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Possibilistic Reliability Analysis of Repairable System with Omitted 
or Delayed Failure Effects

Posybilistyczna analiza niezawodnościowa systemu naprawialnego 
z pominiętym lub opóźnionym efektem uszkodzenia

Within the practical problems in industrial engineering, the failure effect sometimes can be omitted or delayed if it has less ef-
fect on the system. In detail, the prominent features of the system can be described as follows: 1) if a repair time is sufficiently 
short (less than some threshold value) that does not affect the system operation, i.e. the pessimistic effect of system failure could 
be ignored. The system can be considered as operating during this repair time. It is called the system with repair time omission 
(failure effect omitted). 2) if a repair time is longer than the given threshold value and the failure effect is finally suffered. Then the 
system can be considered to remain operating from the initial stage of the repair till the end of the repair threshold. It is called the 
system with delayed failure effect. Based on the above two characteristics, model for the related repairable system is introduced 
in this paper. Two scenarios are discussed where the threshold value is regarded as a constant and non-negative random variable, 
respectively. Reliability indices such as instantaneous possibilistic availability are formulated for the system with failure effect 
omitted or delayed.

Keywords: failure effect omitted or delayed, Markov model, repair time omission, instantaneous possibilistic availability.

Przy rozwiązywaniu problemów praktycznych w inżynierii przemysłowej można czasami pominąć bądź opóźnić efekt uszkodzenia 
jeśli ma on niewielki wpływ na system. Ściślej, wiodące cechy systemu można opisać w następujący sposób: 1) jeżeli czas naprawy 
jest wystarczająco krótki (krótszy niż pewna wartość progowa), tak iż nie ma on wpływu na działanie systemu, to można pominąć 
negatywny efekt uszkodzenia systemu.  Przy takim czasie naprawy można uznać że system nie przerwał działania. Nazywa się go 
wtedy systemem z pominięciem czasu naprawy (pominięty efekt uszkodzenia). 2) Jeżeli czas naprawy jest dłuższy niż dana wartość 
progowa i efekt uszkodzenia staje się w końcu odczuwalny, to uznajemy, że system pozostawał aktywny od początkowego etapu 
naprawy aż do momentu, w którym został przekroczony próg czasu naprawy. Nazywa się go wtedy systemem z opóźnionym efektem 
uszkodzenia. W oparciu o powyższe dwie charakterystyki, wprowadzono w prezentowanej pracy model systemu naprawialnego. 
Omówiono dwa scenariusze, w których, odpowiednio, przyjęto, że wartość progowa jest wartością stałą lub nieujemną zmienną 
losową. Sformułowano wskaźniki niezawodnościowe, takie jak posybilistyczna gotowość chwilowa, dla systemu z pominiętym lub 
opóźnionym efektem uszkodzenia.

Słowa kluczowe: pominięty lub opóźniony efekt uszkodzenia, model Markowa, pominięcie czasu naprawy, posy-
bilistyczna gotowość chwilowa.
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Notation
t	 time scale

TS 	 system lifetime

TR 	 system repair time

TS i_ 	 system lifetime within i th period

TR i_ 	 system repair time within i th period

E	 state space of the original system 
W	 working state space of the original system
F	 failure state space of the original system
τ 	 threshold value

πT SS
t( ) 	 possibility distribution for variable TS

πT RR
t( ) 	 possibility distribution for variable TR

Π 	 possibility measure corresponding to possibility 
distribution π

π T T S RS R
t t, ,( ) ( ) 	 joint possibility distribution for variables TS  and 

TR

H ( )τ 	 probabilistic distribution for non-negative random 

variable τ

( )A tΠ 	 possibilistic availability of the original system at 
time t

( )A tΠ


	 possibilistic availability of the new system at time 
t

Zi 	 system lifetime plus repair time within ith period 

T TS i R i_ _+( )
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1. Introduction

Repairable system is defined as a system which, after failing to 
perform at least one of its required functions, can be returned to per-
forming all of its required functions satisfactorily by any method other 
than replacement of the entire system [1]. Reliability analysis of re-
pairable system is a momentous branch of system reliability theory, 
maintaining a high level of reliability is often an essential requisite for 
repairable systems [11]. Much research has been devoted to analyze 
system reliability of repairable system and various models have been 
proposed on repairable systems [12, 17-20].

