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Success probability model of phased mission systems 
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 MODEL PRAWDOPODOBIEŃSTWA SUKCESU SYSTEMÓW O ZADANIACH 
OKRESOWYCH Z OGRANICZONĄ LICZBĄ CZĘŚCI ZAMIENNYCH

This paper builds a model to analyze the success probability of phased mission systems (PMS) with given limited spares. 
The configuration and success criteria of phased mission may vary from phase to phase. Most reliability analysis tech-
niques and tools of phased mission systems assume that there is no spare replacement during the phased mission or the 
component repair times are neglected. However, for some phased missions, failed components can be replaced by spares 
during the mission or in the interval of the phases and the spare replacement times are generally not negligible. By consid-
ering minimal spare replacement policy (MSRP) which is often used in military exercise, this paper presents a mathemati-
cal model for success probability analysis of phased mission which is based on minimal path set and system state analysis 
methods. Then, the model was demonstrated and validated by an example of military exercise.

Keywords: success probability; phased mission systems; spare replacement; minimal path set; state 
transition probability.

W niniejszej pracy skonstruowano model do analizy prawdopodobieństwa sukcesu systemów o zadaniach (misjach) okre-
sowych (ang. phased mission systems, PMS) z daną, ograniczoną liczbą części zamiennych. Konfiguracja systemu oraz 
kryteria sukcesu zadania okresowego mogą być różne dla różnych faz zadania. Większość technik i narzędzi służących do 
analizy systemów o zadaniach okresowych  nie zakłada wymiany części podczas zadania okresowego lub nie bierze pod 
uwagę  czasu wykonania napraw elementów składowych. Tymczasem, w niektórych zadaniach okresowych istnieje moż-
liwość wymiany elementów składowych na zapasowe bądź to w trakcie trwania zadania bądź też w przerwach pomiędzy 
fazami, a czas takiej wymiany zazwyczaj  nie jest bez znaczenia. Biorąc pod uwagę politykę minimalnej wymiany części 
(ang. minimal spare replacement policy, MSRP), często stosowaną podczas ćwiczeń wojskowych, w niniejszym artyku-
le przedstawiono matematyczny model do analizy prawdopodobieństwa sukcesu zadania okresowego, oparty na dwóch 
metodach: minimalnych ścieżek zdatności oraz  analizy stanu systemu. Możliwość wykorzystania modelu zilustrowano i 
zweryfikowano na podstawie przykładowych ćwiczeń wojskowych.

Słowa kluczowe:	 prawdopodobieństwo sukcesu, systemy o zadaniach okresowych, wymiana części, 
minimalna ścieżka zdatności, prawdopodobieństwo przejść między stanami.
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1. Introduction

Military exercise is a very important way for increasing the 
operational skills of operators and commanders of weapon sys-
tems. It is also used to evaluate the battle or support effective-
ness of a troop. Most of exercise missions consist of several 
phases that must be accomplished in sequence as phased mis-
sion systems (PMS). The system configuration, success criteria, 
and component behavior may vary from phase to phase. How 
to evaluate the success probability of an exercise mission with 
maintenance resources plan given is very important. 

In many military exercises, the weapon systems will be 
transferred to a position which is far away from base camp and 
they will stay there for a period of time. Because of the limited 
capability of maintenance and requirement of rapid recovering 
in exercise, normally spare replacement is the main mainte-

nance type in exercises. Fortunately most units of weapon sys-
tems are designed to be the line replacement units (LRU) which 
can be replaced easily on line. And in order to recover the failed 
system as quickly as possible, the minimal spare replacement 
policy (MSRP) will be used in practice mostly. Under MSRP, 
the last component whose failure causes the system failure di-
rectly will be replaced firstly. The modern automatic fault diag-
nosis system makes it possible and the failed components will 
not be repaired in the mission normally. 

