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Condition-based Maintenance Optimisation without 
a Predetermined Strategy Structure 
for a Two-component Series System

Optymalizacja zależnego od stanu technicznego utrzymania 
urządzeń dla dwuskładnikowego systemu szeregowego nie 

wymagająca z góry ustalonej struktury strategii
Most existing research on maintenance optimisation for multi-component systems only considers the lifetime distribution 
of the components. When the condition-based maintenance (CBM) strategy is adopted for multi-component systems, the 
strategy structure becomes complex due to the large number of component states and their combinations. Consequently, 
some predetermined maintenance strategy structures are often assumed before the maintenance optimisation of a multi-
component system in a CBM context. Developing these predetermined strategy structure needs expert experience and the 
optimality of these strategies is often not proofed. This paper proposed a maintenance optimisation method that does not 
require any predetermined strategy structure for a two-component series system. The proposed method is developed based 
on the semi-Markov decision process (SMDP). A simulation study shows that the proposed method can identify the optimal 
maintenance strategy adaptively for different maintenance costs and parameters of degradation processes. The optimal 
maintenance strategy structure is also investigated in the simulation study, which provides reference for further research 
in maintenance optimisation of multi-component systems. 

Keywords: semi-Markov decision process, condition-based maintenance, multi-component system.

Większość badań nad optymalizacją utrzymania systemów wieloskładnikowych bierze pod uwagę jedynie rozkład czasu 
życia elementów składowych. Kiedy przyjmie się dla systemów wieloskładnikowych strategię utrzymania urządzeń zależną 
od ich bieżącego stanu technicznego (condition-based maintenance, CBM), struktura strategii staje się złożona w związku 
z dużą liczbą stanów składowych oraz ich kombinacji. W konsekwencji, często przyjmuje się pewne z góry ustalone struk-
tury strategii utrzymania przed optymalizacją utrzymania systemu wieloskładnikowego w kontekście CBM. Opracowanie 
takich z góry ustalonych struktur strategii wymaga jednak specjalistycznego doświadczenia, a i tak brak dowodów na 
optymalność tych strategii. W artykule zaproponowano metodę optymalizacji utrzymania szeregowego systemu dwuskład-
nikowego, która nie wymaga wcześniej ustalonej struktury strategii. Proponowaną metodę opracowano na podstawie 
semimarkowskiego procesu decyzyjnego (SMDP). Badanie symulacyjne pokazało, że za pomocą proponowanej metody 
można ustalać optymalną strategię utrzymania w sposób adaptacyjny dla różnych kosztów utrzymania oraz parametrów 
procesów degradacyjnych. Za pomocą symulacji badano także optymalną strukturę strategii utrzymania, jako punkt od-
niesienia dla przyszłych studiów nad optymalizacją systemów wieloskładnikowych.

Słowa kluczowe: semimarkowski proces decyzyjny, condition-based maintenance, system wieloskładnikowy.
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1. Introduction

Most practical engineering assets are multi-component sys-
tems, i.e., they have more than one component. During opti-
mising the maintenance of these multi-component systems, one 
needs to consider three interactions among components: eco-
nomic dependence, stochastic dependence, and structural de-
pendence. Economic dependence means that the cost of group-
ing maintenance can be different from the sum of individual 
maintenance costs. Stochastic dependence implies that degra-

dation processes of different components influent each other. 
Structural dependence means that a certain group of compo-
nents are connected together and should be replaced together. 
The three interactions make the maintenance strategy optimi-
sation of a multi-component system much more complex than 
that of a mono-component system.

