Identyfikatory
Warianty tytułu
Inwariantny deskryptor Gabora-Zernika dla zastosowań pocztowych
Języki publikacji
Abstrakty
In this paper a new solution of handwritten digits recognition system for postal applications is presented. Moreover, in this paper, a new method of handwritten characters recognition is introduced. The proposed algorithm is applied to classification of post mails on the basis of zip code information. In connection with this work the research was conducted with numeric characters used in real post code of mail pieces. Moreover, the article contains basic image processing for instance filtration binarization and normalization of the character. The main objective of this article is to use the Gabor filtration and Zernike moments to obtain a set of invariant features, on basis of which postal code will be recognized. The reported experiments' results prove the effectiveness of the proposed method. Furthermore, sources of errors as well as possible improvement of classification results will be discussed.
W artykule przedstawiono nowe rozwiązanie zadania rozpoznawania znaków pisanych ręcznie dla zastosowań pocztowych. Zaproponowano algorytm klasyfikacji przesyłek pocztowych działający na podstawie informacji zawartej w zapisie kodu pocztowego. Ponadto w artykule opisano podstawowe operacje przetwarzania wstępnego tj. filtracje, binaryzacje oraz normalizacje obrazu znaku. Głównym nacisk położono na wykorzystanie filtracji Gabora i momentów Zernike do uzyskania zbioru cech na podstawie których rozpoznawano kod pocztowy. Otrzymane wyniki eksperymentów pozwoliły wykazać skuteczność proponowanej metody. Dodatkowo w pracy przedstawiono źródła potencjalnych błędów w procesie rozpoznawania, jak również zaproponowano możliwości poprawy wyników klasyfikacji.
Rocznik
Tom
Strony
5--17
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
autor
autor
autor
- Institute of Telecommunications, Faculty of Telecommunications and Electrical Engineering University of Technology and Life Sciences (UTP) ul. Kaliskiego 7, 85-789 Bydgoszcz, Poland, andrys@utp.edu.pl
Bibliografia
- [1] Arif T., Shaaban Z., Krekor L., Baba S., 2005. Object Classification via Geometrical, Zernike and Legendre Moments, Journal of Theoretical and Applied Information Technology, vol. 7, no. 1, pp. 31-37.
- [2] Aissaoui A., 1999. Normalised Fourier Coefficients for Cursive Arabic Script recognition, Universite Mohamed, Morocco.
- [3] Andrysiak T., Choraś M., 2003. Hierarchical object recognition using Gabor wavelets. Proc. Comput. Recogn. Syst., KOSYR, Miłków, Poland, pp. 271-278.
- [4] Andrysiak T., Choraś M., 2005. Image Retrieval Based on Hierarchical Gabor Filters, International Journal Applied Mathematics and Computer Science (AMCS), vol. 15, no. 4, pp. 101-110.
- [5] Andrysiak T., 2001. Recognition of handwritten characteres using Gabor features, II Krajowa Konferencja Naukowo-Szkoleniowa KOSYR.
- [6] Bellili A., Giloux M., 2003. An MLP-SVM combination architecture for handwritten digit recognition, International Journal on Document Analysis and Recognition, Springer-Verlag.
- [7] Choraś R., Andrysiak T., 1995. Gabor transforms in image processing, Proceedings of Signal Processing, Chapter Circuits and Systems, Poland Section IEEE, pp. 31-34.
- [8] Choraś R., Andrysiak T., Śrótek M., 2001. Zastosowanie funkcji Gabora w przetwarzaniu, analizie i rozpoznawaniu obrazów, II Krajowa Konferencja Naukowo-Szkoleniowa KOSYR.
- [9] 2000Forella G.,. Word perfect, Postal Technology. UKIP Media & Events Ltd. UK.
- [10] Fluseer J., Zitova B., T. Suk, 2009. Moments and Moment Invariants in Pattern Recognition, Wiley Knowledge For Generations.
- [11] Gabor D., 1946. Theory of communication, Journal Institute of Electrical Engineers, vol. 93, no. 26, pp. 429-457.
- [12] Horstmann C.S., Cornell G., 2002. Core Java 2-Advanced Features, Sun micreosystems Press A Prentice Hall Title.
