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Zastosowanie algorytmu genetycznego do rozwiązywania zadań 
niezawodnościowych dotyczących wielokryterialnych 

systemów szeregowo-równoległych
Since developing an appropriate solution for reliability optimization problem with mathematical programming methods has been 
considered as difficult techniques, the heuristic approaches increasingly has been applied. Multiobjectve Genetic Algorithm (MGA) 
has been among heuristic methods that was developed to find solutions for series-parallel systems to obtain maximum reliability, and 
minimum cost and weight at the system level. These are very common problems in engineering design such as mechanical and elec-
trical systems. It has been shown that the Multiobjectve Genetic Algorithm offers proper results to these problems while it respects 
to the several objective functions such as reliability, cost and weight. This paper presents the combination of probabilistic search, 
and one of the decision making methods called Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The Mul-
tiobjectve Genetic Algorithm, allows us to achieve a proper design solution while it saves a considerable time compared with some 
other approaches. At the same time as the reliability, cost and weight were chosen as objective functions, the results obtained by this 
method showed an overall improvement in comparison to the existing GA method considering cost and weight as constraints.

Keywords: Multiobjective Genetic Algorithm, Reliability Optimization, Redundancy Apportionment, Series-
Parallel Systems, TOPSIS Method.

Ponieważ znalezienie odpowiedniego rozwiązania zadania optymalizacji niezawodnościowej przy wykorzystaniu metod programo-
wania matematycznego uznaje się za trudne, coraz częściej stosuje się do tego celu metody heurystyczne. Algorytm genetyczny do 
optymalizacji wielokryterialnej (Multiobjective Genetic Algorithm, MGA) jest jedną z metod heurystycznych, stworzoną w celu znaj-
dowania rozwiązań dla systemów szeregowo-równoległych, pozwalającą na uzyskanie maksymalnej niezawodności oraz minimal-
nych kosztów i ciężaru na poziomie systemu. Zadania takie występują powszechnie w dziedzinie projektowania i konstrukcji syste-
mów mechanicznych i elektrycznych. Wykazano, że MGA pozwala uzyskać odpowiednie rozwiązania tego typu zadań uwzględniając 
przy tym funkcje celu, takie jak niezawodność, koszty i ciężar. W niniejszej pracy przedstawiono połączenie metody wyszukiwania 
probabilistycznego oraz jednej z metod rozwiązywania problemów decyzyjnych o nazwie TOPSIS (Technique for Order Preference 
by Similarity to Ideal Solution). MGA pozwala uzyskać odpowiednie rozwiązania konstrukcyjne dając przy tym znaczną oszczędność 
czasu w porównaniu z niektórymi innymi metodami. Jednocześnie potraktowanie kosztów i ciężaru jako funkcji celu daje lepsze 
wyniki w porównaniu do metody wykorzystującej algorytm genetyczny, w której koszty i ciężar rozpatrywane są jako ograniczenia.

Słowa kluczowe: Algorytm genetyczny do optymalizacji wielokryterialnej, optymalizacja niezawodności, podział 
nadmiarowości, systemy szeregowo-równoległe, metoda TOPSIS.

1. Introduction

Reliability is an important factor in different kinds of electrical and 
mechanical systems. In many practical system designs, the overall sys-
tem is divided to certain series parts called subsystems, according to the 
function requirements of the system (Fig. 1). For each subsystem, there 
are several parallel positions that can be filled with different component 
types available with varying reliability, costs, weight, volume and other 
characteristics [13]. Reliability of a system is calculated after comput-
ing the reliability of each subsystem. For optimizing system reliability, 
the following approach can be applied: (a) using more reliable compo-
nents or applying better technical and organizational actions such as 
condition monitoring systems [19], (b) using redundant configuration 
with active or stand-by components in parallel, or (c) a combination of 
(a) and (b) [9], [13]. A well-known and complex reliability optimiza-
tion problem is the Redundancy Apportionment Problem (RAP) for 
series-parallel systems which can be identified as the selection of the 
optimal combination of component type and redundancy level for each 

subsystem in order to meet various objectives on the overall 
system [13]. Conflicting objectives, such as minimizing the 
system cost and system weight or volume, while simultane-
ously maximizing the system reliability, make this problem 
complex. The RAP has proven to be NP-hard [2], [13]. Some 
approaches have been tried out to solve this problem [13], 
[14], [20]. The increase of the size and number of constrains 
affects computational difficulty exponentially, therefore, the 
majority of previous methods restricted the problem in a way. 
For instance, the number of components that could be chosen 
for a subsystem should not be more than one component. It 
means for providing redundancy only the same type can be 
used. Integer programming, dynamic programming, mixed 
integer and nonlinear programming, and multiobjective ap-
proaches could not find a solution if they did not apply re-
strictions. A method that could overcome these obstacles was 
Genetic Algorithm. Coit and Smith [3], [4], [13] solved the 
RAP problems by using Genetic Algorithm (GARAP). The 
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results of GARAP have been much better. Through many generations 
GA collects best solutions with an improving strategy and this method 
even results for large-scale problems [13]. In the existing GARAP cost 
and weight are considered as constraints, however, in this paper cost 
and weight are considered as objective functions.