Here is a real example. There are two power subsystems in 
the surface-to-air missile system. Both of them have compo-
nents of the same type. One called electric generator produces 
electricity for other subsystems and it has one component of 
this type. The other one is able to not only produce electric-
ity but also provide power for moving and it has two compo-
nents of this type in parallel. The typical exercise of this kind 
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of systems can be divided into three phases: move only, still 
tracking&shooting and move with tracking&shooting. In the 
move only phase, the power subsystem for moving should be 
working and the other subsystem doesn’t need to be working. In 
the still tracking&shooting phase, at least one power subsystem 
should be working. In the move with tracking&shooting phase, 
both two power subsystems should be working. The phase fault 
trees for this exercise mission are shown in Fig.1, which is the 
relationship between those three components of two subsys-
tems. Under MSRP, the first failed component supposing C1 
will not be replaced in phase 1. But after the second one C2  
fails, it will be replaced if there are enough spares left. In phase 
2, only the last failed one should be replaced. However, before 
the phase 3 begins, the component C3 should be replaced firstly 
if it has failed in phase 2. It also should be replaced after its 
failure in phase 3. Most exercises have schedules of the exer-
cise include the beginning time and deadline of every phase. 
Normally, phase mission can be finished before the deadline. 
So there is free time for these activities of spares replacement. 
The mission will fail if the total maintenance time goes beyond 
the maximal free time in any phase.

Such a weapon system in exercise can be considered as 
a PMS and some methods advanced in PMS can be used to 

2. Problem description

2.1 Nomenclatures

n	 number of phases of PMS.
Ti

Work 	 work time of phase i, i=1,2...,n . .
Ti

Max	 maximal duration time of phase i, i=1,2...,n T Ti
Max

i
Work≥

Ti
Free	 free time of phase i, i=1,2,...,n . Ti

Free=Ti
Max−Ti

Work

When Ti
Max=Ti

Work, any spare replacement activities are not permitted in the ith phase. When Ti
Max>Ti

Work, spare replacement activities are 
permitted in the ith phase but the total replacement time should be less than the free time Ti

Free.
N	 number of components in PMS.
M	 number of component types in PMS.
Yi	 ith component type, .
Ni	 number of components of the ith type, .
λi	 failure rate of components of the ith type, .
TR	 vector of the spare replacement times TR=(t1

R, t2
R,...,tM

R), ti
R, is the spare replacement time of the ith component.

Ci	 state of the ith component, i. i=1,2,...,N, C
the ith component is up
the ith component is downi =

1
0
,
,
     
     



F	 system success logic function, F=f(C1, C2, ..., CN). 

evaluate the success probability. In recent years, many models 
and methods have been put forward to deal with the reliability 
analysis of PMS, such as Markov-chain[1], combinatorial mod-
els [2], fault tree methods [3-5] and Petri-nets [6,7] etc. BDD is 
more efficient for Boolean expression manipulation and the re-
liability analysis based on the BDD representation of the system 
structure function is fast, and straightforward. A BDD-based al-
gorithm that greatly improves the computation efficiency of the 
PMS reliability solution was proposed in [8, 9, 10]. Consider-
ing the repair activities in the mission, a hierarchical modeling 
approach for the reliability analysis of phased-mission systems 
with repairable components was advanced in [11]. It didn’t 
take into account spare replacements. S.P. Chew [7] describes 
the use of a Petri net (PN) to model the reliability of phased 
missions with maintenance-free operating periods (MFOP). 
There is no any maintenance in MFOP. Following each MFOP 
is a period, known as a maintenance recovery period (MRP), 
where the system is repaired to such a level that it is capable of 
completing the next MFOP. It is appropriate for some systems 
whose maintenance can’t be done during the missions, such as 
the aircraft systems. But there are many exceptions, such as the 
move only phase of the surface-to-air missile system mentioned 
above. Some models of reliability analysis of PMS considering 
spare replacement are advanced in [12,13]. However, unfortu-
nately the spare replacement times are neglected and these ap-
proaches have not taken into account MSRP. 

