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Abstract: Theoretical models proposed in the literature for the deflagration-to-
detonation transition (DDT) in cast explosives are evaluated for primary explosives 
(complex compounds) in this work. The one-dimensional model of burning 
(deflagration), consistent with the classical Chapman-Jouguet theory and a model 
of burning under the conditions of zero mass velocity behind the flame front are 
presented, and the physical phenomena accompanying the accelerating wave of 
flame in solid explosives are described. The results of calculations taken from 
the literature are presented for the cast high explosive (pentolite). The model of 
acceleration of the deflagration wave was used to estimate the time and distance at 
which the process of burning leads to the emergence of a shock wave in primary 
explosives. The influence of burning rate and the physical properties of an explosive 
on the distance of deflagration to detonation transition is analysed. 
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Introduction 

From the huge number of experimental studies of the process of deflagration 
to detonation transition (DDT) in the detonation of condensed explosives, the 
following conclusions can be drawn [1]: 
•	 the most important difference between the DDT process in primary 

and secondary explosives is the speed of transition from deflagration to 
detonation − in the case of primaries the process is much faster; 

•	 because the difference is rather quantitative than qualitative, all the 
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relationships derived for secondaries can also be applied to primaries; 
•	 it is far easier to build a quantitative model for the DDT process in cast 

explosives than in porous materials. 
The first conclusion comes from the prime function of primary and secondary 

explosives. Since primaries need to have undergone a violent detonation, if only 
by being exposed to the heat pulse, whilst the detonation of secondary explosives 
is mainly initiated by the shock wave. It is commonly believed that the faster the 
DDT, the better the primary material is. The ease of the transition to detonation 
is also a weakness of primary explosives, because accidental ignition leads to 
detonation. 

The second conclusion results from the observation of many similarities 
between primary and secondary explosives in the DDT process. Both types of 
materials are subject to this process, but in the case of secondary explosives the 
transition takes longer and the charge needs to be enclosed in heavy confinement. 

The final conclusion follows from the results of the DDT process in cast 
explosives and good agreement between the experimentally determined time and 
distance of detonation development with data received from the one-dimensional 
model of Macek [2]. There is no similar model for the transition to detonation 
in the case of porous explosives. The experimental data confirm the existence 
of a convective flame front with high surface area in these materials and, 
consequently, the formation of a complex flow field, affecting the DDT process. 
Over the years, a consensus has been reached on the mechanism controlling the 
DDT process [3-6]. Convective flow and hot-gas ignition contribute only initial, 
low velocity phenomena. The formation of a compaction wave in undisturbed 
material begins a series of non-convective events that lead to the final shock-
to-detonation (type I DDT). Another mechanism was observed for low density 
charges. In this case, the outbreak of detonation is preceded by a rapid build-up 
of pressure at the point where the detonation occurs (type II DDT) [7-9]. 

There are complex numerical models in which the porous explosive is treated 
as a two-phase mixture of interacting continua, consisting of grains of reacting 
solid and the gaseous products of combustion [10-12]. At the moment, there 
is no simple physical model taking into account the complexity of the DDT in 
porous explosives. 

In this paper, the one-dimensional model proposed in [2] and developed in 
[1] is used to predict the path of transition of burning to detonation in primary 
explosives. In the first part, Macek’s model of the development of deflagration 
to detonation in cast secondary explosives is described. A critical analysis of this 
model given in work [1] is also presented. This is followed by a description of 
the one-dimensional model of burning (deflagration), consistent with the classical 
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CJ theory, and the physical phenomena accompanying the accelerating wave of 
flame in solid explosives is discussed. Details of models of the DDT analyzed 
in [1] and the results of the calculations presented are considered. Finally, the 
acceleration model is used to estimate the time and distance at which the process 
of burning leads to the emergence of a detonation wave in primary explosives. 
The influence of the burning rate and the physical properties of the explosive 
on the distance of the DDT is analyzed. 