2. Notations, acronyms and assumptions

A.	 Notations

sR 	 reliability of system

sC 	 cost of system

sW 	 weight of system

  s 	 number of subsystems

im 	 number of available component choices for subsystem i (i = 
1,...,s)

ijr 	 reliability of j th  component for subsystem i

ijc 	 cost of j th  component for subsystem i

ijw 	 weight of j th  component for subsystem i

in 	 total number of components used in subsystem i

maxn 	 maximum number of components in parallel (user speci-
fied)

( )i iR x 	 reliability of subsystem i

( )i iC x 	 total cost of subsystem i

( )i iW x 	 total weight of subsystem i

jv 	 vector encoding of solution j

λr 	 importance of system reliability (weight of reliability in 

TOPSIS method)

λw 	 importance of system weight (weight of weight in TOPSIS 

method)

λc 	 importance of system cost (weight of cost in TOPSIS method)

  p	 population size

f( jv )	 fitness for j th  member of the population

B.	 Acronyms

GA(s)	 Genetic Algorithm(s)
MGA	 Multi-Objective Genetic Algorithm
RAP	 Redundancy Apportionment Problem
OIMP	 Overall Improvement 

C.	 Assumptions  

The reliability of each component is known.1.	
Components are not repairable.2.	
Failure of each component do not depends on other com-3.	
ponents.

3. Problem formulation

For modeling an RAP for the series-parallel systems, three objec-
tive functions must be optimized, that is, to maximize reliability (1) 
and minimize cost (3) and weight (4). At least on component in paral-
lel is specified for each subsystem to operate. This problem can be 
easily expanded by adding more objective functions and be solved by 
the GA - the feature that previous formulations did not have [3] [10].

	 1 ( )S
s i iMax R R x== Π 	 (1)

	
max

1(1 (1 ))n
i ijjR r== − Π − 	 (2) 

	
max

1 1
S n

s i jMin C ijc= == ∑ ∑ 	 (3)

	

max
1 1

S n
s i jMin W ijw= == ∑ ∑ 	 (4)

The total number of unique system configurations is given by the 
following equation [7], [13]:
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4. Genetic algorithm implementation

GA is a stochastic global search method that mimics the process 
of natural biological evolution [6], GA operates on a population of 
potential solutions applying the principle of survival of the fittest to 
generate (hopefully) better and better approximations to a solution 
[21]. The steps of GA are [3], [15]: 

Encoding of solutions1.	
Initialing a population of chromosomes2.	
Selecting parents for breeding3.	
Creating new chromosomes by transferring best strings and 4.	
crossover operator; applying mutation as the parents mate
If the termination criterion is met, stop and return the best 5.	
chromosome; If not go to 3

Crossover and mutation operators play an important role in the 
GA. The rate of convergence is specified by the effectiveness of the 
crossover operator at the same time as the mutation operator restrains 
the algorithm not to stop in a local optimal and transferring best strings 
help algorithm to keep the best solutions in the next generations. The 
number of subsystems, maximum number of components in parallel, 
transferring and mutation rate is tunable parameters but constant in 
specific experiment [3], [4]. 

A.	 Solution Encoding

Although traditional GA encoded solution using a binary 
string [3], [11] for combinatorial optimization it is preferred 
and more efficient to encode solution with integer values. In 
this approach the second encoding method has been selected. 
Each subsystem includes in  parts in parallel (1 ≤ in  ≤ maxn ) in 
order to form a possible solution. The  in  parts can be selected 
from im  components that are available for i th  subsystem. Com-
ponents are sorted according to their reliabilities from 0  to  

Fig.1. A Series-Parallel System
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( 1im − ), that is, the most reliable component is shown by 0 and 
the least reliable is shown by, 1im − . Chromosome is a vector 
with ( maxn  * s) positions. It means for each of s subsystems 
there are maxn  positions that can be filled with an integer 

number. An index −1 is assigned to the empty position where 
there is no component (i.e., in  < maxn ). At last all the subsys-

tem representations are placed next to each other and form a 
vector that shows a chromosome [3]. As an example, consider 
a system with s = 3, 1m  = 4, 2m  = 3, 3m  = 4 and maxn  prede-

termined to be 5. The following example:
jv   = ( 3 3 3 −1−1 | 0 0 1 −1 −1 | 2 1 −1 −1 −1 )

represents a prospective solution with three of the fourth most reliable 
components for the first subsystem; two of the most reliable compo-
nent and one of the second most reliable component used in parallel 
for the second subsystem; and the one of the third most reliable and 
one of the second most reliable component used in parallel for the 
third subsystem.