In this paper, a mathematical model for success probabil-
ity analysis of PMS is advanced. In this model, MSRP is con-
sidered and the spare replacement time is not neglected. The 
spares used in MSRP is cold standby. The rest of the paper is 
organized as follows. Section 2 describes the nomenclatures, 
problem and assumptions. In Section 3, the success probability 
model for phased mission systems with spares replacement is 
described. Section 4 gives the calculation of system state transi-
tion probability. In Section 5, a practical example of a military 
exercise and the experimental results are given. In Section 6, a 
conclusion is given.

Phase 3 fail

C1 C2 C3

Engine 1 fail

Phase 2 fail

C1 C2 C3

Phase 1 fail

C1 C2

Fig.1. Phase fault trees for a mission of the surface-to-air missile sys-
tem.
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Fi	 system success logic function in phase 
i, i =1,2,...,n. 
For example, in Fig. 1, F , F1 = F3 = C1C2 + 
C1C3 + C2C3 , F2 = C1 + C2 + C3 .

2.2 Problem description

The aim is to evaluate the mission suc-
cess probability when the system initial state 
is S L Ff0 1∈ ( ) , the amount of initial spares 

is X *  and the system success logic function 
and the work time of each phase are given. 

The phased mission system discussed in 
this paper is required to satisfy the following 
assumptions:

The failures of different components 1)	
are statistically independent.
All failed components are not repair-2)	
able in the mission.
All components are characterized by a negative exponen-3)	
tial distribution.
The spare replacement policy in phased mission is 4)	
MSRP.

3. Success probability model of phased mission 
systems with spares replacement

Fig. 2 shows the processes of the phased mission system 
and some nomenclatures which will be used in our model.

3.1 Spare replacement process analysis

Before the ith phase mission begins, the spare replacement 
may need to be done because the system success logic functions 
of different phases are different. This process is called as the 
check and spare replacement process. If there are enough spares 
for replacement, the system state transits from SB

i( )  to SL
i( )  af-

ter this process. Hence,
S S S FL

i
D B

i
i

( ) ( ) ,= ( )  and S L FL
i

f i
( ) ( )∈ 		  (1)

It is known that X S FD B
i

i( , )( )   is the vector of the amount 
of spares which will be used when the current system state is 
SB

i( )  and the system success logic function is Fi . So 

	 X L
i( ) = X X S FB

i
D B

i
i

( ) ( )( , )−  		  (2)

The duration time of spare replacement activities before the 
next phase begins is as below.

		  T X S F Ti
D B

i
i

R
1
( ) ( )( , )=  	 (3)

After the ith phase mission begins, the system state transits 
from SL

i( )  to SE
i( ) . S SE

i
B
i( ) ( )= +1 . Let X i( )  be the vector of the 

amount of consumed spares in the ith phase. The duration time 
will be given as below.
	 T T X Ti

i
Work i R

2
( ) ( )= + 	 (4)

3.2 Calculation of success probability

If the whole mission can be completed successfully, the fol-
lowing conditions should be satisfied.

All phases have to be finished successfully, so the end 1)	
system state of any phase should be in the set of system 
up states. Hence, ∀  S i nE

i( ) , , ,...,=1 2 , S L FE
i

f i
( ) ( )∈ .

Because of the fact that there exists space replacements 2)	
only when the system fails under MSRP, the end system 
state will not be better than the state when the system has 
been just made to be functional. Hence, 
S S S FE

i
D E

i
i

( ) ( ) ,≤ ( )−1  .
In any phase, the total replacement time is not more than 3)	
the free time. T T T Ti i

i
Work

i
Free

1 2
( ) ( )+ − ≤ .