Traditionally, the models for repairable system in the literature are 
involved with a basic assumption [12, 17-19]. The system instantane-
ously falls into the failure state when it is out of work. However, in 
some practical situations, for instance, if the demands on the system 
by ‘customers’ are not too frequent, they more likely miss a small 
repair time or are at most delayed by a negligibly short time in receiv-
ing service. Within such repairable system, the effect of system failure 
can be neglected if the repair time is sufficiently short (less than some 
given critical value) or delayed if the repair time exceeds the critical 
threshold. In other words, if the system is temporarily under repair 
and has no effect on system operating, the system can be regarded as 
being operating during such a repair interval (failure effect omitted). 
If the system is out of work and fails to back operating before the 
threshold repair time, it can be regarded remain operating during the 
period of repair until the repair time exceeds the critical value (failure 
effect delayed).

Recently, several related repairable systems have been studied. 
Zheng [20] first proposed this omitted failure model with single-unit 
repairable system in which repair time that is sufficiently short does 
not result in a system failure. Based on the introduction of the new 
model for repairable system, researchers [9, 10, 15, 21] analyzed 
system availability of series-system, parallel system, K-out-of-N: G 
system and so on. Furthermore, researchers [2, 22] established and 
analyzed the model for single-unit, and series repairable system in 
which failure effects could be neglected or delayed. 

Among the research for repairable system in which failure effects 
could be neglected or delayed, probability theory is the most com-
monly used theory to analyze system reliability indices. In fact, possi-
bility theory has been used increasingly to model epistemic uncertain-
ty in reliability engineering [3, 7, 8, 13, 16]. This type of uncertainty 
describes subjectivity or lack of information. It is defined as reducible 
uncertainty and subjective uncertainty, since it can be reduced with 
increased state-of-knowledge or collection of more data. It exists ex-
tensively within the research of reliability, such as poor understanding 
of initiating events, fault trees, and event trees [14]. The aim of this 
paper is to theoretically analyze the system possibilistic availability 
for repairable systems with omitted or delayed failure effects.

 In the next section, basic assumptions of the original model and 
the new model for single-unit repairable system are introduced, and 
the new model is distinguished from the original model. A compre-
hensive possibilistic reliability analysis of the new model is presented 
in Section 3. A numerical example is given to illustrate the results in 
the subsequent section. Finally, conclusion is given in Section 5.

2. Basic assumptions of the original model and new 
model for repairable system

In this section, original model and new model for single-unit re-
pairable system are introduced respectively, as well as the difference 
between them. Firstly, the assumptions of the original model are ad-
dressed before presenting the new model [4, 5]:

The system is composed of one component and one repair fa-1)	
cility. The system is new at the initial time (t=0), and when the 
component fails, the repair begins immediately. 

The system has two possible states: up (operating), and down 2)	
(failed). The repaired component is restored into “as good as 
new” condition.

Assume that the system lifetime 3)	 ST  follows deflection minor 

type possibility distributionπTS
u( ) , and the repair time RT  

follows deflection minor type possibility distributionπTR
u( ) . 

All the variables involved are mutually independent.
Suppose that state 0 represents the failed (down) state and state 

1 be the operating (up) state, the system state space is denoted as 

{ }0,1E = . The working state space is W ={ }1  while the failure state 

space is F ={ }0 . Let ( )X t denote the stochastic process of the sys-
tem state at time instant t, thus one has:

X t
t

( ) =
1

0

,    the system is in the operating state at time ;

,, .    
 