B.	 Initial Population
When user determined population size (p) and the number of sub-

systems (s), the initial population could be generated. For each gene 
(position) an integer between −1 and (mi−1) was generated randomly 
and uniformly (with replacement) according to which subsystem this 
gene belonged to (to determine mi). Previous article [5] indicated that 
a population size of 40 converged quickly and produced good solu-
tions. In general, the minimum effective population size would grow 
with problem size [3], [11].

C.	 Objective Function
By generating initial population, p vectors were produced that 

each one demonstrates a system design. Reliability, weight and cost 
of generated solutions are calculated according to (1), (2), (3) and 
(4), therefore, a (p*3) primary matrix can be formed as illustrated in 
(fig.2).
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As primary matrix shows, there are three attributes for each alter-
native, so, they are not easily ranked. Technique for Order Preference 
by Similarity to Ideal Solution (TOPSIS) is applied to overcome rank-
ing problem. Hwang and Yoon [12] developed the TOPSIS technique 
based on the concept that “the best alternative should have the shortest 
distance from the positive–ideal solution and the longest distance from 
the negative-ideal solution” and the ideal solution is the collection of 
ideal scores (or ratings) in all attributes considered [1]. Therefore, to 
use TOPSIS the following steps should be passed:

Step 1)	 Normalizing the Primary Matrix (Fig.3)
Through this step, three attribute dimensions transform to non-

dimensional attributes which allow comparison across criteria.
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Step 2) Calculating Weighted Normalized Matrix (Fig.4)
Since attributes have different importance, a set of weights  

( λr , λw , λc ) are assigned to them depends on how important the 
attributes are for users. It should be considered that sum of weights is 
equal to one.  

( λr + λw + λc  = 1) 

	 ( )" '
sj r sjR Rl= ×  	 (9)

	 ( )" '
sj w sjW Wl= ×  	 (10)

	 ( )" '
sj c sjC Cl= ×  	 (11)

Step 3) Identifying Positive-Ideal and Negative-Ideal Solutions

{ } { }" " "max ,min ,min , ,sj sj sj s s sR W C R W CI + + + += =

I +  is a set of the best values for attributes among all alterna-
tives. Best values for 2nd and 3rd columns are their minimum values 
since the least is the best. 

{ } { }" " "min ,max ,max , ,sj sj sj s s sR W C R W CI − − − −= =

Fig.3.	 Normalized matrix
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Fig. 4. Weighted Normalized matrix
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Fig. 2.Primary matrix
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I −
 is a set of the worst values for attributes among all 

alternatives.

Step 4) Calculating Separation Measures

The distances jd +  and jd −  to I +  and I −
 for all solutions are 

correspondingly computed according to (13) and (14):

	 ( ) ( ) ( )
1

2 2 2 2" " "
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	 (13)
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Step 5) Calculating the Relative Closeness to the Ideal Solution
The TOPSIS technique defines a “Similarity index” (or relative close-
ness) by combining the closeness to the positive-ideal solution and 

the remoteness of the negative-ideal solution. A relative distance jD +   
comprised between [0,1] is assigned to each alternative which is the 

GA fitness function f( jv ) in this method. (The more relative close-
ness to the Ideal Solution means the solution is better)  

	 jD +  = jd −  / ( jd +  + jd − )	  (15)
Figure 5 [16] illustrates how TOPSIS works. Given an alternative 

like ja , the distances jd +  and jd −  to I +  and I −  correspondingly 

are computed, subsequently a relative distance jD +  comprised be-
tween [0,1] is assigned to each alternative.

D. Transferring Best Strings

Transferring best strings helped GA not to lose the best solutions 
in iterations. Transferring rate (0<TR<1) predetermined by user, there-
fore, in each generation (p * TR) chromosomes were kept without any 
changes according to their objective function values.

E. Selection of Parents and Crossover Breeding Operator
Crossover is the most important search operator in Genetic Algo-

rithm, as it is a recombination operator which constructs two offspring 

out of genetic information encoded in two selected parents [21]. Rou-
lette wheel [15] mechanism is employed by many selection techniques 
to select individuals on the basis of some measure of their perform-
ance probabilistically. The basic roulette wheel selection method is 
stochastic sampling with replacement (SSR) [15]. In each generation 
a string has an objective or fitness function value and sum of these 

values formed total fitness (16). jv  could be selected as a parent with 

the probability of jf(v )
totalfit 

 based on roulette wheel method.

	 Totalfit = 
1

( )
p

j
j

f v
=

∑  	 (16)

This crossover operator is a variation of the Single-Point operator 
which has been shown [22] to be superior to the Uniform crossover 
strategies for analyzing these problems. It also prevents creation of 
infeasible offspring during evolutions. In Single-Point operator same 
cutting point is selected randomly in both parents and then all data 
before the point is swapped between the parents. Two generated chro-
mosomes are offspring.  