The total amount of spare usage 4)	 X  is not more than X *

, 
X X S F X XD E

i
i

i

i

n

= ( ) +( ) ≤−

=
∑ ( ) ( ) *,1

1
 

.
Let S S S X X XE E E

n n( ) ( ) ( ) ( ) ( ) ( ), , ..., , , ,..., ,1 2 1 2   ( )  be a sys-

tem state sequences. Let SB  be the set of all feasible system 
state combinations and spare usage scenarios. Because all phas-
es have to be finished successfully, then

SB S S S X X X

S i

E E E
n n

E
i

= ( )

∀

( ) ( ) ( ) ( ) ( ) ( )

( )

, , ..., , , ,..., ,

,

1 2 1 2   

 == ∈

≤ ( )−

1 2
1

, ,..., , ( )

,

(

( )

( ) ( )

n S L F and

S S S F and

X S

E
i

f i

E
i

D E
i

i

D B

  

 
(( ) ( )

( ) ( ) *

, )

,

i
i

R i R
i
Free

D E
i

i
i

i

n

F T X T T and

X S F X X

 

 

+ ≤

( ) +( ) ≤−

=
∑ 1

1
  



























 	

Hence, to obtain the success probability, the probabilities 
are summed over all feasible system state combinations and 
spare usage scenarios. So

P P S S S X X Xmission E E E
n n

S

= ( )( ) ( ) ( ) ( ) ( ) ( )

,

, , ..., , , ,...,1 2 1 2

0

   
SS S S SBE E E

n( ) ( ) ( ), , ...,1 2   ( )∈
∑

	

Where P S S S X X XE E E
n n( ) ( ) ( ) ( ) ( ) ( ), , ..., , , ,...,1 2 1 2   ( )  is the 

probability of that the total amount sequences of consumed 
spares are X X X n( ) ( ) ( ), ,..., ,1 2  and the system state sequences 

are S S S SE E E
n

0
1 2, , , ...,( ) ( ) ( )   . It is calculated as shown below,

Figure 2 – Process analysis of phased mission system with spare replacement
 

( )
2

iT  

( )i
EX  ( )i

LX  ( )i
BX

 

1 1 1, ,Work MaxT T  F  

Amount of available spares 

( )i
ES  ( )i

LS  System state 

Duration time  

( )i
BS  

( )
1

iT  

Spare replacement activities before the phase begins. 

… … 

The system is working. 

, ,Work Max
i i iT T  F  , ,Work Max

n n nT T  F  

… 

Spare replacement activities after the phase begins. 

(5)

(6)
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P S S S X X X

P S S

E E E
n n

D E
i

( ) ( ) ( ) ( ) ( ) ( )

(

, , ..., , , ,...,

(

1 2 1 2

1

   ( ) =

= − )) ( ) ( ), ), , , , ,F S X F T Ti E
i i

i i
Work

i
Max

i

n

     ( )
=
∏

1

	 (7)

The calculation of P S S X F T TB E
Work Max, , , , ,     ( )  will 

be described in section 4.

4. Calculation of system state transition prob-
ability

Some lemmas are given before discussing how to calculate 
the system state transition probability. All Lemmas as below 
satisfy the following conditions.

The system success logic function is 1)	 F.
The system total work time is 2)	 T Work .

The maximal duration time is 3)	 T Max .
The system state is  initially and it transits to 4)	 SE  final-

ly.
S L FB f∈ ( )5)	 , S L FE f∈ ( ) . 

Let S S S LB E k
L L Fk m

1 = − −
∈
∑

( )

, S S LE k
L L Fk m

2 = −
∈
∑

( )

, 

S s s s s
s and S s

N i
i

E
E i

E

3 1
3

2
3 3 3 1 1 0

= ( ) =
= →( )∉( ) ( ) ( ) ( )

( ) ( )

, ,..., |
  LL

other
i Nf F( )





=

0
1 2, , ,...,

S S S SE4 2 3= − − , S S S S S SB5 1 2 3 4= − − − − , 

H i S i M jj j Yi
= > ={ } =     0 1 2 1 2 5, , , ..., , , ,...,

, . 
Where S sE i

E( ) →( )0  stands for the system state vector after 

setting the ith component state si
E( )  of SE  to zero. 

