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Summary: In the article we present various theoretical and experimental approaches to 
the problem of stereo matching and disparity estimation. We propose to calculate 
stereo disparity in the moments space, but we also present numerical and correlation 
based methods. In order to calculate disparity vector we decided to use discrete 
orthogonal moments of Chebyshev, Legendre and Zernike. In our research of stereo 
disparity estimation all of these moments were tested and compared. Experimental 
results confirm effectiveness of the presented methods of determining stereo disparity 
and stereo matching for machine vision applications.  
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1. INTRODUCTION 

 One of the main research fields in machine and robotics vision is 3D scene 
perception based on techniques of measuring shapes, positions and relations between 
3D objects that are visible in the scene. There are many known methods of retrieving 
information about the scene basing on 3D perception [2-4,6]. Those methods are based 
on disparity of stereoscopic scene elements and on information from the common part 
of stereoimages. After extracting the pair of corresponding points in two stereoimages, 
which are related to the same point in the scene, we can define the difference between 
coordinates of those points. Then basing on such differences, it is possible to create 
depth map for the visible scene by means of simple trigonometric transformations [18].  
  Recently, discrete orthogonal moments have gained much attention and have been 
successfully used in many applications of computer vision (e.g. pattern recognition) 
[1,9,14,16,17]. Therefore, in our research we decided to take advantage of discrete 
orthogonal moments’ properties, in particular those introduced by Chebyshev, Legendre 
and Zernike,  in order to calculate stereo disparity.  

  In the article, we are concerned with the images acquired from the axe-parallel 
robotics vision system. In such a system the optical axes of both cameras are parallel to 
each other and the image planes of stereoscopic pair are situated within the same 
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distance from the centre of the scene coordinates system. Only the common scene area 
covered by both cameras is further analysed (even though it is only a part of each of the 
image). In section 2, issues related to stereo-image acquisition in robotics vision system 
are described in details. In section 3, the discrete orthogonal moments of Chebyshev, 
Legendre and Zernike are introduced. In section 4, the method of displacement vector 
calculation in order to determine the margins and common part of stereo images is 
presented. Then, in Section 5, three approaches to calculate stereo disparity are 
described. Experimental results, discussion and conclusion are given in the next 
sections. 

 

2.  ACQUISITION OF THE STEREO IMAGES 

 Hereby we present the model of the used stereo camera system for robotics vision. 
Moreover, the principles of epipolar geometry and the method of camera system 
calibration are presented [5,28]. 

2.1.  MODEL OF THE CAMERA SYSTEM 

  The model of the camera system represents geometrical and physical parameters of 
the cameras and transfers cameras’ coordinates systems onto predefined  coordinates 
system of the visible scene. A description of the model is necessary for correct 
measuring of the scene objects' shapes, sizes, position, direction and relations within the 
scene space [20].  
  Differences in localisation and directions of the cameras and, therefore in cameras’ 
coordinates systems, determine various models of camera systems as presented in Fig. 

1. In axe-parallel camera system the coordinates of the point , ,SA X Y Z  of the left 

camera KLO XYZ  and the right camera KPO XYZ  related to the scene SO XYZ  are 
given. 
 

 
 

Fig. 1. The axe-parallel model of the stereo cameras vision system 
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The mapping of the point , ,SA X Y Z  onto the image planes L  (left) and P  

(right) can be written as: 
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Then, we can define the coordinates of the point A X Y ZS , ,  in the scene as: 
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where d is defined as the stereoscopic discrepancy as the difference between projection  

coordinates of point , ,SA X Y Z  onto image planes P  and L , such as: 

P Ld x x .                                                   (4) 

  Stereoscopic images acquired from the axe-parallel camera system can contain 
errors after the matching process if the chosen image elements do not have the 
correspondence elements on the second stereo-pair image. The solution for such 
a problem is to find the translation vector between stereo-images and defining the 
common part of the left and right image [20]. An example of a stereo-image pair 
acquired and calibrated in the described system is presented in Figure 2. 
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Fig. 2. The stereo-image „blocks” acquired in the axe-parallel camera vision system  

2.2.  EPIPOLAR GEOMETRY  

 An important characteristic of stereoscopic systems is the epipolar geometry, 

meaning that the projections of any point in the scene , ,SA X Y Z  onto the image 

planes P  and L  are localised on the corresponding epipolar lines. Each point 

placed on the epipolar line of the right image has its corresponding point on the 
analogical epipolar line of the left image. This relation is true only if we consider the 
common area of both cameras vision space [4].  
 The line between the focuses of the left and right cameras in the stereoscopic 
system is called a base-line, and the length of this line is called a base. The system 

consisting of the base-line and any point in the scene , ,SA X Y Z  determines 

unambiguously the epipolar plane. The intersection of the epipolar plane with the image 
planes P  and L  defines the epipolar lines. The number of detected epipolar lines is 

connected with the resolution of the camera system. 
 