Macek’s model for DDT

If the deflagration wave is initiated at the bottom of a closed tube, it 
propagates into the explosive and generates a stream of gas in the opposite 
direction to the wave motion. Since these gases stop at the bottom of the tube, 
their kinetic energy changes in internal energy. Increasing pressure in the gas is 
the source of compression waves which interact with the wave and accelerate 
the movement of the deflagration flame (Figure 1). Moving faster and faster, the 
combustion front generates in turn compression waves in the unreacted explosive 
before the flame front, which creates a complex, unsteady flow. The interaction of 
compression waves creates a shock wave inside the material. This wave initiates 
reactions leading to generation of a detonation wave. The amplitude of the shock 
wave which initiates detonation depends on the type of explosive. 
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Figure 1.	 DDT in a distance-time diagram: CP − combustion products, FF − 
flame front, CW − compression waves, SW − shock wave.
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The mechanism of increase in pressure in the flame front depends on the 
type of fuel. Turbulence and possible diffusion of hot combustion products are 
the dominant phenomena in gases and porous solid explosives. In homogeneous 
explosives, these processes are absent, and the main mechanism of increase in 
pressure is accelerated by laminar burning [13].

The conditions necessary for the formation of a shock front in a burning 
explosive are strictly defined [2]. Firstly, it is necessary to limit the flow of the 
resulting combustion products to the rear. This provides increased pressure acting 
on the explosive and generates in it disturbances in the direction of propagation 
of the flame wave. The leading edge of these disturbances, according to “the 
accelerating piston mechanism”, transforms into a shock front. If expansion of 
combustion products is unrestricted, the pressure does not rise sufficiently to 
form a shock wave in the explosive. Secondly, the increase in pressure must be 
rapid. Since the compression waves are catching up and generate a shock wave 
inside the charge, the time needed to increase pressure from the baseline value 
to the value on the initiating shock wave must be lower than the time of passage 
of the sound wave by the charge. 

Macek [2] proposed the first generation of experimental and theoretical 
methods for testing the DDT phenomenon in secondary explosives. He measured 
the time-dependence of the pressure in the combustion products of the explosive 
enclosed in a metal tube, and the time and place of the emergence of the 
detonation wave in the explosive. The dependence of the measured pressure 
p in the combustion products on the time t was approximated by the function: 

p = p0eat� (1) 

where p0 is the initial pressure and a is an experimentally determined constant. 
Macek assumed that the pressure in the combustion products is equal to the 
pressure in the explosive. Macek described continuous compression of the 
explosive by the modified Tait equation:
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where ρ, ρ0 and c0 are mean density, initial density and velocity of sound in the 
explosive, and n is a constant. 

The movement of the compression waves in the explosive was calculated 
in [2] by the method of characteristics. Macek assumed that n = 3, so that the 
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characteristics C+ in the compression wave are straight lines (Figure 1). The 
point of intersection of the characteristics on which the difference in pressure is 
a few kbar, was assumed as the beginning of the formation of the shock wave of 
such an amplitude as to be able to boost the explosive to detonate. The initiated 
detonation wave travels through the material in the direction of propagation of 
the flame front (detonation) and in the opposite direction (retonation).

Using such an approximation, Macek obtained good agreement between 
the calculated times and distances to detonation transition and measured values 
(time ~ 100 μs, distance ~12 cm) for the two high explosives − diethylnitramine 
dinitrate (DINA) and pentolite (PETN/TNT 50/50) [2]. Macek also attempted to 
clarify the apparent exponential relationship between pressure and time behind 
the front, using a one-dimensional adiabatic model of burning. The dependence 
of the linear flame front speed U on the pressure p had the form:

 
U = β pλ� (3) 

where β and λ are constants. The author of work [2] assumed that for the 
tested materials λ = 1 and β = 10 cm/sec kbar. The resulting time-dependence of 
the pressure matched equation (1) by a constant of proportionality, which takes 
into account the size of the flame front surface.

Although Macek obtained quantitatively good agreement between the 
experimental data and the calculated results for two high explosives, according 
to the authors of work [1] the theoretical model has weaknesses. Firstly, assuming 
that the pressures in the combustion products and the explosive are equal, Macek 
ignored the pressure drop at the deflagration wave front, which can be significant 
if the process reaches the deflagration CJ regime. According to the CJ theory, the 
pressure in unreacted material can be much higher than the pressure in combustion 
products. Secondly, the dependence of the linear burning velocity on pressure 
describes well the experimental dependence for only about 1 kbar pressure. 
The actual relation between the burning rate and pressure in the process of an 
accelerating deflagration wave, which generates a detonation wave, is different 
from the burning rate law (3). The third weak point of Macek’s analysis is the 
omission of momentum transferred to the reaction products at the deflagration 
wave front. In the case of a closed tube, the energy associated with the movement 
of particles in fact affects the acceleration of the flame front.
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Models of DDT taking into account the properties of the 
deflagration wave