S s s s s s sE i
E E E

i
E

i
E

N
E( ) ( ) ( ) ( ) ( ) ( ), ,..., , , ,..., ,→( ) = − + −0 01 2 1 1 1 ssN

E( )( ) .

Lemma 1. C S1( )  is the set of all components which sat-

isfy the following condition.
It does not belong to any minimal path sets.1)	
It fails in the mission.2)	
It has not been replaced by any spares in the mission.3)	

Proof. Let S LL k
L L Fk m

=
∈
∑

( )

, ∀ ∈ ( )C C Si 1 , so si
( )1 1= . 

It means  and si
B( ) =1  and si

E( ) = 0 . So the ith component 

state changes from 1 to 0 and it failed in the mission. si
L( ) = 0  

is equivalent to that the ith component does not belong to any 
minimal path sets. So it does not have to be replaced if it fails 
under MSRP.

Lemma 2. C S2( )  is the set of all components which sat-

isfy the following condition.
It does not belong to any minimal path sets.1)	
It is always up during the mission.2)	
It has not been replaced by any spares in the mission.3)	

Proof. Let S LL k
L L Fk m

=
∈
∑

( )

, ∀ ∈ ( )C C Si 2 , so si
( )2 1= . 

It means si
E( ) =1  and si

L( ) = 0 . si
L( ) = 0  is equivalent to that 

the ith component does not belong to any minimal path sets. So 
it does not have to be replaced if it fails under MSRP. si

E( ) =1  

is equivalent to that the ith component is up when the mission 
is over. Hence, it is always up during the mission.

Lemma 3. C S3( )  is the set of all components which sat-

isfy the following condition.
It is up when the mission is over.1)	
It has to be replaced if it fails after the system state is 2)	
changed to be , otherwise the system will be down.

Proof. ∀ ∈ ( )C C Si 3 , so si
( )3 1= . It means si

E( ) =1  and  

 FS s LE i
E

f
( ) =( )∉ ( )0 . si

E( ) =1  is equivalent to that the ith 

component is up when the mission is over. 
 FS s LE i

E
f

( ) =( )∉ ( )0  is equivalent to that the system will 

be down if it fails after the system state is changed to be SE . So 

the ith component should be replaced if it fails after the system 
state is changed to be SE , otherwise the system will be down. 

Lemma 4. C S4( )  is the set of all components which sat-

isfy the following condition.
It is up when the mission is over.1)	
It does not need to be replaced if it fails in the phase.2)	

Proof. ∀ ∈ ( )C C Si 4 , so si
( )4 1= . It means si

E( ) =1  and  

si
( )2 0= and si

( )3 0= . si
E( ) =1  is equivalent to that the ith 

component is up when the mission is over. S S S SE4 2 3= − −  

means C S C S4 2( )∩ ( ) ≠ ∅  and C S C S4 3( )∩ ( ) ≠ ∅ . Be-

cause C S3( )  is the set of all components which should be re-

placed after its failure by Lemma 3. So C S4( )  is the set of all 

components which do not need to be replaced if they fail.
Lemma 5. C S5( )  is the set of all components which satis-

fies the following condition.
It does not belong to all minimal path sets but it belongs 1)	
to at least one minimal path set.
It fails in the mission without spare replacement.2)	

Proof. ∀ ∈ ( )C C Si 5 , so si
( )5 1= . It means si

B( ) =1  and 

si
( )1 0=  and si

( )2 0=  and si
( )3 0=  and si

( )4 0= . So the ith  

component is down when the mission is over. si
E( ) = 0 . Let 

S LL k
L L Fk m

=
∈
∑

( )
, si

( )1 0=  and si
E( ) = 0  means si

L( ) =1. So 

ith the  component belongs to at least one minimal path set but 

it does not belong to all minimal path sets because of si
E( ) = 0  

and S L FE f∈ ( ) .
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Lemma 6. C S C S S S S SB( ) = + + + +( )1 2 3 4 5  and 

C S C S C S C S C S1 2 3 4 5( ) ( ) ( ) ( ) ( ), , , ,     are disjoint.