 
Fig. 3. Epipolar geometry in the stereoscopic camera system 
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2.3.  CALIBRATION OF CAMERA SYSTEM 

 In order to perform the proper acquisition of stereoscopic images referring to  the 
visible scene it is crucial that the camera system is properly calibrated. The process of 
calibration of the stereo-system is supposed to define relations between coordinates of 

the point in the scene , ,SA X Y Z , known coordinates of that point projection 

( , )La x y  and ( , )Pa x y  onto the image planes L  and P , and the geometrical and 

optical parameters of the camera system. Such parameters are the position and direction 
of cameras in relation to the defined coordinates system of the scene described by 
elements of the rotation matrix R  and the translation vector T . Those parameters 
can determine the position and direction of the cameras in relation to the predefined 
coordinates system of the scene [27]. We have: 

 

       

K SL

K K KSL L L

K SL

X X

Y R Y T

ZZ

,      

K SP

K K KSP P P

K SP

X X

Y R Y T

ZZ

.    (5)                               

 
 The translation vector describes the localization of centre points of the camera 
systems coordinates. The rotation matrix is the orthogonal matrix and its elements are 
the Euler angles that characterize orientation of camera coordinates systems axis. 
The optical parameters are: 

– scaling ratios xk  and yk  of the axis EOx  and EOy , 

– parameters xp  and yp  of  the coordinates systems translations EO xy  and O xy ,  

– position of the center point of the coordinates system EO xy , 

– length f of camera focus, 

– geometrical distortions in the camera optical system x , y . 

Then: 
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 Description of all the geometrical and optical parameters of the stereoscopic 
camera system (for left and right camera separately) is the condition for proper 
measuring of the 3D objects' shapes, position and orientation [10]. 
 The calibration problem is the problem of finding the values of geometrical and 
optical parameters for a considered camera system in order to define position and 
orientation of cameras in relation to the scene coordinates system basing on the images 
acquired from those cameras [26]. The solution of the calibration problem consists of: 
– finding optical parameters and the values of distortion introduced by the lenses of 

both cameras,  
– determining the correspondence list for features in the stereo-images, 
– calculating the values of geometrical parameters (location and cameras orientation 

based on the obtained correspondence map). 
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Moreover, the feedback loop should be taken into account while analysing the camera 
calibration process. Then, the calculated parameters of position and orientation of the 
cameras can be tuned recursively until the desired parameters for a specified camera 
model are achieved. In result of the camera calibration the optical and geometrical 
parameters characterizing the acquired stereo-images are achieved [11]. 
 

3.  DISCRETE ORTHOGONAL MOMENTS 

 In this section, three types of discrete orthogonal moments are presented: 
Chebyshev and Legendre moments which are realized in the cartesian coordinates 
system, and Zernike moments which are realized in the polar coordinates system. Due 
to orthogonalization of their base-functions these moments are characterized by fast 
algorithms of realization and by simple reconstruction formulas. Hence, these moments 
are calculated using Geometric moments, Central moments and scaled Geometric 
moments [7,15,23,24]. 

3.1. GEOMETRIC MOMENTS 

 The Geometric moments (GM) ijm  of order ji  of a digital image ,I x y  (left 

or right image of stereopair) of the size N N  are defined as [13,19]: 
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where , 0,1,..., 1i j N . 

 The translation invariant Central moments ijM  are obtained by placing origin at 

the centroid of the image. 
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Then, the scale invariant Central moments ijC  are defined as: 
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where 00M . 

Finally, the scale invariant Radial-Geometric moments ijR  are defined as: 
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where xxx̂  and yyŷ . 

3.2. CHEBYSHEV MOMENTS 

 The Chebyshev moments (TM) of order nm  of an image ,I x y  (left or right 

image of stereopair) of the size NN  are defined using the scaled orthogonal 

Chebyshev polynomials xtn , as [14,23]: 

1 1

0 0

1
,

, ,

N N

mn m n

x y

TM t x t y I x y
m N n N

,                  (12) 

 

Where , 0,1,..., 1m n N  and nt x  are a set of discrete orthogonal polynomials 

satisfying the  following condition: 
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Where mn  is the Kronecker function: 
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Fig. 4. Chebyshev polynomials tn(x) of order  n = 0,1,…,5 
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The Chebyshev polynomials satisfy the property of orthogonality (13), with: 
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and have the following recurrence relation:          