the system is in the failed state at time t









In fact, { }( ), 0X t t ≥  forms a homogeneous continuous time pro-
cess in state space E . For such single-unit system, the state of system 
is just the same with the state of unit. Based on the assumptions of 
original model, new model that presents a different way of system 
operation is addressed. The main difference between the original 
model (single-unit repairable system) and the new model (single-unit 
repairable system with failure effect omitted or delayed) is that, the 
new system may still be in the operating state while it turns out to be 
failed within the original system at the meantime. In details, given a 
threshold value τ τ ( )≥ 0 , if the involved repair time is shorter than 
τ  , the new system can be thought of being in the operating state dur-
ing the repair interval. If the repair time exceeds the threshold value 
τ , the new system is regarded to be still under the state of operating 

during the repair interval of 0,τ( )  and being in the failed state from 
the repair time τ  till the end of the repair. In other words, for the case 
that repair finishes before reach the threshold τ , the new system is 
considered to be under operating state during the repair interval while 
the original system being in failure state during the same period. Thus, 
the failure effect has been omitted. For the other case that repair can’t 
finish before the given threshold value τ , the new system is regarded 
as under the state of operating during the process of repair until the 
given threshold value τ  is exceeded. During the same period, the 
original system is under the failure state. Thus, the failure effect has 
been delayed for τ .

As for the same single-unit repairable system that is composed of 
one component and one repair facility, the new model is described as 
follows in contrast with the original model:

The system is new at the initial time (1)	 t=0), and failed unit will 
receive repair immediately after failure. All the random vari-
ables are mutually independent. 
The system has two possible states: up (operating), and down 2)	
(failed). The repaired component is restored into “as good as 
new” condition.

The system failure time 3)	 ST  and the system repair time RT  fol-

low deflection minor type possibility distributionπT SS
t( )  and 

πT RR
t( ) , respectively as in the original model.

The new system is operating if the original system is operat-4)	
ing.
If the original system fails and the repair time is less than the 5)	
threshold value τ , then the new system is still operating during 
the repair time.
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If the original system fails and it takes longer than 6)	 τ  to finish 
the repair, then the new system is considered to remain in the 
operating state during the repair interval of 0,τ( ) , and being in 
the failed state after this interval until the repair complete.
The threshold 7)	 value τ  can be either a constant or a non-nega-
tive random variable. τ  follows the distribution of H ( )τ  if it 
is considered as a non-negative random variable.

In particular, when τ = 0 , the new system becomes the original 
system. When τ = ∞ , the new system is never down. A possible se-
quence of system state changes of the original system and the new 
system is shown in Fig.1.

Let the stochastic process ( )X t  denoting the state of the new sys-
tem at any time instant t , and one has:

X t( ) =
1,    the new system is in the operating state at timee ;

the new system is in the failed state at time

t

t0, .    









 

It can be figured out that the Markov property is not held in the 
new system. In fact, given the present state of the new system, its fu-
ture is related to its past and is not independent. For instance, take the 

repair time point of τ τ τ1 1 <( )  as an example, the system state is 

failed for the original model and is operating for the new model. The 
future state for the new system is related to the repair time it has been 
processed. Thus, it is a stochastic process without Markov property or 
memorylessness.

3. Possibilistic availability analysis

In this section, the instantaneous possibilistic availability for the 

new system is discussed. Let ( )A tΠ  and ( )A tΠ
  denote the instan-

taneous possibilistic availability of the original system and the new 
system, respectively. 

	
( ) ( )

( ){ }
the original system is operating at time 

           = 1

A t t

X t
Π = Π

Π =
        (1)

	
( ) ( )

( ){ }
the new system is operating at time 

           = 1

A t t

X t
Π = Π

Π =





 	 (2)

In the first subsection, instantaneous possibilistic availability of 

the original system ( )A tΠ  is mathematically derived. Relationship 

between ( )A tΠ  and ( )A tΠ
  are stated in the second subsection, and 

the expression of ( )A tΠ


 as well.

3.1.	 Mathematical derivation for ( )A tΠ

As stated in Eq. (1), it is defined as the possibility that the original 
system is operating at time t. Taking account into the system proc-

ess progress depicted in Fig.2, 1 2, ,t t   are regenerative points, since 
the failed unit can be regarded “as good as new” after repair. Sup-

pose that _ _i S i R iZ T T= + , within which _S iT  and _R iT  denote the 
system lifetime and repair time within i th period respectively. Thus, 

{ },  1,2,iZ i = 
 is a sequence of variable with independent identi-

cal distribution. Towards the event of system operating at time t  ( 

( ) 1X t =  
), a restatement of the event can be addressed as follows:

(3)