Various approaches have been developed to optimise the 
maintenance strategy of multi-component systems [9]. How-
ever, most of these approaches were based on the lifetime dis-
tribution of system components [5, 10-12]. Only few papers 



Science and Technology

121Eksploatacja i Niezawodnosc - Maintenance and Reliability Vol.14, No. 2, 2012

discussed the maintenance optimisation for multi-component 
systems in the context of CBM. Van Der Duyn Schouten pro-
posed two types of maintenance strategies for multi-component 
systems [15]. In that paper, an essential condition of a whole 
system replacement was that the number of components in the 
doubtful state exceeded a threshold. Gürler further optimised 
the threshold of the doubtful state based on the research of Van 
Der Duyn Schouten [3]. Castanier developed a more flexible 
maintenance strategy; the state dependent inspection interval 
was adopted in the research [1]. Based on the research by Cast-
anier, Naini considered both preventive replacement and imper-
fect preventive maintenance to optimise the maintenance strate-
gy of a two-component system [8]. In that paper, the inspection 
interval was simplified as state independent. These existing ap-
proaches to optimising the CBM strategy of multi-component 
systems largely predetermined maintenance strategy structures. 
The optimality of these predetermined structures have not been 
proofed or discussed. Furthermore, identifying an appropriate 
predetermined maintenance strategy structure also requires ex-
pert knowledge and experience that is not always available in 
reality. Therefore, a maintenance optimisation method that does 
not require a predetermined strategy structure is more applica-
ble in reality and can be more cost-effective.

This paper proposes a maintenance optimisation approach 
for multi-component systems without a predetermined strategy 
structure using the semi-Markov decision process (SMDP). 
When maintenance strategy optimisation is carried out based 
on the Markov decision process (MDP) or the SMDP, the op-
timal maintenance structure can be identified simultaneously 
with the optimal strategy. Therefore, the MDP and the SMDP 
are widely used in the maintenance strategy optimisation and 
the optimal strategy structure investigation of mono-component 
systems [2, 7, 14, 18]. However, the application of SMDP to 
multi-component systems is still inadequate. A critical reason is 
that the health state of a multi-component system is difficult to 
be expressed, which makes the construction of the relative cost 
functions for SMDP become challenging. This paper divides 
the degradation process of a multi-component system into three 
stages, i.e., normal, partially failed, and completely failed. A 
SMDP is then developed for the maintenance optimisation of 
a two-component system. In addition, the optimal maintenance 
strategy structure of the two-component system under various 
situations is also investigated.

The body of this paper is organised as follows: Section 2 
introduces the formulations of the degradation process of a 
two-component system and the costs of related maintenance 
activities. After that, a SMDP for the two-component system 
is developed in Section 3. The performance of the proposed 
maintenance optimisation method is investigated by simulation 
studies in Section 4. Section 4 also investigates the structure 
property of the optimal maintenance strategy for the two-com-
ponent system.

2. Description of the System

2.1.	 The Degradation Model

A two-component system is investigated in this paper. The 
degradation processes of both components are assumed to fol-
low the stationary Gamma process that are formulated as

	  . λ λ ξu u
u ut t t Ga a t u+( ) − ( ) ⋅( ) =∆ ∆~ , ,1 2 	 (1)

Here, λu t( )  denotes a degradation indicator of Component 
u  at time t , and Ga a tu u⋅( )∆ ,ξ  presents the Gamma distri-
bution with the shape parameter a tu ⋅ ∆  and the scale param-
eter ξu . When the process λu t( )  exceeds a failure threshold 
Lu , Component u  fails. Component u  is in a perfect health 
state when λu t( ) = 0 . The Gamma process is monotonically 
increasing, which is consisted with the irreversible degrada-
tion process of most engineering assets. Therefore, the Gamma 
process is widely used in degradation modelling [16, 17]. The 
degradation processes of the two components are assumed to be 
independent from each other, i.e. the stochastic dependence is 
not considered in this paper.

The two components are assumed to be connected in series, 
and the whole system suffers from a failure when one of the two 
components is failed. The failure of the system cannot be de-
tected immediately. However, operating the system in a failure 
condition will cause an additional cost, and the normal compo-
nent still degrades even if the system is operating in a failure 
condition. A practical example of this scenario is a production 
line that consists of two machines, and each machine produces 
a certain part of a product. If one machine fails to produce qual-
ified parts, the final product cannot meet the specifications and 
the production line is considered as failed. However, the failure 
of the production line may be not detected until an inspection is 
conducted on the two machines or final products.