      2 2
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where 2,3,..., 1n N  and 0,1,..., 1x N  with the initial conditions: 

          0 1t x ,     1 2 1 /t x x N N .                                 (17) 

The inverse formula of Chebyshev moments is given by the following equation: 
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 The Chebyshev moments of the same image may be expressed in terms of 
geometric moments as follows [14]: 
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 The explicit expressions of the Chebyshev moments in terms of geometric 
moments up to the first order are as follows: 
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3.3. EGENDRE MOMENTS 

The Legendre moments (LM) of order r s  of discrete image ,I x y  are defined as 

[12,21]: 
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where , 0,1,..., 1r s N  and the image coordinate transformation is given by: 
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where s yP  is the Legendre polynomial of degree s  and ,x y  are the normalized 

coordinates. 

 

Fig. 5. Legendre polynomials Ps( y)  of order  s = 0,1,…,6 

 
 The Legendre polynomials s xP  are a complete orthogonal basis set within the 

interval 1,1 , for an order s and satisfying the  following condition:  
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 The inverse moment transform (only Legendre moments of order  N) which 
follows from the orthogonality of Legendre polynomials in the discrete domain, can be 
approximated by [12]: 
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The Legendre moments can be computed by Geometric moments as follows: 
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3.4. ZERNIKE MOMENTS 

Zernike moments (ZM) are the projection of the image ,I x y  on the orthogonal basis 

,pqV x y . The Zernike moments of order p with repetition q are defined as follows [8,25]: 
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Fig. 6. Zernike polynomials of order  p = 0,1…8 and q = 0 or 1 
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The Zernike polynomials: 

, exppq pqV x y R jq                                       (32) 

are a complete set of complex valued functions orthogonal on the unit disk D: 
2 2 1x y , where 0p , and p q  is even positive integer.  

 The polar coordinates ,  in the image domain are related to the Cartesian 

coordinates ,x y  by: 

2 2x y ,   arctan( / )y x .                                (33) 

The Zernike polynomials yxVpq ,  are orthogonal basis set and satisfy the following 

condition: 
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The radial polynomial pqR   is given by:  
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If Zernike moments of order  N are given, then the image intensity yxI ,  can be 

approximated by [22]: 

1
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4. STEREO DISPLACEMENT SEARCH 

 The characteristic feature of the presented robotics vision stereo system is that axe-
parallel cameras’ visual plane contain different elements of the registered scene. It 
means that not all the elements on the left and right image have their counterparts. The 
lack of such a relation eliminates such elements from analysis of stereo images. 
However, extraction of such image areas, called margins of left and right stereo image, 
unambiguously characterize common (overlapping) parts of stereo images (the most 
important parts for stereometry image analysis). The problem of determining the 
margins and the common part of stereopair images is a problem of appointing the 
displacement vector between those images acquired from the left and right camera. The 
value of that vector depends on geometrical and optical parameters of the camera 
system. 
 In order to find the displacement vector td  between stereopair images we perform 

calculation of the discrete orthogonal moments of the right PI  and left LI  stereo 
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image. We search for the displacement vector td  by determining the minimum from the 

set of values:  

max
{ 0 , 1 ,..., ( )}tU U U d                                          (37) 

calculated accordingly to (38) characterizing adequately subtraction of reconstructed 
images  LI  and PI  regarding to maximal displacement vector 

maxtd  

 
11 1 1 1

0 0 0 0 0

, , , ,
N d dN N N Nt t

t L t P L P
x y x y x N d yt

U d I x d y I x y I x y I x y ,    (38) 

where ,L tI x d y  and ,PI x y  can be calculated on the basis of reconstructed 

intensity function values, for the Chebyshev (18), Legrande (28) and Zernike (36) 
moments, respectively. 
 

          

Fig. 7. The stereoscopic image „blocks” with the marked margins 

 

5.  MATCHING AND STREO DISPARITY  CALCULATION  
IN MOMENTS SPACE 

5.1. DISPARITY ESTIMATION USING NUMERICAL ANALYSIS 

 Stereo disparity xd  describes the difference in absolute localizations of the 

corresponding points in the epipolar lines. By analysing corresponding points of the left 
,L t x eI x d d y  and righ ,P eI x y  images of stereopair we can define the 

following relation of their intensity function: 

, ,P e L t x eI x y I x d d y .                                  (39) 