( ){ } { } { } { }_1 1 1 _ 2 1 2 1 2 _ 3

_ 1
1 1

1

                    

S S S

i i
j j S i

j j

X t T t Z t Z T Z Z t Z Z T

Z t Z T +
= =

= = > < < + + < < + +

  < < + 
  
∑ ∑

  

 

Thus, the instantaneous possibilistic availability of the original 
system can be represented as the possibility of formulation on the 
right hand side of Eq. (3). As for the right hand side of Eq. (3), it can 
be rewritten as:

	
{ }_1 _ 1

1 11

i i
S j j S i

j ji
T t Z t Z T

∞

+
= ==

  > < < + 
  
∑ ∑



Additionally, based on the memoryless property of each point for 

{ },  1,2,iZ i =   
and Dubois and Prade’s idea [6] in defining the con-

ditional possibility of events ( ( ) ( ) ( )A B A B BΠ =Π ∗Π
), it can be 

inferred that, for min∗ = ,

(4)
( ) ( )

( ) ( ){ }

( )
( )

( )
( )

1 1 _ 2 _ 2 1 1

_ 2 1 1 1

_ 2 1 1 1
0, 0,

,0

                                  = min 0 , 0

                                  = min sup , sup

                       

S S

S

S
u t u t

Z t Z T T t Z Z t

T t Z Z t Z t

T t Z Z u Z u
∈ ∈

Π < < + = Π > − < <

Π > − < < Π < <

  Π > − = Π = 
  

( )
( )

( )
( )_ 2 1

0, 0,
           = min sup , supS

u t u t
T t u Z u

∈ ∈

  Π > − Π = 
  

Similarly,

Original system

time  t

operating

failed
1t 2t0

_1ST
_1RT _ 2ST _ 2RT _ 3ST

Fig.2. Process progress for the original system
t

Original system

New system

time  t

time  t

operating

failed

operating

failed

s s′

t

Fig.1. Difference between the original system and the new system

τ

τ
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(5)( ) ( )
( ) ( ){ }

( )
( )

1

1 2 1 2 _ 3 _ 3 1 2 1 2

_ 3 1 2 1 2 1 2

_ 3
,

,0

                                                 = min 0 , 0

                                                 = min sup

S S

S

S
u Z t

Z Z t Z Z T T t Z Z Z Z t

T t Z Z Z Z t Z Z t

T t u
∈

Π + < < + + = Π > − − < + <

Π > − − < + < Π < + <

Π > −
( )

( )
1

1 2
,

, sup
u Z t

Z Z u
∈

  Π + = 
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(6)

( )
1

1

1
_ 1 _ 1

1 1 1 1 1

_ 1

,

,

                                  

                                              = min sup , s
i

j
j

i i i i i
j j S i S i j j j

j j j j j

S i

u Z t

Z t Z T T t Z Z Z t

T t u
−

=

−

+ +
= = = = =

+
 
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 
 

   
   ∏ < < + =∏ > − < <
   
   

Π > −

∑
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1

1

1
,

up
i

j
j

i
j

j
u Z t

Z u
−

=

  =
 ∈
 
 

 
 

   Π =    
∑ 

 

∑

It can be deduced from possibility theory and the last formulation 
of Eqs. (4-6) that the sequence

( ) ( )1 1 _2 1 2 1 2 _ 3 _ 1
1 1

, , , ,
i i

S S j j S i
j j

Z t Z T Z Z t Z Z T Z t Z T +
= =

 
 Π < < + Π + < < + + ∏ < < +
 
 
∑ ∑

 is decreasing. For instance, as for the items involved within the last 
formulation of Eq. (5), boundary for variable u is narrower than that 
in Eq. (4).

Thus, we have,

	   

(7)( ){ }

{ }

( )

( ) ( )

( )

_1 _ 1
1 11

_1 _ 1
1 11

_1 1 1 _ 2

_1

( )= 1

         =

         =     

         =

         = min s

i i
S j j S i

j ji

i i
S j j S i

j ji

S S

S

A t X t

T t Z t Z T

T t Z t Z T

T t Z t Z T

T t

Π

∞

+
= ==

∞

+
= ==

Π =

    Π > < < +     
    Π > ∨Π < < +     

Π > ∨Π < < +

Π > ∨

∑ ∑

∑ ∑







( )
( ) ( )_ 2 1

0,
up ,S

u t
T t u Z u

∈

   Π > − Π =    

Therefore, given the possibility distribution of the variables, in-
stantaneous possibilistic availability for the original system can be 
derived. 