2.2.	 Maintenance Related Costs and Durations

In this paper, three types of maintenance activities are con-
sidered, i.e., inspection, preventive replacement, and corrective 
replacement. The inspection is assumed to be able to completely 
reveal the state of the two components. Each inspection entails 
a cost Ci . Inspections are scheduled according to the health 
state of the two components to avoid unnecessary inspections. 
A preventive replacement action for Component u  is con-
ducted at a cost Cpu , while the cost of corrective replacement 
for Component u  is Ccu . The preventive replacement cost is 
lower than the corrective replacement cost, i.e., C Cpu cu< . In 
this paper, both the preventive and corrective replacement can 
bring a component to an “as good as new” state ( λu t( ) = 0 ). 
Any preventive replacement or corrective replacement activity 
brings about a system set-up cost Cs . The set-up cost is caused 
by the dismantling and the reassembly of the system, or pro-
duction losses during the system maintenance. The set-up cost 
is incurred only once for a group of replacement actions per-
formed simultaneously. For example, correctively replacing the 
whole system costs C C Cs c c+ +1 2 . Subsequently, economic 
dependence exists between the two components if Cs > 0  . Be-
sides the cost of maintenance activities, running the system in a 
failure state will cause an additional cost cd  per unit time. The 
cost rate cd  is assumed to be significant and therefore leaving 
the system failure after an inspection is not optimal. 

In this paper, the expected cost incurred by failure and 
maintenance activities per unit time is adopted as the criterion 
of maintenance optimisation. The durations of replacement and 
inspections can be ignored compared to the life time of compo-
nents. Resources to carrying out inspections and replacement 
activities are assumed to be always adequate. The minimum 
reliability and availability constrains are not considered in this 
research as well.



Science and Technology

122 Eksploatacja i Niezawodnosc - Maintenance and Reliability Vol.14, No. 2, 2012

3. The Semi-Markov Decision Process Approach

3.1.	 The Representation of System States and Transi-
tions

Different from a mono-component system, the failure of 
the two-component system can be caused by the failure of one 
component or the failures of both the two components. The op-
timal maintenance action and relative costs in the SMDP under 
the two situations may be different. Consequently, the states 
of the two-component system are divided into three types, i.e., 
normal, partially failed, and completely failed. The normal 
system state implies that both the two components are running 
in a normal state. The partially failed system state means that 
one component is failed, while the other component is still in 
a normal state. In the completely failed situation, both the two 
components are in a failure state. 

To apply the SMDP, the continuous degradation process 
of Component u  is discretised into Mu  different states. The 
state of Component u  at time epoch t  is then represented by 
x M ut

u
u= =1 2 1 2, , , , , where the state xt

u =1  denotes the 
“as good as new” state and the state x Mt

u
u=  stands for the 

failure state. By combining component states, the system state 
at time is given by:
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Equation (2) divides the system states into four subsets: 
when x M x Mt t

1
1

2
2< <, , the system is in a normal state; when 

x M x Mt t
1

1
2

2= <,  , the system is partially failed, and the failed 
component is Component one; when x M x Mt t

1
1

2
2< =, , the 

system is failed, and the failed component is Component two; 
when x M x Mt t

1
1

2
2= =, , the system is completely failed. To fa-

cilitate the formulation of the SMDP, the state of an individual 
component given the system state is presented as:

	  x g x ut
u

u t= ( ) =1 2, 	 (3)

After discretisation, the degradation process xt
u  becomes a 

continuous time discrete state Markov Chain, and the transition 
matrix during an interval ∆t  can be approximated as:

Pu ∆ ∆ ∆t p t LL t t UL t LL UL
ij i j

u
j

u u
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u u i
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( )( ) = ( ) = ≤ +( ) ≤ ( ) = +
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






  ,	

where, ULi
u  and LLi

u  denote the upper limit and the lower limit 
of the i  th state of Component u , respectively. The degrada-
tion indicator before discretisation, i.e., λu t( ) , follows the 
Gamma process as in Equation (1). Consequently, Equation (4) 
can be calculated according to the property of the Gamma proc-
ess. Because the two components degrade independently, the 
transition matrix for the system is obtained as:

	  P ∆ ∆ ∆t p t p tij g i g j g i g j( )( ) = ( ) ⋅ ( )( ) ( ) ( ) ( )1 1 2 2
1 2

, , 	 (5)