Figures 2 and 3 show, on the pressure-volume and pressure-particle velocity 
planes, schematic Hugoniot curves for the reaction products of an explosive in 
the case of detonation and deflagration [1]. The upper curves and the CJ points 
correspond to detonation, while the lower curves and CJ’ points are related to 
the deflagration. The parameters of the CJ’ point correspond to a stationary 
combustion wave propagating in an explosive.
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Figure 2.	 Pressure-volume diagram for deflagration and detonation [1].
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Figure 3.	 Pressure-particle velocity diagram for deflagration and detonation [1].



23Numerical Analysis of the Deflagration to Detonation Transition in Primary Explosives

As previously stated, a deflagration wave initiated at the bottom of a closed 
tube moves along the tube and burns the explosive, generating the reaction 
products moving in the opposite direction. The reaction products are decelerated 
at the bottom of the tube and their kinetic energy transforms into internal energy. 
As a result, the pressure increases and compression waves propagate in the 
products, causing acceleration of the deflagration wave. The accelerating flame 
front, in turn, generates a compression wave in the explosive which leads to 
a complex unsteady flow ahead of the front. The initial state of the unreacted 
explosive is the compressed state. 

This complex movement associated with the accelerating deflagration 
wave is illustrated in Figure 4 using particle velocity-distance diagrams [1]. 
For simplicity, the deflagration wave front was presented as a discontinuity, 
although in reality it has a finite width. In Figures 4a and 4b, the mass velocity 
of the reaction products on the front of the deflagration wave is negative and 
the occurrence of a compression area is necessary to reach a value of zero at the 
bottom of the tube. Figure 4c shows a case in which the mass velocity drop at the 
deflagration wave front is exactly equal to the mass velocity of the compressed 
material before the front. In the next phase of acceleration of the deflagration wave 
(Figure 4d) mass velocity behind the wave front is positive and it is necessary 
to create an expansion area to satisfy the boundary condition at the bottom of 
the tube. However, when the compression zone behind the wave front no longer 
exists, then the mechanism of acceleration of the deflagration wave associated 
with the process of gas compression also vanishes.

Although the exact solution of the complex unsteady flow generated by the 
deflagration wave in a closed tube is very difficult, there are two analytical models 
of the process of combustion wave acceleration which allow the upper and lower 
limits of combustion velocity to be estimated in a relatively simple way. For the 
detonation wave only the CJ point corresponds to a stable process, but in the case 
of the deflagration wave, the final state of the products can be identified by any 
point on the Hugoniot curve between points A and CJ’(Figures 2 and 3), namely 
the so-called weak deflagration branch. Point A corresponds to a hypothetical 
deflagration at constant pressure, during which the mass velocity does not change, 
but the CJ’ point is associated with deflagration, for which the combustion wave 
velocity, mass velocity and pressure reduction are the largest.
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Figure 4.	 Particle velocity-distance diagrams for accelerating deflagration 
waves [1].

Taking into account the above-described mechanism of acceleration and 
deflagration wave properties, the authors of work [1] have considered two 
analytical models describing the process of flame acceleration. In the first, 
proposed by Adams and Pack [14] to describe deflagration waves in gases, there 
is a compression area of the explosive terminated by the deflagration wave whose 
velocity is such that the momentum of compressed explosive is exactly equal to 
the momentum fall at the wave front and the mass velocity of reaction products 
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is zero (Figure 4c). In this model, there must be no rarefaction or compression 
waves in the reaction products to meet the boundary condition at the bottom of 
the tube. Since the change in particle velocity with distance behind the front of 
the combustion wave is zero, the pressure change in the time on the left border 
must also be zero. Although in this model the law of conservation of momentum 
is fulfilled, it is not physically correct because it is not possible in this model to 
accelerate the flame and there is no mechanism to increase pressure at the bottom 
of the tube. However, the model of Adams and Pack allows the lower flame 
velocity and the pressure drop at the front of the accelerating deflagration wave 
to be designated, since for each wave propagating with a faster speed there is 
a decrease in mass velocity at its front and it is possible to realize a mechanism 
of flame acceleration. 