Likewise, the event of system under failure state at time t can be 

represented by specifying that 0 0Z = .

( ){ } { } { }

( )

1
_1 1 1 _ 2 1 2 _ 1

1 1

_ 1 1
0 00

0

                

i i
S S j S i j

j j

i i
j S j j

j ji

X t T t Z Z T t Z Z Z T t Z

Z T t Z

+

+
= =

∞

+ +
= ==

  = = ≤ ≤ + ≤ ≤ + + ≤ ≤ 
  

 
= + ≤ ≤ 

  

∑ ∑

∑ ∑

  



Respectively, possibility of the first three items within the first formu-
lation of Eq. (8) is restated as follows:

	 ( ) ( )_1 1 _1 1,S ST t Z T t Z tΠ ≤ ≤ = Π ≤ ≥   	 (9)

	
Π ΠZ T t Z Z T t Z Z t ZS S1 2 1 2 2 1 2 1+ ≤ ≤ +( ) = ≤ − ≥ −( )_ _ ,   (10)

(11)

1
_ 1 _ 1 1

1 1 1 1
,

i i i i
j S i j S i j i j

j j j j
Z T t Z T t Z Z t Z

+

+ + +
= = = =

   
   + ≤ ≤ = ≤ − ≥ −
   
   
∑ ∑ ∑ ∑∏ ∏

Since the sequence of variables { }_ ,  1,2,S iT i = 

 
and 

{ },  1,2,iZ i = 

 
are with independent identical distribution respec-

tively, we can deduce the decreasing trend for the sequence of 

( )_1 1ST t ZΠ ≤ ≤ , ( )1 _ 2 1 2 ,SZ T t Z ZΠ + ≤ ≤ +   from Eqs. (9-11). 

Thus, similarly to that inferred in Eq. (7), we have:

	

( ){ }

( )

( )
( )

_ 1 1
0 00

_ 1
1 10

_1 1

_1 1

 0

         =

         =          

         =

         = ,

i i
j S j j

j ji

i i
j j S i

j ji

S

S

X t

Z T t Z

Z t Z T

T t Z

T t Z t

∞

+ +
= ==

∞

+
= ==

Π =

    Π + ≤ ≤     
    Π ≤ ≤ +     

Π ≤ ≤

Π ≤ ≥

∑ ∑

∑ ∑





       (12)

Actually, there is a property for items ( ){ } 0X tΠ =  and 

( ){ } 1X tΠ = . Since the union of event ( ){ }0X t =  and event 

( ){ }1X t = comes to the universe, it can be inferred from the possibil-

ity theory that ( ){ } ( ){ } 0  1 1X t X tΠ = ∨ Π = = . Furthermore given 

a critical time t, either ( ){ } 0X tΠ =  or ( ){ } 1X tΠ = would be the 
value of 1. Simply speaking, if the system possibilistic availability at 
time t is not with the value of 1, then the possibility of system being 
failed at time t would be 1. On the contrary, if the system is not with 
full possibility to be failed at time t, the system possibilistic avail-
ability is 1 at time t.

3.2.	M athematical derivation for ( )A tΠ


Based on the assumption that the new system is operating if the 
original system is operating, instantaneous possibilistic availability 
for the new system can be expressed as

(13)

( ) ( )
( ){ }
( ) ( ) ( ) ( ){ }
( ) ( ) ( ){ }
( ) ( )( ) ( )( )
( ) ( )

the new system is operating at time 

          1

          1, 0 1, 1                 

          1, 0 1

          1, 0 1

          1,

A t t

X t

X t X t X t X t

X t X t X t

X t X t X t

X t X t

Π = Π

=Π =

   = Π = = ∨ = =   

 = Π = = ∨  =   

= Π = = ∨Π =

= Π =





 





( ) ( )0 A tΠ= ∨

Hence, in order to figure out the instantaneous possibil-
istic availability for the new system, we only need to analyze 

( ) ( )( )1, 0X t X tΠ = =  which representing the possibility that the 
new system is operating while original system is failed at time t. On 
the basis of the model assumptions, two cases under the circumstance 
of new system operating while original system failed are obtained: 1) 
the original system is under repair at time t, and this repair time is no 

(8)
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longer than τ ; and 2) the original system is under repair at time t and 
repair time is longer than τ . At the meantime, the repair have lasted 
no longer than τ  until time t. 