- [13] Jain A., Ratha N., Lakshmanan S., 1997. Object detection using Gabor filters. Pattern Recognition, Vol. 30, No 2, pp. 295-309.
- [14] Jolliffe I.T., 2002: Principal Component Analysis, Springer Series in Statistics, 2nd ed., Springer.
- [15] Kaufmann G., Bunke H., 2000. Automated Reading of Cheque Amounts, Pattern Analysis & Applications, Springer-Verlag.
- [16] Khotanzad A., 1990. Invariant Image Recognition by Zernike Moments, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 5, pp. 920--930.
- [17] Kim K., 2003. Face Recognition using Principle Component Analysis, DCS, University of Maryland.
- [18] Ledesma R.D., 2007. Determining the Number of Factors to Retain in EFA: an easy-to-use computer program for carrying out Parallel Analysis, PAR&E, vol. 12.
- [19] Lee T.S., 1996. Image representation using 2D Gabor Wavelets, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, no. 10, pp. 959-971.
- [20] Liao S.X., Pawlak M., 1996. On image analysis by moments, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, pp. 254–266.
- [21] Liu C., Sako H., 2002. Performance evaluation of pattern classifiers for handwritten character recognition, International Journal on Document Analysis and Recognition, Springer-Verlag.
- [22] Marcelja S., 1980. Mathematical description of the responses of simple cortical cells, Journal of the Optical Society of America, vol. 2(7), pp. 1297-1300.
- [23] Mehrotra R., Namuduri K.R., Ranganathan N., 1992. Gabor filter – based edge detection, Pattern Recognition, vol. 25, no. 12, pp. 1479-1494.
- [24] Miciak M., 2004. The Algorithms of Handwritten Characters Recognition For Postal Application, Signal Processing 2004 Workshop Proceedings, pp. 75-79.
- [25] Miciak M., Maszewski M., 2007. Character Recognition Based on Fourier Transfrom and CDWT in Postal Applications, Advances in Soft Computing 45, Computer Recognition Systems 2, pp. 462-469, Springer.
- [26] Miciak M., R. Boniecki, A. Marchewka, 2010. The Complex System to Postal Code Recognition. IPoCC 2010, Position of Postal Services in Modern Communication Society, pp. 216-221, Pardubice.
- [27] Mukundan R., 2004. Some Computational Aspects of Discrete Orthogonal Moments, IEEE Transactions on Image Processing, vol. 13, no. 8, pp. 1055-1059.
- [28] Porat M., Zeevi Y.Y, 1988. The generalized Gabor scheme of image representation in biological and machine vision, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 10, No 4, pp. 452-468.
- [29] Shlens J., 2005. A Tutorial on Principal Component Analysis, available at: www.cs.princeton.edu/picasso/mats/PCA-Tutorial-Intuition_jp.pdf
- [30] Smith L.I. A Tutorial on Principal Components Analyzing – Discusion and singular value decomposition, available at: www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf
- [31] Su Y.M., Wang J.F., 2003. A novel stroke extraction method for Chinese characters using Gabor filters, Pattern Recognition, vol. 36, no. 3, pp. 635-647.
- [32] Sun-Kyoo H., Whoi-Yul K., 2006. A novel approach to the fast computation of Zernike moments, Pattern Recognition vol. 39, pp. 2065-2076.
- [33] Teague M.R., 1998. Image Analysis Via the General Theory of Moments, Opt. Soc. Amer., vol. 70, pp. 920-930.
- [34] Teague M.R., 1980. Image analysis via the general theory of moments, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 70, no. 8, pp. 920-930.
- [35] Teh Ch., Chin R.T., 1998. On Image Analysis by the Methods of Moments, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 10, no. 4, pp. 496-512.
- [36] Wallin A., 1995. Complete sets of complex Zernike moment invariants and the role of pseudo invariants, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17, pp. 1106-1110.
- [37] Il Kang H., Lim S., Il Kim K., Ik Son Y., 2005. A Normalization Based Image Affine Estimation Technique for Computer Vision, Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1553-1556.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT1-0041-0043