Similarly, the reliability of the system after ∆t  given that 
the current system state is i  can be calculated as: 

	  R t i t t L t LL ULu u u i
u

i
u

u
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2
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which can be calculated according to the property of the Gam-
ma process [16]. The expected survival time of the system start-
ing at state i during a time interval ∆t  can be then derived as: 

	  τ ∆
∆t i R s i dst( ) = ( )∫0 	 (7)

3.2.	 The Relative Cost Functions

The relative cost function that formulates the relative cost 
of a single step in the long-run decision process is a crucial 
part of constructing and solving the SMDP [6]. In this paper, 
the relative cost function is a function of the current system 
state xt  . When the system is in a normal state, i.e., x Mt

1
1<  

and x Mt
2

2< , four alternative maintenance activities are avail-
able. One is performing an inspection after a certain period of 
time. The waiting duration till the next inspection depends on 
the current state of the two system components. The others are 
preventively replacing Component one, preventively replacing 
Component two, and conducting a complete system replace-
ment. The relative cost function for a normal system state can 
be then written as:

 
V x V x n V x V x V n Nt IN t I ID PR t PR t PRAll I( ) = ( ) ( ) ( ) =min , , , , ; , , ,∆ 1 2 1 2 II{ }

Here, V x nIN t I ID, ∆( ) denotes the relative cost of perform-
ing an inspection after a period nI ID∆  when the current system 
sate is xt, and NI ID∆  is the maximum waiting time for the next 
inspection. The notation ∆ID  can be regarded as the minimum 
time unit of inspection intervals considered in a maintenance 
strategy. Theoretically, reducing ∆ID  can enhance the accu-
racy of the optimal strategy. However, in reality, the value of 
∆ID  should be selected based on the application. An unpracti-
cal short ∆ID  is not beneficial and makes the strategy difficult 
to implement. For example, when the maintenance strategy of 
the engine in a locomotive is investigated, ∆ID  can be a week 
instead of an hour. The function V x uPRu t( ) =1 2,  is the rela-
tive cost when only Component u  is preventively replaced. 
The variable VPRAll  is the relative cost of a complete preven-
tive system replacement. 

When the system is partially failed ( x M x Mt
u

u t
i u

i= <≠, ), 
there are also two optional strategies. One is replacing the failed 
component only, and the other is a complete system replace-
ment. The corresponding relative cost function is given by:

 V x V x V C C ut PRu t PRAll pu cu( ) = ( ){ } − + =min , ,1 2 	 (9)

Because a corrective replacement is performed to Com-
ponent u , the difference between the costs of a corrective re-

(4)

(8)
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placement activity and a preventive replacement activity should 
be added to Equation (9). 

When the system is failed completely ( x M x Mt t
1

1
2

2= =,  ), 
the only possible maintenance activity is complete corrective 
system replacement, and the relative cost function is as fol-
lows:

 	 V x C C C Vt s c c( ) = + + + ( )1 2 1 	 (10)

Here, V 1( )  denotes the relative cost function starting at the 
“as good as new” system state, i.e., xt

1 1=  , xt
2 1=  .

In Equation (8), the relative cost of conducting an inspec-
tion after a given time interval ∆t  starting at system state 
x it =  is calculated as:

 

V x i t C V j p t t c t t iIN t i i j
j i

M M

d=( ) = + ( ) ( ) − ⋅ + ⋅ − ( )( )
=
∑, ,∆ ∆ ∆ ∆ ∆
1 2

γ τ

,	
where, γ  is the expected cost incurred by failure and main-

tenance activities per unit time and p ti j, ∆( )  is an element in 
the system transition matrix during the time interval ∆t . The 
relative cost of preventively replacing Component one and two 
given that the current system state xt  is i  are given by:

	  V x i C C V g iPR t s p1 1 2=( ) = + + ( )( ) 	 (12)

and

 V x i C C V g i MPR t s p2 2 1 21 1 1=( ) = + + ( ) −( ) ⋅ −( ) +( )   (13)

respectively. The relative cost for a complete system preventive 
replacement which is state independent can be calculated as:

 V C C C VPRAll s p p= + + + ( )1 2 1 .	 (14)

3.3.	 The Policy Iteration

After the relative cost functions are constructed, the policy 
iteration is used to find the optimal maintenance policy that 
minimises the expected cost per unit time. A policy is denoted 
as δ A B( ) =  , where A M M= ⋅1 2 1 2, , ,  is a certain discre-
tised system state derived by Equation (2) and B  is the cor-
responding maintenance action. For a normal system state, the 
maintenance action can be chosen from: 

 B IN n PR PR PR n NI ID all I I∈ ( ) ={ }, , , , ; , , ,∆ 1 2 1 2 .

 The first candidate maintenance activity IN nI ID, ∆( )  im-
plies performing an inspection after a duration nI ID∆ . The oth-
er optional maintenance actions PR1  , PR2  , and PRall  denote 
preventively replacing Component one, preventively replacing 
Component two, and complete system preventive replacement, 
respectively. When only Component u  is failed, the mainte-
nance action space becomes B CR CR PRu u i u∈ +{ }≠, . Here, 
the maintenance action CRu  denotes correctively replacing 
Component u  , while the CR PRu i u+ ≠  represents correctively 
replacing Component u  and preventively replacing the other 
component at the same time. For complete failure, the determi-
nate maintenance action is complete system corrective replace-
ment, i.e., CR CR1 2+  . 

The general process of the policy iteration is as shown in 
Table 1. For a more detailed introduction of the policy iteration, 
readers can refer to [7, 13].

Step 1:

Set an initial policy function 
 
The initial policy function is selected by the rule of thumb, and any policy satisfies the conditions discussed at the beginning of 

Section 3.3 can be adopted as the initial policy.

Step 2:

Calculate the relative costs V A A M M( ) = −{ }; , , ,2 3 11 2  and the expected cost per unit time γ by solving the following system 
of linear equations that is constructed according to the current maintenance policy δk ⋅( )  :

Table 1: The process of policy iteration

(11)
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where the formulations of , V APR1 ( )  , V APR2 ( )  and  are given by Equations (11), (12), (13), and (14) respectively, and  is the 

indicator function given by: 

	  I x
x B
x BB ( ) =
≠
=
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

0
1

,
,

	 (15) 

The relative cost functions when the system is brand new and completely failed are determinate, i.e.,  and V M M C C Cs c c1 2 1 2( ) = + +  .

Step 3:

Calculate the relative costs under different maintenance actions: 
V A nIN I ID, ∆( ) , A M M= −( ) −( )2 3 1 11 2, , , , n NI I=1 2, , , ,

V APR1 ( ) , A M M= −2 3 11 2, , ,  
and
V APR2 ( ) , A M M= −2 3 11 2, , ,  
given by Equations (11), (12), and (13) using the values of V A A M M( ) = −{ }; , , ,2 3 11 2

 and γ obtained in Step 2.

Step 4:

Obtain the improved policy function δk+ ⋅( )1  using the relative costs calculated in Step 3. The δk+ ⋅( )1  is identified piecewisely as:

When the system is in a normal state, i.e., 1 1 11 2≤ ≤ −( ) −( )A M M  , the policy function is: 
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When only Component One is failed, i.e. M M A M M1 2 1 21 1 1−( ) −( ) < ≤ −( ) , the policy function is:
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When only Component Two is failed, i.e. M M A M M1 2 1 21−( ) < < , the policy function is:
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.
When both the two components are failed, i.e. A M M= 1 2 , the whole system should be replaced, and the policy function is there-

fore predetermined as δk A CR CR+ ( ) = +1 1 2 .

