PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Some Perspectives on Estimating Detonation Properties of C, H, N, O Compounds

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We have explored various aspects of the Kamlet-Jacobs equations for estimating detonation velocities and pressures. While the loading density of the explosive compound is certainly an important determinant of these properties, its effect can sometimes be overridden by other factors, such as the detonation heat release and/or the number of moles of gaseous products. Using a gas phase rather than solid phase enthalpy of formation in obtaining a compound's heat release can produce a signifcant error in the calculated detonation velocity. However a negative enthalpy of formation is not necessarily incompatible with excellent detonation properties. Additional evidence is presented to support Kamlet and Jacobs' conclusion that, for C, H, N, O explosives, assuming the detonation product composition to be N2(g)/H2O(g)/CO2(g)/C(s) gives overall quite satisfactory results.
Rocznik
Strony
209--220
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
autor
Bibliografia
  • [1] Iyer S., Slagg N., Molecular Aspects in Energetic Materials, in: Structure and Reactivity, (Liebman J.F., Greenberg A., Eds.), VCH Publishers, New York, 1988, ch. 7.
  • [2] Dlott D.D., Fast Molecular Processes in Energetic Materials, in: Energetic Materials. Part 2. Detonation, Combustion. (Politzer P., Murray J.S, Eds.), Elsevier, Amsterdam, 2003, ch. 6, 125-191.
  • [3] Meyer R., Köhler J., Homburg A. Explosives, 6th ed., Wiley-VCH, Weinheim, 2007.
  • [4] Politzer P., Murray J.S., Sensitivity Correlations, in: Energetic Materials. Part 2. Detonation, Combustion, (Politzer P., Murray J.S., Eds.), Elsevier, Amsterdam, 2003, ch. 1.
  • [5] Zeman S., Sensitivities of High Energy Compounds, Struct. Bond., 2007, 125, 195-271.
  • [6] Shackelford S.A., Role of Thermochemical Decomposition in Energetic Material Initiation Sensitivity and Explosive Performance, Cent. Eur. J. Energ. Mater., 2008, 5(1), 75-101.
  • [7] Kamlet M.J., Jacobs S.J., Chemistry of Detonation. I.A Simple Method for Calculating Detonation Properties of C,H,N,O Explosives, J. Chem. Phys., 1968, 48, 23-35.
  • [8] Mader C.L., Numerical Modeling of Explosives and Propellants, 2nd ed., CRC Press, Boca Raton, FL, 1998.
  • [9] Bastea S., Fried L.E., Glaesemann K.R., Howard W.M., Sovers P.C., Vitello P.A., CHEETAH 5.0, User’s Manual, Lawrence Livermore National Laboratory, Livermore, CA, 2006.
  • [10] Suceska M., Calculation of Detonation Properties by EXPLO5 Computer Program, Materials Science Forum, 2004, 465/466, 325-330.
  • [11] Zhu W., Zhang C., Wei T., Xiao H., Theoretical Studies of Furoxan-Based Energetic Nitrogen-Rich Compounds, Struct. Chem., 2011, 22, 149-159.
  • [12] Li X.-H., Zhang R.-Z., Zhang X.-Z., Theoretical Studies on a Series of 1,2,3-Triazole Derivatives as Potential High Energy Density Compounds, Struct. Chem., 2011, 22, 577-587.
  • [13] Ghule V.D., Sarangapani R., Jadhav P.M., Tewari S.P., Theoretical Studies on Nitrogen Rich Energetic Azoles, J. Mol. Model., 2011, 17, 1507-1515.
  • [14] Ravi P., Gore G.M., Tewari S.P., Sikder A.K., DFT Study of Aminonitroimidazoles, J. Mol. Model., 2011, DOI: 10.1007/s00894-011-1099-z.
  • [15] Zhang J.-Y., Du H.-C., Wang F., Gong X.-D., Huang Y.-S., Theoretical Investigations of a High Density Cage Compound 10-(1-nitro-1,2,3,4-Tetraazol-5-yl)methyl- 2,4,6,8,10-Hexanitrohexaazaisowurtzitane, J. Mol. Model., 2011, DOI: 10.1007/ s00894-011-1053-o.
  • [16] Politzer P., Lane P., Murray J. S., Computational Characterization of a Potential Energetic Compound: 1,3,5,7-Tetranitro-2,4,6,8-Tetraazacubane, Cent. Eur. J. Energ. Mater., 2011, 8, 39-52.
