PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Path to ε-HNIW with Reduced Impact Sensitivity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
New purification method was applied to obtain epsilon HNIW (ε-2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane, ε-HNIW) which has low impact sensitivity. The method is based on removing the impurities from a solution of alpha HNIW (ε-HNIW) by a chemical reaction to obtain pure epsilon form. For comparison, selected different published methods for recrystallization of HNIW to obtain the epsilon form were studied. All the selected methods are based on solvent-antisolvent technique. The optimum parameters, such as type of solvent and anti-solvent, volume ratio of solvent to anti-solvent, rate of addition, speed of stirring, etc., were applied to enhance the crystal size and shape of ε-HNIW. Checking the polymorphs of the obtained HNIW was done by Fourier transform infrared spectroscopy (FTIR). The thermal stability of the prepared samples was studied by using differential thermal analysis technique (DTA). Qualitative analysis of the crystal size and shape was done using scanning electron microscope (SEM) devise. Quantitative measurement of the crystals sizes for the studied samples was determined by Laser scattering particle size distribution analyzer. Impact sensitivity was measured by falling hammer test. The results indicate that all the applied methods of recrystallization give ε-HNIW. The impact sensitivity of HNIW decreases by obtaining small particles with regular shape. All the used published methods produce ε-HNIW with higher impact sensitivity than other nitramines. While the obtained crystals from the new method has regular smooth surface, with small particle size and its impact sensitivity is lower than RDX and HMX.
Słowa kluczowe
Rocznik
Strony
173--182
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
autor
autor
  • Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, Studentska 95, CZ-532 10 Pardubice, Czech Republic, elbeih.czech@gmail.com
Bibliografia
  • [1] Russel T.P., Miller P.J., Piermarini G.J., Black S., High Pressure Phase Transition in Hexanitrohexaazaisowurtzitane, J. Phys. Chem., 1992, 96(13), 5509-5512.
  • [2] Foltz M.F., Coon C.L., Garcia F., Nichols A.L., III, The Thermal Stability of the Polymorphs of Hexanitrohexaazaisowurtzitane, Part II, Propellants, Explos., Pyrotech., 1994, 19, 133-144.
  • [3] Latypov N.V., Wellmar U., Goede P., Bellamy A.J., Synthesis and Scale- Up of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane from 2,6,8,12-tetraacetyl-4,10-dibenzyl-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW, CL-20), J. Org. Process Res. Dev., 2000, 4(3), 156-158.
  • [4] Samudre S.S., Nair U.R., Gore G.M., Sinha R.K., Studies on an Improved Plastic Bonded Explosive (PBX) for Shaped Charges, Propellants, Explos., Pyrotech., 2009, 34(2), 145-150.
  • [5] Nair U.R., Sivabalan R., Gore G.M. et al., Hexanitrohexaazaisowurtzitane (CL-20) and CL-20-Based Formulations, Combust., Explos. Shock Waves, 2005, 41(2), 121-132.
  • [6] Ostmark H., Bergman H., Sjoberg P., Sensitivity and Spectroscopic Properties of the β and ε-Polymorphs of HNIW, Proc. Energ. Mater. Technology, Phoenix, 1995, 75-81.
  • [7] Sider A., Sikder N., Gandhe B., Agrawal J., Singh H., Hexanitro-hexaaza-isowurtzitane or CL-20 in India: Synthesis and Characterisation, Defence Science Journal, 2002, 52(2), 135-146.
  • [8] Yuxiang O., Cai W., Zelin P., Boren C., Sensitivity of Hexanitrohexaaza-isowurtzitane, Chin. J. Energet. Materials (HenNeng CaiLiao), 1999, 7, 100.
  • [9] Thome V., Kempa P.B., Herrman M., Solvent Effects on the Morphology of CL-20 Crystals, Proc. 32nd Int. Ann. Conf. ICT, Karlsruhe, 2001, 157/1-157/7.
  • [10] Johnston E.H., Eugene R.W., Use of Chlorine-Free Non-Solvents in Solvent Crystallization of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12,-hexaazatetracyclo [5.5.0.05,903,11]-dodecane (CL-20) Explosive, US Patent 5874574 A, 1999.
  • [11] Hamilton R., Crystallization of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12, hexaazatetracyclo [5.5.0.05,903,11]-dodecane, US Patent 0130503 A1, 2003.
  • [12] Sivabalan R., Gore G.M., Nair U.R., Saikia A., Venugopalan S., Gandhe B.R., Study on Ultrasound Assisted Precipitation of CL-20 and Its Effect on Morphology and Sensitivity, J. Hazard. Mater., 2007, A139, 199-203.
  • [13] Li J., Brill T., Kinetics of Solid Polymorphic Phase Transitions of CL-20, Propellants, Explo., Pyrotech., 2007, 32(4), 326-330.
  • [14] Krupka M., Devices and Equipments for Testing of Energetic Materials, Proc. 4th Int. Seminar “New Trends in Research of Energetic Materials”, Univ. Pardubice, 2001, 222.
  • [15] Sućeska M., Test methods for Explosives, Springer, Heideleberg, 1995.
  • [16] Šelešovsky J., Pachman J., Probit Analysis – a Promising Tool for Evaluation of Explosive’s Sensitivity, Cent. Eur. J. Energ. Mater., 2010, 7(3), 269-278.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT1-0040-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.