Step 5:

If δ δk k+ ⋅( ) = ⋅( )1 , the optimal maintenance policy δ * ⋅( )  is obtained as δk ⋅( ) . Otherwise, go to Step 2 and start a new iteration.
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The most time-consuming part of the policy iteration al-
gorithm in Table 1 is Step 2 that entails solving a system of 
linear equations with M M1 2 1−  variables. When the numbers 
of discretised states (i.e. M1  and M2  ) are large, some iterative 
methods (e.g. the Jacobi method and the Gauss–Seidel method) 
are required to solve the system of linear equations. Fortu-
nately, according to the stimulation study in Section 4.2, the 
policy iteration can obtain a satisfactory approximate optimal 
maintenance strategy when the resolution of component state 
discretisation is moderate. Consequently, the system of linear 
equations in Step 2 is simply solved based on the LU decom-
position. Another potential factor relates to the efficiency of the 
policy iteration is the number of possible inspection intervals 
NI . A large NI  can reduce the efficiency of Step 3 and Step 4 

in Table1. However, the value of  does not change the number 
of variables in the system of linear equations in Step 2 which 
is the bottle-neck of the whole algorithm. Consequently, the 
number of optional inspection intervals does not increase the 
computing time of the policy iteration significantly.

4. The Simulation Study of the Proposed Appro-
ach

4.1.	 Investigation of the Optimal Maintenance Strate-
gy Structures

Markov decision process (MDP) has been adopted to ex-
plore the maintenance strategy structure property of mono-com-
ponent systems and multi-component systems based on lifetime 
distribution (i.e. two-state assumption) [4, 6]. However, these 
strategy structure properties cannot be simply extended to the 
CBM of multi-component systems. The structure of the CBM 
strategy of multi-component systems is much more complex 
due to the large number of component states and their com-
binations. To address this research gap, this study investigates 
structure properties of the CBM strategy of a continuous-state 
two-component system. The results can provide guidelines for 
approximate maintenance optimisation algorithms of multi-
component systems in a CBM context. In addition, investigat-
ing the strategy structure can also validate the effectiveness of 
the proposed SMDP approach. 

Maintenance Strategy Structures for Different Set-up 
Costs

The set-up cost is an important element in the maintenance 
optimisation of multi-component systems. When the set-up 
cost covers a considerable proportion of the maintenance cost, 
significant economic dependence among components exists, 
and the group maintenance should be adopted. Subsequently, 
the influence of different set-up costs on maintenance strategy 
structures were studied first. In this part of simulation study, 
parameters of system degradation processes and maintenance 
costs were selected without particular physical meaning, and 
were for illustrative purpose only. The parameters of the sys-
tem degradation processes were set as follows: a a1 2 1= =   , 
ξ ξ1 2 1 3= = , and L L1 2 2= = . The inspection cost and the 
failure cost per unit time were assumed as Ci =1 and cd =10  . 
The shortest inspection interval was ∆ID =0.2, and the corre-
sponding NI  was selected as 15. As discussed in Section 3.2, 
the selection of ∆ID  is application-dependent in reality, and 

an unpractical short ∆ID  is not preferred. The value of NI  
is initially selected by the rule of thumb, and may be modified 
according to the maintenance optimisation results. When the 
longest inspection interval in the obtained optimal strategy is 
equal to NI ID⋅ ∆ , a larger NI  should be used so that the poli-
cy iteration can access a potential optimal policy with a longer 
inspection interval.

First of all, a small set-up cost ( Cs =1 ) was considered, 
and costs for preventive and corrective replacement were se-
lected as: C Cp p1 2 39= =  and C Cc c1 2 99= = , respectively. 
After the policy iteration, a minimum average cost per unit time  
γ =19 4894.  was derived. The result of the policy iteration is 
presented as the matrix in Figure 1. Each colour standards for 
a particular type of maintenance action; the numbers in white 
rectangles are the waiting durations till the next inspection. Be-
cause the degradation processes and the maintenance costs of 
the two components are the same, the policy matrix is sym-
metrical about the diagonal line. Figure 1 also shows that the 
optimal maintenance action for a component is not monotonic 
in State 9. Preventive replacement for the component in State 
9 is required, when the state of the other component is below 
state 6. On the other hand, a further inspection is optimal when 
the other component is in State 7 and State 8. A complete sys-
tem replacement is required when both the components are in 
or above state 9. This unexpected optimal maintenance struc-
ture is caused by the economic dependence: When the other 
component degrades to a state near the preventive replacement 
threshold, a more economical way is leaving the component 
in State 9 along and performing complete system replacement 
later. To demonstrate the effects of this non-monotonic struc-
ture, a monotonic strategy in Figure 2 was also adopted, and 
the average cost per unit time was γ =19 5157. . Therefore, the 
non-monotonic strategy in Figure 1 was more cost-effective.