Proof
S S S S S SS S S S S S S S SB B1 2 3 4 5 31 2 4 1 2 3 4+ + + + = + + + − − − −+ =  , 
it means that C S C S S S S SB( ) = + + + +( )1 2 3 4 5  . 

S S S S S SB5 1 2 3 4= − − − − , so C S C S5 1( )∩ ( ) = ∅  ,

C S C S5 2( )∩ ( ) = ∅ , 
C S C S5 3( )∩ ( ) = ∅ , 

C S C S5 4( )∩ ( ) = ∅ . S S S SE4 2 3= − − , so , . By Lemma 

1, the components in C S1( )  is down when mission is over. 

By Lemma 2,3,4, the components in the components in 
C S2( )  or C S3( )  or C S4( )  is up when mission is over. So 

C S C S1 2( )∩ ( ) = ∅ , 
C S C S1 3( )∩ ( ) = ∅ , 

C S C S1 4( )∩ ( ) = ∅ . By Lemma 2 and Lemma 3, 

C S C S2 3( )∩ ( ) = ∅ . Hence, 

C S C S C S C S C S1 2 3 4 5( ) ( ) ( ) ( ) ( ), , , ,     are disjoint.

The components in the set of 
C S1( )  failed and have not 

been replaced by any spares in the phase by Lemma 1. The state 
transition probability of these components P1  is

	 P e i
Work YiT

S

i H
1 1

1

1

= −( )−

∈
∏ λ 	 (8)

The components in the set of C S2( )  did not fail in the 

phase by Lemma 2. The state transition probability of these 
components P2  is

	 P e
S T

i H

Yi i
Work

2
2

2

=
−

∈
∏ λ

	 (9)

When | |S3 0>  and | |S5 0> , the components in C S3( )  

should be replaced after its failure after all components in 
C S5( )  fail by lemma 3. Let ϕ t( )  is the density function of 

when all components in C S5( )  fail. It is calculated by

	 ϕ λ λ λ λ
t S e e e

Y i
t t S

i H

S t

j H
i

i i Yi Y j j( ) = −( )







 ⋅

− − −

∈

−

∈
∏ 5

1
1 5

5

3

3

∏∏








 (10)

In the remain time of T tWork − , the components in C S3( )  

should be replaced after failure and the number of spares is con-
sumed to be X . Hence, the state transition probability P X3 5, ( )  

of the components in C S3( )  and C S5( )  is calculated by

P X t
x

S T t e dt
i

Y i
Work

x S T tT

i

i
Yi i

WorkW

3 5 30

1 3

,
( )

!
( ) = ( ) ⋅ −( )( ) − −

ϕ λ
λoork

i H
∫∏

∈ 3

When | |S5 0=  and | |S3 0> , the components in C S3( )  

should be replaced after its failure directly by lemma 3. So, 
P X3 5, ( )  is calculated by

	 P X
x

S T e
i

Y i
Work

x S T

i H
i

i
Yi i

Work

3 5 3
1 3

3

, !
( ) = ( )( ) −

∈
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λ
   (12)

When | |S3 0=  and | |S5 0> , the components in C S5( )  

fail in the phase without spare replacement. Hence, the state 
transition probability P X3 ( )  of the components in C S3( )  

and C S5( )  is calculated as shown below
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When | |S4 0> , the components in C S4( )  do not need to 

be replaced in the phase and they are up when the mission is 
over by Lemma 4. So we know these components did not fail in 
the phase. Hence, the state transition probability P4  of the 

components in C S4( )  is calculated by

	 P e
S T

i H

Yi i
Work

4
4

4

=
−

∈
∏ λ

	 (14)

