
145Eksploatacja i Niezawodnosc - Maintenance and Reliability Vol.14, No. 2, 2012

Article citation info:

(*)	 Tekst artykułu w polskiej wersji językowej dostępny w elektronicznym wydaniu kwartalnika na stronie www.ein.org.pl

JEDLIŃSKI Ł. Multi-channel registered data denoising using wavelet transform. Eksploatacja i Niezawodnosc – Main-
tenance and Reliability 2012; 14 (2): 145–149.

Łukasz JEDLIŃSKI

Multi-channel registered data denoising 
using wavelet transform

Odszumianie danych rejestrowanych wielokanałowo 
z użyciem transformaty falkowej*

In order to obtain information regarding given phenomenon or object, it is usually necessary to register selected meas-
urement signals obtained using sensors. Unfortunately, obtained signals, apart form desired information, contain dis-
turbances caused by, amongst many other, properties of the measurement channel and processes associated with object 
operation. In many cases it is necessary to measure the same value in different places and/or directions. Thus, there is a 
demand for a tool improving signal to noise ration of the multi-channel registered signals.Wavelet transform is a relatively 
new method of data processing used in different fields (e.g. technique and physics). In case of signals it can be used for 
denoising, compression, trend detection or discontinuity detection. In this work it was used to denoise vibration signals 
registered by two three-axis sensors. Object of investigation was the bevel toothed gear. Signals denoising was to improve 
efficiency of the diagnosis of transmission gears teeth damage.
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W celu uzyskania informacji o interesującym nas zjawisku lub obiekcie najczęściej rejestrowane są wybrane sygnały 
pomiarowe otrzymane za pośrednictwem czujników. Niestety uzyskane sygnały oprócz pożądanej informacji zawierają 
również zakłócenia, które są spowodowane m.in. właściwościami toru pomiarowego i procesami towarzyszącymi działa-
niu obiektu. W wielu przypadkach zachodzi potrzeba pomiaru takiej samej wielkości w różnych miejscach obiektu i/lub 
kierunkach. Potrzebne są zatem narzędzia do poprawy stosunku sygnału do szumu sygnałów rejestrowanych wieloka-
nałowo.Transformata falkowa jest stosunkowo nową metodą przetwarzania danych, która znalazła zastosowanie w róż-
nych dziedzinach takich jak technika i fizyka. W odniesieniu do sygnałów może być używana do odszumiania, kompresji, 
wykrywaniu trendu czy nieciągłości sygnału. W pracy tej transformata falkowa została użyta od odszumiania sygnałów 
drgań zarejestrowanych z dwóch trójosiowych czujników. Obiektem badań była przekładnia zębata stożkowa. Odszumia-
nie sygnałów miało na celu poprawę skuteczności diagnozy uszkodzenia kół zębatych przekładni. 

Słowa kluczowe: odszumianie danych, transformata falkowa, sztuczne sieci neuronowe, przekładnia stożkowa.

1. Introduction

In the vibroacoustic diagnosis, like in other fields of sci-
ence, it is desired to improve achieved results [2]. In the recent 
years one can observe continuous development of the algo-
rithms of diagnostic computing and signal processing methods 
[3, 11, 16]. Measuring and computer equipment allow signal 
measurement with much higher accuracy and from many chan-
nels simultaneously.

In case of examining complex objects there is a necessity of 
registering many signals. At the beginning of the investigation 
more measurement points are selected to avoid losing impor-
tant information and obtain best measurement points. 

Obtained measurement signals always contain disturbanc-
es. In a simple signal model [1, 4, 10] it is assumed that signal 
contains valuable component (contain useful information) and 
random component (noise). There are many methods of extract-
ing useful information from the signal, e.g. by signal filtration, 
PCA main components analysis, signal averaging. Among these 
method it is worth to mention wavelet transform (WT) that has 

been found to be useful in signal denoising [14]. Generalisation 
of the denoising using WT for one signal is a procedure pro-
posed in [1] for many signals – it was used in this work.

2. Test stand

An investigated object is a bevel toothed gear. Its body was 
equipped with two three-axis vibration acceleration sensors 
marked with 1 and 2 in Fig. 1. X axis of the sensors is parallel 
to the direction of input shaft axis and Z axis is an axis of output 
shaft. The vibrations was registered for the gear in good condi-
tions and with damaged surface of teeth due to seizing. More 
precise description of the test stand can be found in [9].