In the sequel, two scenarios in terms of threshold value are dis-
cussed: 1) τ  is a constant, and 2) τ  is a non-negative random vari-
able. 

A.	Constant critical repair time
Assuming that the threshold τ  is given as a nonnegative constant, 

it would be distinct to compare the magnitude of t and τ . Therefore, 

the formulation of ( ) ( )( )1, 0X t X tΠ = =

 
can be represented as fol-

lows:

If t ≤τ , then

( ) ( )( ) ( )( )1, 0 0X t X t X tΠ = = = Π =

If t >τ , considering the two cases under the circumstance of new 
system operating while original system failed which are depicted in 
Fig.3, then
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in which ( )10w t  denotes the membership function of transiting from 
State 1 to State 0 at time t. Therefore, system instantaneous possibil-
istic availability can be expressed as:
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B.	Random critical repair time
Suppose that the threshold is given as a random variable follow-

ing distribution function of H ( )τ , then
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The last equation holds because of dH P t H t H t
t

( ) ( ) ( )τ τ τ τ

∞

∫ = ≥( ) = − =1 . 

Similarly, system instantaneous possibilistic reliability can be ex-

pressed making use of ( ) ( ) ( )( ) ( )1, 0A t X t X t A tΠ Π= Π = = ∨  . In 

which, ( )A tΠ  can be figured out taking advantage of Eq. (7).  

4. Numerical example

In this section, a numerical example is shown to compare the in-
stantaneous possbilistic reliability between the original system and 
the new system. Based on the assumption that the repaired compo-
nent can be restored into “as good as new”, each sequence of vari-

ables { }_ ,  1,2,S iT i =  and { }_ ,  1,2,R iT i = 

 
are with independent 

identical distribution respectively. Generally, we use variable ST  as 

a denotation for each variable in the sequence of { }_ ,  1,2,S iT i =  , 

and simplify each variable within { }_ ,  1,2,R iT i =   as RT , respec-

tively. Similarly, the sequence of { },  1,2,iZ i =   
is simplified as Z  

in which S RZ T T= + .

Suppose that the system lifetime ST  follows deflection minor 

type possibility distribution πTS
u( )  

in which 1 100( )t day= , and the 

repair time RT  follows deflection minor type possibility distribution

πTR
u( )  in which 2 1( )t day= :
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Now we come to the possibility distribution for Z . According 

to the possibility theory and the independence between ST  and RT   

(π π πT T S R T S T RS R S R
t t t t, , min ,( ) ( ) = ( ) ( )( ) ), we have:
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For the expression of instantaneous possibilistic reliability for 

original system ( )A tΠ , refer to details in appendix. Here in this exam-

t

Original system

New system

time  t

time  t

operating

failed

operating

failed

N N ′

tt

s s′

Fig.3. The new system is operating while original system is failed

τ

τ τ

(15)
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ple, τ  is given the value of 2(day) and ( )10w t  is assumed to be a 
sub-function defined in Eq. (19) . As a matter of fact, according to Eq. 
(29) the system is with full possibility to be operating when 

1 2[0,2 ]t t t∈ + , which means it is not likely for the occurrence of sys-
tem state change from operating to failed. Conversely, it is more like-
ly for the system to become failed from operating state when 

1 2 (2 , )t t t∈ + ∞ . It is because the system possibilistic availability is 
decreasing.