 By utilizing the reconstruction formulas (18), (28) and (36) of the intensity 
function on the basis of the calculated moments for the stereopair images and by 
simplifying the factor dependent on ey  (characterizing the epipolar lines) we can 

denote:  
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– for the Chebyshev moments: 
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– for the Legendre moments: 
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– for the Zernike moments: 
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Solving equations (40-42) in order to determine the stereo disparity in the analytical 
way is not possible. Therefore, in practice numerical methods have to be used. Each 
equation can be written as:  

; 0xF d x                                                     (43) 

or for the Zernike moments (42) as:  
; , 0x eF d x y .                                                 (44) 

 We use the known iterative method of Newton-Rahpson to calculate, with the 
desired accuracy, stereoscopic disparity xd  which is the argument of the function for 

given parameters x and ey  on the basis of the following formula: 

1

i
xi i

x x i
x

F d
d d

F d
,                                           (45) 

where 'F  is a derivative of F  (45) in the i-th iteration. 

 The starting parameter of the method is in our case 0 0xd . The achieved values 

of xd  are verified by the following conditions and properties: xd  is an integer number 

from the max max,d d , where maxd  is a maximal possible value of the stereo disparity 

for a given pair of stereo images. 

5.2. STEREO MATCHING BASED ON CORRELATION OF MOMENTS 

 In order to determine the stereo disparity xd  of the common part of the stereopair, 

the corresponding points on the epipolar lines have to be found in the process of stereo 
matching. In practice, in this approach, we search for the correlation between 
reconstructed intensity functions (18), (28) and (36) of the images LI  and PI  in the 

regions bounded by the window function:  
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2 2( , ) ,

2 2

z e

e e

z z
x u x

W x y u v
z z

y v y

,                                     (46) 

where z characterizes the size of the window function, and ,u v  are the coordinates 

describing the localization of window ,x eW x y . 

 The correlation matching process is realized in the common part of stereopair 
(determined by the vector td ) according to the following steps: 

– for each point of the right image ,P eI x y  choose its neighbourhood by the 

window function ,x eW x y , where , ex y  is the centre of the window xW , 

– for all the points from the linear neighbourhood of the left image LI x  choose its 

neighbourhood by the window function ,x x eW x d y , where xd  characterizes the 

stereo disparity interval and xd  is within max max,d d , 

– for the determined points and their neighbourhoods search for the minimum of the 
function SSDC : 

2

( , ) ( , )

( , ) ( , )SSD x P e L x e

u v W x yz

C d I u v I u d v .                    (47) 

 The minimum of the SSDC  function determines the value of stereo disparity xd  

for the matched points of the left and right stereopair image. 

5.3. STEREO MATCHING BASED ON THE SIMILARITY OF VECTORS IN THE 
MOMENTS SPACE 

 An alternative approach to correlation matching method based on function (48) 
minimum search can be a similarity search in the feature vector space according to:  

( )( )min PL
x x x dxdx

d ,                                     (48) 

where L
x  is a vector consisting of moments values ( )L

i  of the intensity function  

in a given window xW  with the centre in point , ex y  on the left image of stereopair 

given by: 

( ) ( ) ( ) ( )( )
1 2 ( , )

, ,..., ,...L L L LL
x i M

W x yi z e

                        (49) 

And 
P

x d  is a vector consisting of moments values ( )P
i  of the intensity function in  

a given window xW  with the centre in point , ex d y  on the right image of stereopair 

given by: 
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( ) ( ) ( ) ( ) ( )
1 2 ( , )

, ,..., ,...P P P P P
i Mx dx W x d yi z x e

.                       (50) 

 The similarity measure between the vectors calculated in the moment space 
according to equations (12), (24) and (31) is calculated on the basis of the Euclidean 
distance. The obtained minimum of the similarity measure xd  determines the 

stereo disparity xd  between points , ex y on the left image and ,x ex d y  on the 

right stereo image. 
 

6. EXPERIMENTAL RESULTS 

 In the experiments we used stereo images of resolution 512 512 and 256 greyscale 
levels. All the images were acquired by the well-calibrated axe-parallel camera system. 
Sample test images are presented in Fig. 2. 
 Before disparity estimation we calculate the displacement vector td  between each 

image stereopair (in other words, we find the common part of stereo images). This stage 
is based on search of the  global minimum of the function tU d   in the interval 

max
0; td , where 

maxtd  is set as ¼  of the image resolution. The ideal displacement 

vector for the presented sample image blocks is 52 and was equal to the one obtained by 
the Chebyshev reconstruction formula (18). The results achieved for other moments 
were characterized by small errors in the case of the Zernike moments (36), and large 
errors for the Legendre moments (28). Such a situation was caused by imprecise 
approximations in the reconstruction formulas and by the larger sensitivity of Legendre 
moments on intensity function deformations in the process of stereoscopic projections. 
Moreover, the errors were caused by the high orders of the used moments. 