By Lemma 6, 
C S C S C S C S C S1 2 3 5 4( ) ( ) ( ) + ( ) ( ), , ,  

 

are disjoint. 
P S S X F T TB E

Work Max, , , , ,    ( )  is calculated by 
the product of the state transition probabilities of these three 
parts as shown below

P S S X F T T
PP P X P XT T T

B E
Work Max

R Max Work

, , , , ,
,

,
,    ( ) = ( ) ≤ −1 2 3 5 4

0 XXT T TR Max Work> −





 	

5. An example of military exercise

Based on the example of the surface-to-air missile system 
which is mentioned in Section 1, this example will take into 
account the electronic convertor. The electronic convertor has 
two components of this type in parallel. It should be working 
when the weapon system is in any tracking&shooting phase. 
Three components ( C C C1 2 3, ,  ) of types X1  and two compo-

nents ( , )C C4 5  of type X 2  are taken into account in this ex-

ample. The failure rates are λ1 0 0007= .  and λ2 0 0005= . . 

The vector of the replacement time is T R = ( )2 3,  . Now a 

surface-to-air missile system will execute an exercise mission (11)

(13)

(15)
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with four phases whose phase fault trees are shown in Fig.3. 
The fourth phase is the same with the first phase.

We can get the minimal path sets and the system success 
logic functions of four phases.   F F C C1 4 1 2= = + , 

Table 1. Set of the vectors in minimal path sets of each phase.

Number 
of phase

L Fm ( )

1, 4 (0, 1), (1, 0)

2 (0, 0, 1, 0, 1), (0, 1, 0, 0, 1), (1, 0, 0, 0, 1)
(0, 0, 1, 1, 0), (0, 1, 0, 1, 0), (1, 0, 0, 1, 0)

3 (0, 1, 1, 0, 1), (1, 0, 1, 0, 1), (0, 1, 1, 1, 0), (1, 0, 1, 1, 0)

Table 2. System state after spare replacement of each phase

Number of phase S S S FD i,  ( ) using MSRP
S S FD i,  ( ) using perfect 

policy

1, 4 (0, 0, 0/1, 0/1, 0/1) (1, 0, 0/1, 0/1, 0/1)

(1,1,1,1,1)

2

(0, 0, 0, 0, 0) (0, 0, 1, 1, 0)

(0, 0, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0) (0, 0, 1, 1, 0)

(0, 0, 0, 0, 1) (0, 0, 1, 0, 1)

(0, 1, 0, 0, 0) (0, 1, 0, 1, 0)

(0, 0, 0, 1, 1) (0, 0, 1, 1, 1)

(1, 0, 0, 0, 0) (1, 0, 0, 1, 0)

(1, 1, 0, 0, 0) (1, 1, 0, 1, 0)

(0, 1, 1, 0, 0) (0, 1, 1, 1, 0)

(1, 0, 1, 0, 0) (1, 0, 1, 1, 0)

(1, 1, 1, 0, 0) (1, 1, 1, 1, 0)

3

(1, 0, 0, 1, 0), (0, 0, 0, 1, 0), (0, 0, 1, 1, 0), (1, 0, 1, 0, 0),
(0, 0, 1, 0, 0), (1, 0, 0, 0, 0), (0, 0, 0, 0, 0) (1, 0, 1, 1, 0)

(1, 0, 0, 0, 1), (0, 0, 0, 0, 1), (0, 0, 1, 0, 1) (1, 0, 1, 0, 1)

(0, 0, 1, 1, 1), (1, 0, 0, 1, 1), (0, 0, 0, 1, 1) (1, 0, 1, 1, 1)

(0, 1, 1, 0, 0), (0, 1, 0, 1, 0), (0, 1, 0, 0, 0) (0, 1, 1, 1, 0)

(0, 1, 0, 0, 1) (0, 1, 1, 0, 1)

(0, 1, 0, 1, 1) (0, 1, 1, 1, 1)