	 ( )
1 2

1 210

0.15            
0.85        

[0,2 ]
(2 , )

1
    

                  

t t
t t
t

w t
t

t
∈ +
∈ + ∞
= ∞


= 



 	 (19)

According to the analysis in the previous section, instantaneous 
possibilistic reliability for new system can be figured out taking ad-
vantage of Eq. (14).
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From Fig. 4, it can be figured out that the instantaneous possibil-
istic availability for the new system is higher than that for the original 
system. It should be this situation due to the emergence of neglected 
or omitted failure in the new system. At the meantime, it is shown 

from Fig.4, ( ) 1A tΠ =  holds for the range of 1 2 2t t t≤ + . It seems 
surprisingly for such a consequence. In fact, the result indicates that 

for the range of 1 2 2t t t≤ + , system instantaneous availability is ca-
pable to be 1.

5. Conclusion

On the basis of some practical problems in system maintenanc-
es, a new single-unit repairable system is proposed in this paper. 
In such a new system, a short repair may lead to a system failure. 
Given a critical value, if the repair time is less than the value, the 
repair interval can be omitted, i.e., the failure effect is omitted. If 
the repair time is longer than the value, then the system is consid-
ered to remain in the operating state from the initial stage of the 
repair till the end of the repair threshold, i.e., the failure effect is 
delayed.

Considering the epistemic uncertainty which widely exists in 
practical engineering, system possibilistic availability is analyzed 
based on possibility theory. As for the difference between prob-
ability theory and possibility theory, one may be stunned by the 
result that the possibilistic availability is with a high value. Pos-
sibility denotes the capability for the system. Thus, it is with a 
higher value compared with probability.

We consider the very simple system ‘single-unit system’ in 
the paper. More complicated system will be discussed for the ap-
plication in practical engineering in the future. Furthermore, vari-
ous indices will be considered to offer more information for the 
system.

Appendix

Calculation for instantaneous possibilistic reliability of original 

system ( )A tΠ
In order to figure out the instantaneous possibilistic reliability 

of the original system which is presented in Eq. (7), four phases for 
time t are distinguished as follows:

If I	 t t∈[ , ]0 1 , it can be easily deduced from the last equation in 

Eq. (7) that ( ) ( )1 1S ST t T tΠ > =Π = = , thus, ( )=1A tΠ .

If II	 t t t t∈ +( , ]1 1 2 , thus it can be obtained from ( )0,u t∈ that 

( )1 20,u t t∈ + . Since that 1St t<  results in πT SS
t( ) =1 and 

2Rt t< leads to the consequence of πT RR
t( ) =1 , we have:  

In fact, as long as there is an opportunity for u and t satisfy that 
t u t− ≤ 1 , the possibilistic availability at time t ( t t t t∈ +( , ]1 1 2 ) is 1.

(20)

Fig. 4. The curves of the possibilitic availabilities for the new system 
and the original system
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If III	 1 2 1 2( ,2 ]t t t t t∈ + + ,

When 1)	 ( )1 20,tu t+∈ , it can be similarly inferred as Eq. (19) 

 The last equal mark holds for that the value range of time t is 

limited by the upper bound of 1 22t t+ . Or else, 

( )1 2 1ST t t tΠ > − − =  doesn’t hold.

When 2)	 )1 2,u t t t∈ + ,

If a)	 1 2,S Rt t t t≤ ≥ , then πT SS
t( ) =1  and πT RR

t( ) =1 . Ap-

parently, it holds for min ,π π πT S T R T RS R R
t t t( ) ( )( ) = ( ) .

If b)	 2 1,R St t t t≤ ≥ , it can be similarly derived as in Eq. (21).

If IV	 )1 2(2 ,t t t∈ + ∞ ,

When 1)	 ( )1 20,tu t+∈ , 

When 2)	 )1 2,u t t t∈ + ,

If a)	 1 2,S Rt t t t≤ ≥ ,

If b)	 2 1,R St t t t≤ ≥ ,

Thus, if 1 2[0,2 ]t t t∈ + , then ( )=1A tΠ . If )1 2(2 ,t t t∈ + ∞ , then

Additionally together with Eqs. (16, 17), it is able to go a step fur-
ther for the simplification of the expression ahead. Moreover, the last 

equation within the following formulation is deduced for that 1 2t t> .

Generally, instantaneous possibilistic reliability of original sys-
tem can be expressed as
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