PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stereo matching and disparity calculation based on discrete orthogonal moments of Chebyshev, Legendre and Zernike

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Pasowanie i obliczanie niezgodności stereoskopowej na podstawie dyskretnych momentów ortogonalnych Chebysheva, Legendre'a i Zernike'a
Języki publikacji
EN
Abstrakty
EN
In the article we present various theoretical and experimental approaches to the problem of stereo matching and disparity estimation. We propose to calculate stereo disparity in the moments space, but we also present numerical and correlation based methods. In order to calculate disparity vector we decided to use discrete orthogonal moments of Chebyshev, Legendre and Zernike. In our research of stereo disparity estimation all of these moments were tested and compared. Experimental results confirm effectiveness of the presented methods of determining stereo disparity and stereo matching for machine vision applications.
PL
W artykule przedstawiono teoretyczne i eksperymentalne podejścia do problemu pasowania i oceny niezgodności stereoskopowej. Zaproponowano realizacje obliczeń niezgodności stereoskopowej w przestrzeni momentów otrogonalnych, jak również przedstawiono podstawy do obliczeń numerycznych i metod opartych na korelacji. W celu obliczania wektora niezgodności zdecydowano się na użycie dyskretnych momentów ortogonalnych Chebysheva, Legendre'a i Zernike'a. W procesie badawczym oceny niezgodności stereoskopowej wszystkie proponowane momenty były testowane i porównywane. Wyniki badań potwierdzają skuteczność prezentowanych metod określania niezgodności i pasowania stereoskopowego dla zastosowań widzenia maszynowego.
Twórcy
autor
  • Institute of Telecommunications, Faculty of Telecommunications and Electrical Engineering University of Technology and Life Sciences Al. S. Kaliskiego 7, 85-789 Bydgoszcz, Poland, tomasz.andrysiak@utp.edu.pl
Bibliografia
  • [1] T. Arif, Z. Shaaban, L. Krekor, S. Baba, 2005: Object Classification via Geometrical, Zernike and Legendre Moments, Journal of Theoretical and Applied Information Technology, vol. 7, no. 1, pp. 31-37.
  • [2] T. Andrysiak, M. Choraś, 2005: Multiresolution Matching and Disparity Calculation of Stereo Images in Frequency Domain, Information Extraction and Processing, no. 23 (99).
  • [3] T. Andrysiak, M. Choraś, 2005: Stereo Matching for Robotics Vision, Proc. of International Conference PELINCEC.
  • [4] S. T. Barnard, W. B. Thompson, 1980: Disparity analysis of images, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 2, pp. 33-340.
  • [5] S.T. Barnard, A. Fischler, 1982: Computational stereo, ACM Computing Surveys, vol 14, no. 4, pp. 553-572.
  • [6] M.Z. Brown, D. Burschka, G.D. Hager, 2003: Advances in computational stereo. TPAMI, vol. 25, no.8, pp. 993-1008.
  • [7] T.S. Chihara, 1978: An Introduction to Orthogonal Polynomials. New York: Gordon and Breach.
  • [8] C.W. Chong, P. Raveendran, R. Mukundan, 2003: A comparative analysis of algorithms for fast computation of Zernike moments, Pattern Recognition., vol. 36, pp. 731-742.
  • [9] J. Fluseer, B. Zitova, T. Suk, 2009: Moments and Moment Invariants in Pattern Recognition, Wiley Knowledge For Generations.
  • [10] M.H. Han, S. Rhee, 1992: Camera calibration for three-dimensional measurement, Pattern Recognition, vol. 25, no. 2, pp. 155-164.
  • [11] Z. Hong, J. Yang, 1993: An algorithm for camera calibration using a three dimensional reference point, Pattern Recognition, vol. 26, no. 11, pp. 1655-1660.
  • [12] K.M. Hosny, 2007: Efficient computation of Legendre moments for gray level images, International Journal of Image and Graphics, vol. 7, no. 4, pp. 735-747.
  • [13] S.X. Liao, M. Pawlak, 1996: On image analysis by moments, IEEE Transactions Pattern Analysis and Machine Intelligence, vol. 18, pp. 254-266.
  • [14] R. Mukundan, 2001: Image Analysis by Chebyshev Moments, IEEE Transactions on Image Processing, vol. 10, no. 9, 1357-1364.
  • [15] R. Mukundan, 2004: Some Computational Aspects of Discrete Orthogonal Moments, IEEE Transactions on Image Processing, vol. 13, no. 8, pp. 1055-1059.
  • [16] R. Mukundan, 2004: A New Class of Rotational Invariants Using Discrete Orthogonal Moments, IASTED Conference Signal and Image Processing, pp. 80-84.
  • [17] R. Mukundan, S.H. Ong, 2001: Lee P.A., Image Analysis by Chebyshev moments, IEEE Transactions on Image Processing, vol. 10, no. 9, 1357-1364.
  • [18] R. Mukundan, A. Pang, N. Khee, 2002: Stereo Image Analysis: A New Approach Using Orthogonal Moments, Proceedings of Asian Technology Conference in Mathematics, 513-522.
  • [19] R. Mukundan, K.R. Ramakrishnan, 1998: Moment Functions in Image Analysis – Theory and Applications, World Scientific.
  • [20] W. Mokrzycki, 1994: Constraction of 3D deph map from binocular stereo, Proceedings of 5th International School on Computer Vision & Graphics Microcomputer.
  • [21] Y. Pew-Thian, R. Paramesran, 2005: An efficient method for the computation of Legendre moments, vol.27, no. 12, pp. 1996-2002.
  • [22] H. Sun-Kyoo, K. Whoi-Yul, 2006: A novel approach to the fast computation of Zernike moments, Pattern Recognition vol. 39 pp. 2065-2076.
  • [23] M.R. Teague, 1980: Image analyis via the general theory of moments, J.Opt. Soc. Amer., Transactions on Pattern Analysis and Machine Intelligence vol. 70, no. 8, pp. 920-930.
  • [24] Ch. Teh, R.T. Chin, 1988: On Image Analysis by the Methods of Moments, IEEE , vol. 10, no. 4, 496-512.
  • [25] A. Wallin A, 1995: Complete sets of complex Zernike moment invariants and the role of pseudo invariants, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17, pp. 1106-1110.
  • [26] G.Q. Wei, S.D. Ma, 1994: Implicit and explicit camera calibration: theory and experiments, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.16, no. 5, pp. 469-480.
  • [27] J. Weng, P. Cohen, M. Herniou, 1992: Camera calibration with distortion models and accuracy evaluation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 10, pp. 965-980.
  • [28] U.R.Dhond,J.K. Aggarwal, 1989: Structure from stereo – a review, IEEE Transactions Systems Man and Cybern. vol. 19, no. 6, pp.1489-151.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT1-0041-0038
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.