 

Fig. 8.  Stereo disparity calculation error on the basis of the correlation of moments. 
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 Stereo disparity xd  search by numerically solving the numerical equations 

requires the estimation of derivative of function F (e.g. by differential quotient). 
Moreover, it requires the verification of the obtained results on the basis of demanded 
intervals of their changes. In the experiments we found out that we can often achieve the 
proper values of stereo disparity dx  after a small number of iterations if the starting 

value is set to 0 0xd . Even though, in general, this method is not computationally 

effective, it could be used as a verification tool for results obtained by other methods of 
stereo disparity calculation. 
 In order to verify the proposed methods of stereo disparity calculation (sections 
5.2-5.3), we use the normalized disparity error, given by: 

1 1

0 0 max

ˆ, ,1 N N x e e

xx y

d x y d x y
NDE

N N d
,                         (51) 

where ,x ed x y  is the calculated stereo disparity in the specified point , ex y  and 

ˆ , ed x y  is the ideal stereo disparity calculated by other methods (e.g. correlation 

matching) and 
maxxd  is the maximal stereo disparity for the given image. 

 

Fig. 9.  Stereo disparity calculation error on the basis of the similarity of vectors in the feature space 
 
Due to such formula (51), the normalized stereo disparity error values are varying 

within the interval 0;1 . In the Fig. 8. we presented the influence of the number of 

the used moments on the NDE . It decreases with the larger number of the used 
moments. Such situation reflects the impact of moment order on the reconstruction 
precision of the image intensity function (eq. 18, 28, 36 for different moments).   

The results of stereo disparity estimation method implementation on the basis of 
the vectors similarity in the moments space and an interesting phenomenon of moments 
order adjustment are shown in the Fig. 9. The obtained value of NDE  is optimal for 
the moments of order 20-25. Then, with the higher order of moments the results become 
worse, which is caused by the increased distance between vectors (48) in the Euclidean 
space. 
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7. SUMMARY 

 In the article, we presented the idea and implementation of using discrete 
orthogonal moments of Chebyshev, Legendre and Zernike in the process of matching 
and stereo disparity estimation. In order to optimalize those procedures, in the first stage 
we extracted the common parts of stereo images (which is important for matching) and 
the margins of stereo images. 
 In the article, three approaches to the problem of stereo disparity estimation were 
presented and tested. In the first method, we performed the estimation of stereo 

disparity xd  by numerically solving equations (40-42). The second approach was based 

on the correlation analysis of the reconstruction of image intensity function on the basis 
of discrete orthogonal moments. In the third approach, the problem of stereo disparity 
estimation was solved by similarity search in the vector space  for the calculated 
moments characterizing the corresponding points of stereo images. 
 In the described methods we used the discrete orthogonal Chebyshev, Legendre 
and Zernike moments. After experiments we concluded that Chebyshev and Zernike 
were the most appropriate for stereo estimation moments, respectively. Much worse 
results were achieved by Legendre moments. 
  In the further work, we experiment with other discrete orthogonal moments 
applied to stereo disparity estimation task. We also try to analytically estimate the 

influence of moments values on stereo disparity xd .Such a value of  xd  could be used 

for optimalization and enhancement of the stereopair matching process. 
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PASOWANIE I OBLICZANIE NIEZGODNO CI STEREOSKOPOWEJ  
NA PODSTAWIE DYSKRETNYCH MOMENTÓW ORTOGONALNYCH  

CHEBYSHEVA, LEGENDRE’A I ZERNIKE’A 
 

Streszczenie 
 

W artykule przedstawiono teoretyczne i eksperymentalne podej cia do problemu 
pasowania i oceny niezgodno ci stereoskopowej. Zaproponowano realizacje oblicze  
niezgodno ci stereoskopowej w przestrzeni momentów otrogonalnych, jak równie  
przedstawiono podstawy do oblicze  numerycznych i metod opartych na korelacji. 
W celu obliczania wektora niezgodno ci zdecydowano si  na u ycie dyskretnych 
momentów ortogonalnych Chebysheva, Legendre’a i Zernike’a. W procesie badawczym 
oceny niezgodno ci stereoskopowej wszystkie proponowane momenty by y testowane 
i porównywane. Wyniki bada  potwierdzaj  skuteczno  prezentowanych metod 
okre lania niezgodno ci i pasowania stereoskopowego dla zastosowa  widzenia 
maszynowego. 

 
S owa kluczowe:  momenty ortogonalne, pasowanie stereo, niezgodno   

  stereoskopowa 
 