F. Mutation Operator
In simple Genetic Algorithm [21], mutation is the less used but 

not the less important operator in comparison to crossover. Each 
gene in an offspring which has been created by crossover can be 
mutated with respect to the mutation probability (mutation rate) 
which is predetermined by user according to the size of the prob-
lem (length of the chromosome) [21]. A mutated component was 

changed to (its index + 1) and the last component ( im ) was changed 
to a position where an additional component was not used (−1). 

G. Evolution

A survival of the fittest strategy is applied [3]. (p * TR) of 
the best solutions were copied to the next generation without 
any changes (transferring best strings) and the rest of new pop-
ulation that created by crossover operator were [p * (1 − TR)]. 
Mutation had its effect while producing new offspring with 
crossover operator. The best strings were never mutated be-
cause the best solutions should not be altered via GA. Since 
the GA is a stochastic search method, it is difficult to certainly 
find termination criteria. A common practice is to terminate the 
GA after a preselected number of generations in spite of having 
reached optimal solution much earlier [3], [15].

5. Test problem and results

A. Test Problem
The GA was used to analyze a different problem with very good 

results so it was implemented on the problem of the Fyffe, Hines and 

Fig. 5. TOPSIS distances [16]

Fig. 6. Mutation Operator

�

�

�
�

�

�

�������������������������������������������	�������������������������������������������������������������������	�

��������������������
����������������������������������������������������������������������������������������������������������



Science and Technology

247Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol.14, No. 3, 2012

Lee problem [3], [8]. Five trials were performed for 1200 generation 
because the nature of GAs is stochastic, the final solution was found 
among the each and the best solution of five trials [3]. The results by 
the Multiobjective GA were used to compare its performance to exist-
ing GA. The size of the search space in this problem is greater than 
7.6 x 1033from (5) [13].

B. Results
The best solution is showed (where ( λr λw , λc ) = (0.8, 0.1, 0.1)) 

in Table 1 and it is compared with results of Coit and Smith [4] in 
Table 2 which only considered reliability as an objective.
The overall improvement (OIMP %) is calculated according 
to (17) :

OIMP
R R R W W

W C C C
sb sa sa r sa sb

sa w sa sb sa c
(%)

/ * /

* / *
=

−( ) + −( )
+ −( )

λ

λ λ













*100   (17)

6. Conclusion

GA has been demonstrated as a useful approach for solving 
Redundancy Apportionment Problem. In this paper we 
introduced MGA to provide a solution for systems that had 
to consider more than one objective, which since then it had 
not been reported that this problem was solved under this 
Multiobjective Genetic Algorithm formulation. Although 
the reliability of this result was not as proper as the previous 
formulation, the overall result showed a relative improve-
ment. This algorithm did not use a complex decision making 
technique or local search to improve solutions but it seems 
that considering these features provides opportunities to have 
better results and more effective and efficient MGA. 

Table 2. Coit and Smith results

No.
Cost

( saC )

Weight

( saW )

Reliability

( saR )
OIMP% No.

Cost

( saC )

Weight

( saW )

Reliability

( saR )
OIMP%

1 130 191 0.95675 0.95 15 123 174 0.97435 0.60

2 129 190 0.95603 0.90 19 122 173 0.97362 0.54

3 130 159 0.95556 0.94 20 120 172 0.97266 0.43

4 130 155 0.95503 0.93 21 121 171 0.97156 0.50

5 129 157 0.95429 0.59 22 120 170 0.97076 0.46

6 125 156 0.95362 0.53 23 120 169 0.96922 0.52

7 130 155 0.95311 0.93 24 119 165 0.96513 0.45

5 125 154 0.95239 0.52 25 115 167 0.96634 0.50

9 130 153 0.9519 0.92 26 116 166 0.96504 0.40

10 126 152 0.95102 0.71 27 117 165 0.96371 0.52

11 125 151 0.95006 0.55 25 115 164 0.96242 0.42

12 129 150 0.97942 0.90 29 114 163 0.96064 0.42

13 125 179 0.97906 0.64 30 114 162 0.95912 0.45

14 127 175 0.9751 0.75 31 113 161 0.95503 0.43

15 125 177 0.97715 0.65 32 114 160 0.95567 0.63

16 124 176 0.97642 0.62 33 110 159 0.95432 0.35

17 122 175 0.97552 0.51

Table 1. Best solution

Best Solution Vector
sbR sbW sbC

002-1-1-10-10-1232-1-1-10-11011-1-1-13-1-1-13-1-11-1110-10-100-1-1-1-112-11-1-10-10101-100-1-10-1-1-1-13-1  0.9572 150 94
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