Then a significant set-up cost ( Cs = 20 ) was adopted. 
To maintain the replacement costs for an individual com-
ponent (i.e., C Cs pu+  and C Cs cu+ ) unchanged, the costs 
for preventive and corrective replacement were selected as 
C Cp p1 2 20= =  and C Cc c1 2 80= = , respectively. After the 
policy iteration, the minimum average cost per unit time was 

calculated as γ =17 3396.  and the optimal strategy is presented 
in Figure 3. Finally a more significant set-up cost ( Cs = 30 ) 
was used, and the costs for replacement were C Cp p1 2 10= =  
and C Cc c1 2 70= = . Using the policy iteration, the minimum 
average cost per unit time was obtained as γ =15 4537.  and the 
optimal maintenance strategy is shown in Figure 4.

Some conclusions can be drawn from the maintenance op-
timisation results for the three different set-up costs. Firstly, 
the cost reduction by introducing opportunistic maintenance is 
more significant when the set-up cost covers a larger proportion 
of the total replacement cost. Secondly, the non-monotonic part 
of the strategy and the threshold for opportunistic replacement 
is near the “as good as new” state for a large set-up cost. Finally, 
besides opportunistic replacement, complete system replace-
ment is required when the two components are both near but 
still below the preventive replacement thresholds. More cost-
effective maintenance strategy structures are expected after the 
non-monotonic properties that are derived by this simulation 
study are described appropriately.
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Fig. 1. The optimal maintenance strategy when a a1 2 1= =  , 
ξ ξ1 2 1 3= = , Cs =1 , C Cp p1 2 39= = , and 
C Cc c1 2 99= =

Fig. 2. The monotonic maintenance strategy when a a1 2 1= =  , 
ξ ξ1 2 1 3= = , Cs =1 , C Cp p1 2 39= = , and 
C Cc c1 2 99= =

Fig. 3. The optimal maintenance strategy when a a1 2 1= =  , 
ξ ξ1 2 1 3= = , Cs = 20 , C Cp p1 2 20= = , and 
C Cc c1 2 80= =

Fig. 4. The optimal maintenance strategy when a a1 2 1= =  , 
ξ ξ1 2 1 3= = , Cs = 30 , C Cp p1 2 10= = , and 
C Cc c1 2 70= =
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Maintenance Strategy Structures for Different Degrada-
tion Process Parameters

Different from the methods developed in [3, 15], the ap-
proach proposed in this paper can process a system whose 
components follow different degradation processes. This part 
of simulation study explores the influence of process param-
eters on maintenance strategy structures. The parameters for the 
degradation processes of the two components were a a1 2 1= =  
and ξ1 0 5= . , ξ2 1 6= . A larger scale parameter ξu u =1 2,  
indicates a faster degradation process. Therefore, Component 
one degrades more quickly. Two sets of maintenance costs 
were used: Cs = 20 , C Cp p1 2 30= = , C Cc c1 2 80= =  and 
Cs = 47 , C Cp p1 2 3= = , C Cc c1 2 53= = . The minimum aver-
age cost per unit time for the two situations were γ = 21 4651.  
and γ =18 5801. , respectively. The corresponding maintenance 
strategies are showed in Figure 5 and Figure 6.

Figure 5 and Figure 6 show that lower preventive and op-
portunistic thresholds are set for Component one due to the 
faster degradation process of that component. Consequently, the 
strategy structures become unsymmetrical about the diagonal 
line. The difference between Figure 5 and Figure 6 shows that 
the proposed SMDP can adaptively identify the maintenance 
strategy structure according to different maintenance costs and 
degradation process parameters.