In the second model it is assumed that deflagration is always the CJ wave 
with the greatest possible velocity of propagation and with the biggest drop in 
pressure at the front. This model allows the mechanism of flame acceleration in 
accordance with the scheme shown in Figure 4 to be described. It was used for 
the first time by Troshin to study the DDT process in gases [15]. An interesting 
state of deflagration, where the two models provide the same mass velocity 
and pressure in the reaction products, is the case shown in Figure 4c. For the 
CJ deflagration, this state corresponds to the case when the stage of flame 
acceleration and generation of new compression waves ends. Table 1 shows, as 
calculated in [1], the parameters of this state for TNT and pentolite. The values 
obtained for the compression wave, 95 kbar for TNT and 129.5 kbar for pentolite, 
are too big to be a criterion for DDT, because for pentolite its sensitivity to the 
shock wave is about 20 kbar, and cast TNT can be initiated by a shock wave with 
an amplitude of 60 kbar. The transition from burning to detonation in pentolite 
is relatively easy, in TNT it is impossible. Thus, there is another criterion of 
flame acceleration which determines whether the transition from deflagration 
to detonation occurs in a cast explosive. 

Table 1.	 CJ deflagration wave parameters of zero-mass velocity behind the 
wave front [1]

Deflagration wave parameters Cast TNT Pentolite
Shock pressure in explosive [kbar] 95.0 129.5
CJ deflagration velocity [mm/μs] 3.116 3.504

CJ pressure after deflagration [kbar] 43.5 63.4

In the paper [1] the discussed models of acceleration of flame were used 
to calculate the transition from burning to detonation in pentolite. To determine 
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the time and distance of creation of a shock wave in the explosive ahead of the 
flame front, the method of characteristics was used. The time-dependence of 
pressure in the combustion products of pentolite for the pressure below 1 kbar 
was described by Macek’s relationship [1] with the parameters p0 = 0.08 kbar, 
a = 0.12 1/μs, and for the pressure above 1 kbar by the relation given in [16]: 

p2 = (1kbar)e0.8856(t-21.05)� (4) 

where p2 is the pressure behind the front of the deflagration wave. Time t is 
expressed in microseconds. 

To describe the physical properties of the explosive, the modified Tait 
equation (2) with n = 3 was applied for isentropic compression. Using the relations 
valid along the set of negative characteristics C–, the speed of sound c1, mass 
velocity u1, density ρ1 and the internal energy e1 of the compressed explosive 
in front of the deflagration wave were determined along the straight positive 
characteristics C+ as a function of the pressure p1:
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where ρ0, c0 are the parameters of equation (2), e0 = c0
2/2. 

The laws of conservation of mass, momentum and energy flow at the 
deflagration wave front can be written in the following form:

ρ1(w – u1) = ρ2(w – u2)� (9) 

p1 + ρ1(w – u1)2 = p2 + ρ2(w – u2)2� (10)
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where the index 2 refers to the parameters behind the deflagration front, w denotes 
the velocity of the deflagration wave and q is the heat of reaction.

The physical properties of the gaseous reaction products are described by 
a polytropic gas model, for which the relations are true:
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where k is the adiabatic exponent of the reaction products. In the paper [1] its 
value was proposed to derive from the relationship linking the parameters of 
CJ detonation: 
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where D is the detonation velocity.
In the case of the Adams and Pack model, the mass velocity u2 behind the 

front of the combustion wave is zero. Then, from the conservation laws (9)-
(11), the deflagration wave velocity as a function of parameters marked with an 
index 1 can be determined:
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After determining the value of the deflagration wave velocity from equation 
(15) for a given pressure p1, parameters p2 and ρ2 can be calculated from equations 
(9)-(10) assuming u2 = 0. In the paper [1], the following data were used for 
pentolite: ρ0 = 1.67 g/cm3, c0 = 2.43 mm/μs, q = 1160 cal/g, k = 2.598. The results 
of calculations for the deflagration waves are presented in Table 2.
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Table 2.	 The results of calculations for deflagration waves for pentolite [1] 
− Adams and Pack model 

p1
[kbar]

p2
[kbar]

u1
[mm/μs]

w
[mm/μs]

u1 +c1
[mm/μs]

