect of Structure of Energetic Materials on Burning Rate, Proceedings of Symposium on Decomposition, Combustion, and Detonation Chemistry of Energetic Materials, Boston, 1995, Materials Research Society, vol. 418, p. 151.
  • [14] Adams G.K., Pack D.C, Some Observations on The Problem of Transition Between Deflagration and Detonation, Seventh Symposium (International) on Combustion, Butterworths, London, 1959, p. 812.
  • [15] Troshin Ya.K., The Generalized Hugoniot Adiabatic Curve, Seventh Symposium (International) on Combustion, Butterworths, London, 1959, p. 789.
  • [16] Price D., Wehner J.F., ThE Transition From Burning to Detonation in Cast Explosives, Combustion and Flame, 1972, 9, 419.
  • [17] Gibson R.W., Macek A., Flame Fronts and Compression Waves During Transition from Deflagration to Detonation In Solids, Eighth Symposium (International) on Combustion, Williams and Wilkins, Baltimore, 1962, p. 847.
  • [18] Chaudhri M.M., Field J.E., Deflagration in Single Crystals of Lead Azide, Fifth Symposium (International) on Detonation, Office of Naval Research, Pasadena, 1970, p. 301.
  • [19] Cudziło S., Complex compounds with explosive properties, Private Communication, 2009.
  • [20] Fridrich M., Gilvez-Ruiz J.C., Klapotke T.M., Mayer, P. Weber B., Weigand J.J., BTA Copper Complexes, Inorganic Chemistry, 2005, 44, 8044-8052.
  • [21] Davies F.W., Zimmerschied A.B., Borgardt F.G., Avrami L., The Hugoniot and Shock Initiation Threshold of Lead Azide, Sixth Symposium (International) on Detonation, Office of Naval Research, White Oak, 1976, p. 389.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT1-0041-0074
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.