3. Discrete wavelet transform (DWT)

In case of the Continuous Wavelet Transform (CWT) the 
wavelet coefficients are computed for each scale what gener-
ates large amount of data and requires long computations. Dis-
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crete Wavelet Transform is based on CWT and allows scale se-
lection. DWT can be defined as [17]:
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where:
S0 > 1, τ0 > 1,
ψ – basis wavelet,
x|k| – investigate signal,
j, k – positive integers.

For fast and efficient computations of DWT one can use 
an algorithm introduced by Mallat [12,15], known as multi-
resolution analysis (MRA). As a result of its operation we ob-
tain multi-resolution representation of the signal in a form of 
approximations and details. Complete theoretical basis of the 
MRA can be found in Mallat’s work [12] and the dependency 
describing it is expressed by formula [17]:
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where:
τ – shift coefficient,
S0 – scale coefficient,
dj – wavelet coefficient for j scale,
ф(t), ψ(t) – scaling and wavelet function.

Details and approximations are computed thanks to filtra-
tion with a two-channel set of filters (quadrature reflection fil-
ters [5,6]). In order to obtain signal decomposition into a few 
levels the filtration operation should be iterated (Fig. 2). Us-
ing low-pass filter we obtain approximation Aj (low frequency 

signal component) and using high-pass filter we obtain detail 
Dj (high frequency signal component)[7]. Fig. 2 shows sample 
signal registered with 10kHz frequency. Decomposition result-
ed in signal in 0 – 5kHz range at the first level of approxima-
tion A1 and detail D1 - range 5 – 10 kHz. If the original signal 
consisted of 100 samples then the filtration results in obtain-
ing a detail with length equal approx. 100 samples and an ap-
proximation with length equal approx. 100 samples. A sum of 
the resulting signals is approximately twice larger than original 
signal. To avoid this increment of number of samples decima-
tion is used (removing every second sample from the obtained 
signal). Then we can perform further decomposition. Usually, 
an approximation is analyzed in order to obtain next detail and 
approximation. Signal decomposition is performed for finished 
number of levels due to signal length or physical sense of ob-
tained details and approximations [18]. Usually, decomposition 
level does not exceed 8.  

Removing irrelevant information (noise) after wavelet de-
composition can be realized using a few methods. Next signal 
approximations contain signal component with lower and lower 
frequencies, thus the selection of proper approximation as a 
signal representation is then noise elimination method. Other 
possibility is simple modification of first detail (or details) by 
changing wavelet coefficients to zero. These methods of signal 
denoising are not very precise. More sophisticated denoising 
algorithms base on zeroing detail wavelet coefficients basing 
on a criterion calculated separately for each detail. Apart from 
selection of the proper threshold criterion (below which wave-
let coefficients are set to zero) it is also necessary to select a 
method of threshold realisation. Hard thresholding method re-
alizes denoising process by setting zero value for the elements 
which absolute value are below threshold value (other elements 
are not changed). A variation of this method is soft thresh-
olding, in which not zeroed elements are also changed what 

Fig. 1. View of the examined gear with marked position of the vibra-
tion sensors

 Fig. 2. Signal decomposition using multi-resolution analysis algorithm 
[17]
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Fig. 3. 3D plot of vibration signal

Fig. 4. Vibration signals for the damaged gear from first to sixth channel before and after denoising
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eliminates discontinuities in the location where the elements 
have values equal to threshold value [13]. Signal reconstruc-
tion is performed similarly to the decomposition. One should 
oversample details and approximations before synthesis in the 
filters (their selection is critical for complete reconstruction of 
the original signal).

3.1.	 Denoising procedure

Denoising procedure for the multi-dimensional data is a 
generalisation of single dimension data denoising. The consid-
erations are in accordance with Aminghafari et al. [1].

Let us assume the following p-dimensional signal model:
	 X(t) = f(t) + ε(t), t = 1,..., n 	 (3)

where: 
X(t), f(t), ε(t) are of 1x p dimension,
f(t) – signal to be denoising,
ε(t) – Gaussian noise with unknown covariance matrix E(ε(t)
T ε(t))=Σε. 