1
2
4
7
10
20
30
40
70
100

123.8

0.9998
1.9984
3.988
6.937
9.815
18.75
26.36
32.56
44.47
50.28
52.62

2.440·10-2

4.831·10-2

9.481·10-2

1.615·10-1

2.249·10-1

4.171·10-1

5.864·10-1

7.385·10-1

1.1244
1.4410
1.6597

2.489·10-2

5.023·10-2

1.023·10-1

1.836·10-1

2.700·10-1

5.700·10-1

8.860·10-1

1.201
2.054
2.738
3.186

2.479
2.527
2.620
2.753
2.880
3.264
3.603
3.907
4.678
5.311
5.749

The calculated values of the deflagration wave velocity are approximately 
300 times greater than the velocity obtained from equation (3) describing the 
dependence of the linear burning rate on pressure. It was observed in work [17] 
that the deflagration wave velocities in explosives are of the order of 1-2 mm/μs, 
which correlates well with the results in the fourth column of Table 2. This 
supports the critical remarks made by the authors of [1] on Macek’s extrapolation 
of experimental data obtained from measurements of the linear combustion 
velocity above the pressure of 1 kbar. Data from Table 2 also show that for 
pressures up to 20 kbar, the pressures p1 and p2 differ slightly, which means that 
the model of Adams and Pack in this range is similar to the model of constant 
pressure deflagration.

The motion trajectory of the combustion wave front can be calculated from 
the formula: 

( ) ( )∫ ττ=
t

w dwtx
0

� (16) 

where w(t) is determined from the dependence of w on p2 from Table 2, and the 
time-dependence of p2, according to the relationship (4). Development of the 
combustion wave front and compression waves in pentolite on a plane x-t are 
shown in Figure 5.
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Figure 5.	 Characteristics of compression waves generated by the combustion 
of pentolite obtained from the Adams and Pack model.

The characteristics of C+ (u + c) intersect in an area approximately 130 mm 
from the bottom of the tube after a period of approximately 90 μs after the 
initiation of combustion of pentolite. It is assumed that at the point of intersection 
of the characteristics, the shock wave is generated which is able to initiate the 
explosive to detonation.

The parameters of the transition of combustion into detonation estimated 
from the Adams and Pack model were compared with the results of calculations 
made on the basis of the CJ deflagration model applied to the explosive 
compressed by isentropic compression waves. At the flame wave front the CJ 
condition is fulfilled − w = u2 + c2, i.e.: 
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Substituting relation (17) in equations (9)-(11), the following expressions 
for the pressure and density behind the combustion wave front are obtained:
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The deflagration velocity is then calculated from the relationship:
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The calculated results for pentolite are shown in Table 3 and in Figure 6. For 
a low initial pressure p1, the pressure p2 behind the CJ deflagration wave front 
is much lower than the pressure estimated by the Adams and Pack model, and 
the flame wave velocity is nearly doubled. That means that the CJ deflagration 
wave simultaneously moves in the explosive at a greater distance. The time of 
emergence of the shock wave is about 80 μs and it is slightly shorter than the 
time calculated for the Adams and Pack model (around 90 μs), and the distance 
to shock formation increases (about 140 mm in Figure 6 to about 130 mm in 
Figure 5). Since the applied theoretical models allow the calculation of upper 
and lower limits for the deflagration to detonation transition, a critical time and 
distance of the transition will be bracketed by these results, if the isentropic 
compression of pentolite can be described by the equation (2) with n = 3.

Table 3.	 The results of calculations for the deflagration waves for pentolite 
[1] – the CJ deflagration model

p1
[kbar]

p2
[kbar]

u2
[mm/μs]

w
[mm/μs]

1
2
4
7
10
20
30
40
70
100

123.8

0.2799
0.5637
1.1426
2.038
2.966
6.261
9.835
13.65
26.32
38.62
52.62

-2.044
-2.019
-1.958
-1.870
-1.782
-1.5253
-1.3208
-1.1304

-6.539·10-1

-2.247·10-1

0

4.500·10-2

8.910·10-2

1.750·10-1

2.986·10-1

4.170·10-1

7.767·10-1

1.096
1.386
2.130
2.751
3.186
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Figure 6.	 Characteristics of compression waves generated by the combustion 
of pentolite for the CJ deflagration model.