(1, 1, 1, 0, 0), (1, 1, 0, 1, 0), (1, 1, 0, 0, 0) (1, 1, 1, 1, 0)

(1, 1, 0, 0, 1) (1, 1, 1, 0, 1)

(1, 1, 0, 1, 1) (1, 1, 1, 1, 1)

Fig.3. Phase fault trees of the example

F C C C C C C C C C C C C2 1 4 2 4 3 4 1 5 2 5 3 5= + + + + +    and 

F C C C C C C C C C C C C3 1 3 4 2 3 4 1 3 5 2 3 5= + + + . In the begin-

ning of the whole mission, all components are in up states. So 
the vector of the initial system state is 

S SB0
1 1 1 1 1 1= = ( )( ) , , , ,      .. The 

work times are T TWork Work
1 4 45= = , 

T Work
2 160=  and T Work

3 400= . The 

maximal duration times are 
T TMax Max

1 4 60= = , T Max
2 165=  

and T Max
3 420= .

We can get L Fm ( )  of each phase 
easily form the system success logic 
functions of three phases. The sets are 

as shown in table 1.
Based MSRP and perfect maintenance policy, we can get 

the system state after spare replacement S S FD i,  ( )  as shown 
in table 2. We calculated the mission success probability using 
the algorithm as below.

Experimental results of this example under different initial 
spares scenario are reported in Table 3 and Fig. 4.

From the exprimental results of this example, we can find 
easily the minimal initial spares scenario [3,1] if the mission 
success probability should be more than 0.95 under MSRP.

Phase 3 fail

C1 C2 C3

Engine 1 fail

Phase 2 fail

C1 C2 C3

Phase 1 fail

C1 C2 C4 C5

Convertor failAll Engines fail

C4 C5

Convertor fail

Phase 4 fail

C1 C2
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Table 3.  Mission success probabilities under different amount of initial spares using MSRP

number of X2 spares 
number of X1 spares 0 1 2 3

0 0.528606 0.563374 0.566820 0.567062

1 0.808845 0.862045 0.867317 0.867688

2 0.880945 0.938887 0.944629 0.945034

3 0.894152 0.952962 0.958791 0.959201

Table 4.  Mission success probabilities under different amount of initial spares using perfect maintenance 
policy

number of X2 spares 
number of X1 spares 0 1 2 3

0 0.153131 0.253415 0.276997 0.279930

1 0.364261 0.602812 0.658908 0.665884

2 0.477438 0.790094 0.863609 0.872749

3 0.511017 0.845644 0.924317 0.934097

Fig. 4. Mission success probability curves under different initial spares scenario

Calculation_of_mission_success_probability (X)
for phase_num from 1 to n
	 scenarios_of_system_state (phase_num) = Get_states_of_path_set(phase_num);
end
scenarios_of_spares_usage =Get_ feasible_scenarios_of_spares_usage(X);
feasible_scenarios = Cartesian(scenarios_of_system_state, scenarios_of_spares_usage);
for each feasible_scenario(i) in feasible_scenarios

			   if (it satisfies the condition in equation (5)) then
				    for p from 1 to n

	 P pphase ( ) = Calculation_of_state_transition_probability(feasible_scenario(i));

	 // equation (15)
end

P i P pmission phase
p

n

( ) = ( )
=
∏ 

1

;

end
end
P P imission mission

i
= ( )∑ ;	 // equation (6)

end
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6. Summary

This paper presents a success probability model of the phased missions under given limited spares. The spare replacement policy 
considered in this paper is MSRP and the spare replacement time is not neglected. In the interval of two phases, any maintenance pol-
icy can be considered by using different functions of X S FD ,  ( )  and S S FD ,  ( )  . The model advanced in this paper also can be used 

in the reliability analysis of PMS with cold standby components considering the switch time or not. In the practice application of this 
model, the system may be divided into several parts with independent models to reduce the size of the system state space, and the suc-
cess probability of whole mission can be calculated by the combination of the probabilities of all parts.
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