  • [17] Sikder A.K., Maddala G., Agrawal J.P., Singh H., Important Aspects of Behavior of Organic Energetic Compounds: A Review, J. Hazard. Mater., 2001, A84, 1-26.
  • [18] Klapötke T.M., Chemistry of High Energy Materials, Walter de Gruyter, Berlin/ New York, 2011.
  • [19] Lias S.G., Bartmess J.E., Liebman J.F., Holmes J.L., Levin R.D., Mallard W.G., Gas-Phase Ion and Neutral Thermochemistry, J. Phys. Chem. Ref. Data, 1988, 17, Suppl. No. 1.
  • [20] Rice B.M., Pai S.V., Hare J., Predicting Heats of Formation of Energetic Materials Using Quantum Chemical Calculations, Combust. Flame, 1999, 118, 445-458.
  • [21] Politzer P., Lane P., Concha M.C., Computational Approaches to Heats of Formation, in: Energetic Materials. Part 1. Decomposition, Crystal and Molecular Properties, (Politzer P., Murray J.S., Eds.), Elsevier, Amsterdam, 2003, ch. 9.
  • [22] Politzer P., Murray J.S., Grice M.E., DeSalvo M., Miller E., Calculation of Heats of Sublimation and Solid Phase Heats of Formation, Mol. Phys., 1997, 91, 923-928.
  • [23] Byrd E.F.C., Rice B.M., Improved Prediction of Heats of Formation of Energetic Materials Using Quantum Mechanical Calculations, J. Phys. Chem. A, 2006, 110, 1005-1013.
  • [24] Bulat F.A., Toro-Labbé A., Brinck T., Murray J.S., Politzer P., Quantitative Analysis of Molecular Surfaces: Areas, Volumes, Electrostatic Potentials and Average Local Ionization Energies, J. Mol. Model., 2010, 16, 1679-1691.
  • [25] Cady H.H., Larson A.C., The Crystal Structure of 1,3,5-Triamino-2,4,6- trinitrobenzene, Acta Cryst., 1965, 18, 485-496.
  • [26] Bemm U., Östmark H., 1,1-Diamino-2,2-dinitroethylene: A Novel Energetic Material with Infinite Layers in Two Dimensions, Acta Cryst., 1998, C54, 1997- 1999.
  • [27] Engelke R., Stine J.R., Is N8 Cubane Stable?, J. Phys. Chem. 1990, 94, 5689-5694.
  • [28] Lauderdale W.J., Stanton J.F., Bartlett R.J., Stability and Energetics of Metastable Molecules: Tetraazatetrahedrane (N4), Hexaazabenzene (N6), and Octaazacubane (N8), J. Phys. Chem., 1992, 96, 1173-1178.
  • [29] Kwon O., McKee M.L., Polynitrogens as Promising High-Energy Density Materials: Computational Design, in: Energetic Materials. Part 1. Decomposition, Crystal and Molecular Properties, (Politzer P., Murray J.S., Eds.), Elsevier, Amsterdam, 2003, ch. 14.
  • [30] Stierstorfer J., Klapötke T.M., Hammerl A., Chapman R.D., 5-Azido-1H-tetrazole – Improved Synthesis, Crystal Structure and Sensitivity Data, Z. Anorg. Allg. Chem., 2008, 634, 1051-1057.
  • [31] Chavez D.E., Hiskey M.A., Naud D.L., Parrish D., Synthesis of an Energetic Nitrate Ester, Angew. Chem. Int. Ed., 2008, 47, 8307-8309.
  • [32] Huang L., Massa L., Kernel Energy Method Applied to an Energetic Nitrate Ester, Int. J. Quantum Chem., 2011, 111, 2180-2186.
  • [33] LASL Explosive Property Data, (Gibbs T.R., Popolato A., Eds.) University of California Press, Berkeley, CA, 1980.
  • [34] Rice B.M., Hare J.J., A Quantum Mechanical Investigation of the Relation between Impact Sensitivity and the Charge Distribution in Energetic Molecules, J. Phys. Chem. A, 2002, 106, 1770-1783.
  • [35] Pospíšil M., Vávra P., Concha M.C., Murray J.S., Politzer P., Sensitivity and the Available Free Space per Molecule in the Unit Cell, J. Mol. Model., 2011, DOI: 10.1007/s00894-010-0953-8.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT1-0040-0019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.