Every component X(t) has form for 1 ≤ i ≤ p:
	 Xi(t) = fi(t) + εi(t), t = 1,..., n		  (4)

where:
fi – belongs to certain functional space (most often L2 or Besov’s).

Covariance matrix Σε that is to be additionally defined, 
shows stochastic dependence between X(t) components and 
spatial correlation models.

Denoising procedure can be expressed using three steps [1] 
for the X matrix that has n x p dimensions and consists of p 
signals (columns of X matrix) in a way that n>>p:

For each column of X matrix perform a wavelet de-•	
composition of J-th degree. In this degree J+1 matrixes 
D1,...,DJ are obtained – they contain degree detail coef-
ficients from 1 to J of p signals and approximation co-
efficients AJ of p signals. The matrixes Dj and AJ have 
dimensions n2-j x p and n2-J x p;
Determine the estimator •	 Σε of the noise covariance ma-
trix and perform SVD (singular value decomposition) of 
the Σεmatrix using orthogonal V matrix where Σε = VAVT. 
Then change the basis using transformation matrix V 
(precisely calculating Dj V, 1 ≤ i ≤ p) and perform sin-
gle-dimensional filtering using threshold 
t ni i= ( )2λ log  for the i-th column of the matrix Dj V; 

Perform reconstruction of the denoised matrix   using •	
simplified details matrix and approximation through 
basis changed using VT matrix and reciprocal wavelet 
transform.

4. Test results

Vibration signals registered during tests were denoised us-
ing the procedure described above. Denoising was performed 
for the signals recorded for transmission in good condition and 
for damaged one (6 channels were registered). Figure 3 shows 
a graph of wavelet coefficients which illustrated the change of 
frequency vibration signal in time.

 Denoising results in time domain for the damaged gear are 
shown in Fig. 4. Basing on the graphs for the axes of sensors ac-
cording to the direction of output shaft axis one can notice that 
corresponding signals exhibit the highest level of noise. 

Signal decomposition level was equal three and for the ba-
sic wavelet the Coiflet 1 was chosen (Fig. 5)

For the same criterion of calculating thresholds for the 
signal details the denoising was realized using soft and hard 
thresholding. Then the features of signals were computed and 
eight of twenty of them were selected using an algorithm pre-
sented in [8]. Selected features:

• average value,
• RMS value,
• peak value,
• peak factor,
• backlash factor,
• standard deviation,
• energy ratio,
• FM0.
In order to compare the efficiency of signals denoising the 

same features were computed for the signals without process-
ing. Condition classification was performed using artificial 
neural network - multi layer perceptron (MLP).

Network classification results are given in the tables above. 
Classification efficiency for the unprocessed signal reached 
approx. 90% and for the denoised signal – approx 5% better. 
Differences between hard and soft thresholding were insignifi-
cant. 

Table 1.  Condition classification results for the unprocessed signal

Network 
name

Quality
(learning)

Quality
(testing)

Quality
(validation)

All trials

MLP 8-4-2 89,88 91,66 91,66 90,41

Fig. 5. Wavelet Coiflet 1

Table  2.  Condition classification results for the denoised signal 
 (soft thresholding)

Network 
name

Quality
(learning)

Quality
(testing)

Quality
(validation)

All trials

MLP 8-4-2 95,53 95,83 95,83 95,62

Table 3.  Condition classification results for the denoised signal  
(hard thresholding)

Network 
name

Quality
(learning)

Quality
(testing)

Quality
(validation)

All trials

MLP 8-9-2 97,02 94,44 94,44 96,24



Science and Technology

149Eksploatacja i Niezawodnosc - Maintenance and Reliability Vol.14, No. 2, 2012

5. Summary

The work presents a method of denoising vibration accel-
eration signals registered simultaneously for the same object. 
Comparison of the signals before and after denoising showed 
that for both sensors (in the same direction of vibration registra-
tion – along the axis of the input shaft) there were the highest 
amount of noise. 

Signal denoising was performed using two methods - soft 
and hard thresholding. Then the neural network was to recog-
nize gear’s condition. Both methods resulted in similar and sat-
isfying output. Classification quality achieved approx 96%. In 
order to verify efficiency of the method, similar procedure was 
performed for the original (unprocessed signal). Classification 
correctness was then smaller by approximately 5%.
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