Modeling of the deflagration to detonation transition in 
primary explosives

In the paper [1] the models described above were used to calculate the 
distance and time of the passage from deflagration to detonation in the primary 
explosive − lead azide. On the basis of experimental literature data, the time-
dependence of the pressure p1 for the deflagration wave in lead azide was 
obtained. To describe the physical properties of crystals of lead azide, the Tait 
equation and experimental data obtained from the relationship between pressure 
and mass velocity on the front of a shock wave were applied. The latter was used 
to calculate the mass velocity of compressed lead azide:

00

1
1 c

pu
ρ

= � (21)

where ρ0 = 4.6 g/cm3, c0 = 2.15 mm/μs.
In this case, the authors of [1] did not give details of the DDT problem. 

Meanwhile, the use of data from the Hugoniot curve to describe the isentropic 
compression of the explosive is a coarse approximation. In addition, there is 
some ambiguity in the model associated with the calculation of the mass velocity 
of the compressed explosive by the use of the formula (21) and the velocity of 
sound, internal energy and density using the Tait model (2).
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The calculated distance to the transition from deflagration to detonation 
in the lead azide crystal was about 2 mm, which is in good agreement with 
experimental data obtained for lead azide crystals of different thicknesses. In 
crystals with a thickness of less than 2 mm, there was no DDT phenomenon, 
whilst in thicker crystals this process was observed. The calculated combustion 
velocities for both models (Adams and Pack and CJ) are an order of magnitude 
smaller than the velocity of 2.7 mm/μs measured by Chaudhri and Field [18]. 
Despite the objections presented earlier in [1] this model was also used to 
calculate the process of accelerating deflagration in pressed charges of lead 
azide. The following data were adopted: ρ0 = 3.4 g/cm3, c0 = 1.23 mm/μs. In this 
case, the distance to the creation of the shock wave was 0.9 mm. Porosity causes 
reduced velocity of sound in the pressed charge and hence the intersection of the 
relevant characteristics takes place earlier.

Due to the limited amount of experimental data for primary explosives, 
an attempt was undertaken to study the influence of the burning rate of these 
materials on the process of DDT in a typical primary explosive. In spite of 
previous limits, as in [1], models developed for cast explosives were used. The 
following parameters for the primary explosive were assumed: ρ0 = 1.4 g/cm3, 
c0 = 1.20 mm/μs. The proposed value of ρ0 corresponds to the density of pressed 
complex compounds tested in the Department of Explosives at the Military 
University of Technology [19], and the velocity of sound is close to the velocity 
in pressed lead azide [1]. The heat of combustion q = 2000 cal/g was derived from 
work [20]. It was assumed that the adiabatic exponent of the combustion products 
k is equal to 3.2. The value of p0 from equation (1) was assumed to be 0.1 kbar.
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Figure 7.	 Time-dependence of pressure in the combustion products for different 
values of a (Eq. (1)).
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Initially, the influence of the burning rate of the explosive on the DDT process 
was investigated. The burning rate of a confined explosive is represented by the 
dependence of pressure on time (Eq. 1). Figure 7 shows the change in pressure 
for different values of a. The pressure builds up to a value of about 40 kbar in 
the period from 1 to 6 μs for changes in a from 5 to 1.

To perform the calculations for a typical primary explosive the models of 
flame acceleration discussed in the preceding paragraph were used. Table 3 
presents the parameters for the deflagration wave as a function of the pressure in 
the compressed explosive. The Adams and Pack and CJ models were used in the 
calculations. The range of changes of the pressure p1 corresponds to the amplitude 
of shock waves leading to detonation of primary explosives (e.g. 6 kbar in the 
case of lead azide [21]). As previously stated, the flame front velocity w and 
pressure p2 in the combustion products behind the wave front calculated for the 
models from Adams and Pack and CJ are the limiting values of these parameters 
for the deflagration wave in the tested explosive. 