4.2.	 Influence of the Number of Discretised Intervals

The system state space is discretised to perform the SMDP, 
which can introduce errors into the estimate of average cost per 
unit time. The discretised system state space also leads thresh-
olds for preventive and corrective replacement to be less ac-
curate. Increasing the number of states can reduce the errors 
that are brought in by discretisation. However, the consumed 
memory and elapsed time increase quickly with the resolution 

of the system state space. Therefore, it is necessary to find a 
balance between the accuracy of a maintenance strategy and the 
length of computing time.

In this part of simulation study, different numbers of discre-
tised component states were trailed to investigate the relation-
ship between the effectiveness of the maintenance strategy and 
the elapsed time of the policy iteration. The effectiveness of the 
maintenance strategy was evaluated through the average cost 
per unit time of a simulated degradation process. The param-
eters of the degradation processes were selected as  and  ; the 
costs of maintenance actions were a a1 2 1= = , ξ ξ1 2 1 3= =  , 
and Cs = 30 . To explore the effects of the resolution of the 
component states, four different numbers of discretised compo-
nent states were adopted, i.e., M M1 2 7= = , M M1 2 12= =  , 
M M1 2 22= = , and M M1 2 32= = . For the three different 
resolutions, the policy iteration was carried out and elapsed 
durations were recorded. The derived maintenance strategies 
were applied to a simulated degradation process of 106 unit 
time length. The simulated average costs per unit time were 
calculated to compare with the approximated results derived by 
the policy iteration. The results are demonstrated in Figure 7.

Figure 7 shows that the approximated average costs are low-
er than the simulated average costs, and the difference between 
the two costs reduces with the growth of the number of discre-
tised states. The increase of the approximated average costs is 
caused by the reduction of errors in the policy iteration, and 
the decrease of the simulated average cost is due to more accu-
rate thresholds in maintenance strategies. Figure 7 also shows 
that when  , adopting a finer resolution of component states 
cannot save the simulated average cost significantly, while the 
elapsed time is considerably longer. The simulated average cost 
per unit time when M M1 2 22= =  and M M1 2 32= =  were 
15.6524 and 15.6398, respectively. The corresponding elapsed 

Fig. 5. The optimal maintenance strategy when a a1 2 1= =  , 
ξ1 0 5= . , ξ2 1 6= , Cs = 20 , C Cp p1 2 30= = , and 
C Cc c1 2 80= =

Fig. 6. The optimal maintenance strategy when a a1 2 1= =
, ξ1 0 5= . , ξ2 1 6= , Cs = 47 , C Cp p1 2 3= = , and 
C Cc c1 2 53= =
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durations were 106.8 seconds and 597.3 seconds. This small 
variance between the two simulated average costs shows that 
the proposed approach is able to identify an approximate global 
optimal strategy for a continuous state two-component system 
without a predetermined strategy structure.

5. Conclusions

This paper has developed a SMDP approach to optimise the 
maintenance strategy of a multi-component system without a 
predetermined strategy structure. The state of the multi-compo-

Fig. 7. The simulated and approximated average cost per unit time and 
the elapsed time

nent system has been divided into three different types: normal, 
partially failed, and completely failed to construct the relative 
cost function and perform the policy iteration. Compared with 
other existing approaches, the proposed SMDP do not need to 
predetermine the maintenance structure and the number of in-
spection intervals. Therefore, the SMDP developed in this pa-
per is more adaptive and applicable in reality. Furthermore the 
SMDP divides the long-term degradation process into single 
time steps. Consequently, the SMDP approach is easier to be 
carried out in more complex practical situations, e.g., imper-
fect maintenance, state-dependent maintenance cost, and state-
dependent maintenance durations. In addition, the SMDP uses 
the transition matrix to express the system degradation process. 
Therefore, the stochastic dependence and the structure depend-
ence can be also processed by the proposed approach when the 
transition matrix of system states is established.

This research has also explored the structure property of the 
optimal CBM strategy for a two-component system through a 
simulation study. The results can provide a guideline to develop 
an approximate optimal maintenance strategy for multi-com-
ponent systems. The simulation study also shows that the pro-
posed approach using the SMDP can provide satisfactory opti-
misation results for a continuous state two-component system. 
For a more complex multi-component system with intractable 
number of component state combinations, approximate solving 
methods for the SMDP can be adopted.
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