Table 3.	 Results of calculations for deflagration waves in the primary 
explosive 

p1
[kbar]

u1
[mm/μs]

u1 +c1
[mm/μs]

Adams and Pack 
model (u2 = 0) CJ model

p2
[kbar]

w
[mm/μs]

p2
[kbar]

w
[mm/μs]

1
3
6
12
18

5.68·10-2

0.157
0.248
0.488
0.652

1.313
1.514
1.769
2.177
2.504

0.9994
2.987
5.915
11.51
16.70

5.75·10-2

0.162
0.301
0.540
0.744

0.2392
0.7233
1.461
2.972
4.520

7.44·10-2

0.206
0.374
0.645
0.866

Figures 8-11 show the x-t plane images of the transition from deflagration 
to detonation for various values of the exponent a in Eq. (1). A slight difference 
is observed in the distances from the tube bottom to the points of creation of 
a shock wave for both models used. The distance of the deflagration to detonation 
transition in the tested porous explosive decreases from about 1 to 6 mm when 
the parameter a is changed from 1 to 5. This change in the parameter a means 
a significant increase in rate of pressure rise in the reaction products (Figure 7). 
The range of changes in distance of intersection of the characteristics obtained 
corresponds to the run distances to detonation in primary explosives. For example, 
the DDT in porous lead azide takes place over a distance of 1-3 mm depending 
on the duration of the loading pressure (0.1 and 3.5 μs) with an amplitude of 
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6-9 kbar [20]. In turn, a complex primary explosive [Cu (C2H4N4)3] (ClO4)2 
triggers the detonation of PETN, if the length of the charge of initiating explosive 
is at least 4.5 mm, which means that at this distance burning must develop into 
detonation [19].
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Figure 8.	 Characteristics of compression waves generated by the combustion 
of the primary explosive enclosed in a tube for the exponent a = 1. 
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Figure 9.	 Characteristics of compression waves generated by the combustion 
of the primary explosive enclosed in a tube for the exponent a = 2. 
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Figure 10.	 Characteristics of compression waves generated by the combustion 
of the primary explosive enclosed in a tube for the exponent a = 3. 
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Figure 11.	 Characteristics of compression waves generated by the combustion 
of the primary explosive enclosed in a tube for the exponent a = 5. 

We can compare how the deflagration front velocity evolves over time in 
the primary explosive for the Adams and Pack model and the CJ model. The 
calculated results are shown in Figure 12. In the Adams and Pack model the front 
velocity is lower for the same time compared with the CJ model. However, it 
should be noted that in the first case, the mass velocity behind the wave front 
is zero (Figure 4c) and the whole released reaction energy is transmitted to the 
explosive. Therefore, generation of a compression wave of a given pressure 
ahead of the front requires a lower velocity than in the CJ deflagration model, 
in which a part of the energy is consumed to give a negative momentum of the 
gaseous combustion products (Figure 4b).
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Figure 12.	 The change in time of the wave flame velocity in a primary explosive 
for various values of the exponent a. 

An analysis of the position of the intersection of the characteristics in 
Figures 8-11 shows that the distance from the charge bottom to the intersection 
point is changed relatively little for a high variation in the rate of pressure rise. 
In order to check how the properties of the primary explosive, density and 
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velocity of sound, affect the location of this point, calculations for a material 
with a higher density were performed. For this calculation the complex material 
was assumed in the form of a crystal of density ρ0 = 2.0 g/cm3 [19] and velocity 
of sound c0 = 2.1 mm/μs (as in crystals of lead azide). The burning parameters 
were identical to the parameters of the porous complex explosive tested earlier. 
Figure 13 shows wave images of the explosive compression by the accelerating 
deflagration wave for both the models used. The assumed dependence of pressure 
behind the front corresponds to the parameter a = 2 (Figure 7). A comparison of 
the location of points of intersection of the characteristics in Figures 9 and 13 
shows that the distance to detonation in a crystalline material with a high density 
is more than twice that in the case of a porous material. 
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Figure 13.	 Characteristics of compression waves generated by the combustion 
of the primary explosive of high density. 

Summary

The application of the model of accelerating deflagration in cast explosives 
to a description of the transition from combustion to detonation in primary 
explosives allowed us to obtain results consistent with experimental data in 
quantitative terms. Thus, the estimation of the velocity of a flame wave front 
which leads to initiation of a primary explosive to detonation is possible. However, 
a more accurate assessment of the front velocity and the passage from burning to 
detonation will be achievable only on the basis of experimental measurements of 
the time-dependence of the pressure in reaction products behind the deflagration 
wave front. In the case of porous explosives more precise prediction of the DDT 
parameters requires the use of complex theoretical models, which better describe 
the phenomena of accelerating deflagration in these materials. This in turn leads 
to the need to solve the DDT problem by application of the numerical methods 
used in fluid dynamics, for example, the method of differential schemes.
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