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Convex sublattiCe based reliability theory

teoria niezawodnośCi oparta na pojęCiu podkraty wypukłej

Classical probability theory has been widely used in reliability analysis; however, it is hard to handle when the system is 
lack of` adequate and sufficient data. Nowadays, alternative approaches such as possibility theory and fuzzy set theory 
have also been proposed to analyze vagueness and epistemic uncertainty regarding reliability aspects of complex and 
large systems. The model presented in this paper is based upon possibility theory and multistate assumption. Convex 
sublattice is addressed on congruence relation regarding the complete lattice of structure functions. The relations between 
the equivalence classes on the congruence relation and the set of all structure functions are established. Furthermore, 
important reliability bounds can be derived under the notion of convex sublattice. Finally, a numerical example is given 
to illustrate the results.

Keywords: congruence relation, convex sublattice, lattice theory, multistate structure function, pos-
sibility theory, upper bound set.

Klasyczna teoria prawdopodobieństwa ma szerokie zastosowanie w analizie niezawodności, jednak trudno jest się nią 
posługiwać, kiedy brak jest wystarczających i odpowiednich danych na temat systemu. Obecnie, proponuje się alter-
natywne podejścia, takie jak teoria możliwości czy teoria zbiorów rozmytych, za pomocą których można analizować 
niepewność epistemiczną oraz nieostrość w odniesieniu do aspektów niezawodności złożonych i dużych systemów. Model 
przedstawiony w niniejszym artykule oparto na teorii możliwości oraz na założeniu wielostanowości. Podkratę wklęsłą 
opisano na relacji kongruencji, odnoszącej się do całej kraty funkcji struktury. Ustalono relacje pomiędzy klasami 
równoważności na relacji kongruencji a zbiorem wszystkich funkcji struktury. Ponadto posługując się pojęciem podkraty 
wypukłej można wyprowadzać istotne kresy niezawodności. Wyniki zilustrowano przykładem numerycznym.

Słowa kluczowe: relacja kongruencji, podkrata wypukła, teoria krat, wielostanowa funkcja struktu-
ry, teoria możliwości, górny kres zbioru.

1. Introduction

The classical reliability theory is based upon binary struc-
ture functions and probability theory [19, 21]. In the binary 
probabilistic approach, the component state and system state 
may be assumed to be either perfectly functioning or com-
pletely failed, which is an oversimplification of reality [6]. The 
increasing complexity of real systems has brought the emergent 
need of intermediate states. With this background, the theory 
of multistate structure functions was proposed to overcome the 
problem [14, 15]. Moreover, in many real life cases, adequate 
statistical data is unavailable to obtain due to the limitation of 
experimental conditions [13]. Probability theory is shown not 
the only possible way of representing imprecision and uncer-
tainty [7]. In fact, possibility theory has played a vital role in 
analyzing system uncertainty [8, 12, 17]. The models for re-
liability estimation studied from a non-probabilistic point of 
view are proposed to overcome the problems of approach in 
past literatures [1, 9, 10, 18, 20]. 

In order to better represent the system or component state 
space, lattice theory is essential in mathematical modelling 
using non-classical reliability theory [16]. By considering the 
complete lattice of a structure function, a general framework 
has given us a better foundation of reliability analysis [2, 4]. 
Cappelle [3] presented a theory of multistate structure functions 

on partially ordered sets (in casu complete lattices), which is 
able to solve several problems arising from the dichotomous 
model. Based on a combination of multistate structure func-
tions and possibility theory, Cappelle and Kerre [7] derived 
a congruence relation on the complete lattice of structure func-
tions which links several concepts and provides powerful tools 
to model physical systems. Based upon the congruence relation 
proposed by Cappelle and Kerre, the concept of convex sublat-
tice is presented in reliability analysis in this paper. According 
to the convex sublattice properties, the upper (lower) bound set 
of structure functions on equivalence relations regarding the 
congruence relation is addressed to go along with the practical 
engineering. Given an equivalence class on structure functions, 
it can be verified that the upper (lower) bound set of the equiva-
lence class is a convex lattice. Thus, several important bounda-
ries of the structure function set are employed. Furthermore, 
the significance of the definitions and properties are explained, 
both from theoretical and practical point of view.

This paper is organized as follows. In the next section, 
preliminary definitions such as structure functions and congru-
ence relations are briefly reviewed. In Section 3, the notion 
of a convex sublattice is applied to reliability theory, along 
with the explanation of how the theorems and properties can 
be used in practical engineering. Afterwards, a numerical ex-
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ample is addressed in Section 4 to exemplify the usefulness of 
the introduced concepts. As a result, some conclusions are em-
ployed in Section 5.

2. Preliminary definitions

In this section, three useful notions regarding the theory 
of multistate structure functions on complete lattices are intro-
duced. Considering that systems are with a finite number of 
components, we first give the concept of structure function, 
which can reflect the functional relationship between compo-
nents states and system state.

Definition 1 [3] Let (Li, ≤), 1 ≤ i ≤n, and (L, ≤) be n + 1 complete 
lattices. An L1×...×Ln – L - mapping ϕ, satisfying

(i) ϕ(0,...,0) = 0 and ϕ(1,...,1) = 1 (1)

(ii) ϕ is isotone, that is 

 ∀( )∈ × ×( )( ) ≤ ⇒ ( ) ≤ ( )( )x y x y x y, L Ln1
2

 φ φ  (2)

is called to be a structure function from (L1×...×Ln, ≤) to (L,≤).
M(L1×...×Ln, L) denotes the set of all the structure functions 

from complete lattice (L1×...×Ln, ≤)  to  complete  lattice  (L, ≤). 
The order relationship   is defined as follows: for any two 
L1×...×Ln – L structure functions ϕ1 and ϕ2,

 φ φ φ φ1 2 1 1 2   ⇔ ∀ ∈ × ×( ) ≤( )x x xL Ln ( ) ( )  (3)

More properties of the complete lattice of structure func-
tions will not be introduced here. For more details, the readers 
are referred to [3]. In the sequel, a core notion of congruence 
relation is addressed. All the equivalence classes employed in 
this paper are based upon the congruence relation.

Definition 2 [11] Let (L, ≤) be a lattice and θ a binary relation on 
L; θ is a congruence relation if and only if

 (i) θ is an equivalence relation on L,
 (ii) for any elements x1, x2,y1 and y2 of L

      x y1 1∈[ ]θ  and x y2 2∈[ ]θ ⇒
	 									⇒	 x x y y1 2 1 2∧ ∈ ∧[ ]θ  and x x y y1 2 1 2∨ ∈ ∨[ ]θ  (4)

In this definition, [x]θ is the equivalence class of θ which is 
generated by x. The infimum (supremum) operator is denoted 
by ∧(∨) on the lattice (L, ≤), meanwhile denoted by ∩	(∪) on 
the set of structure functions, that is, for any two structure func-
tions ϕ1 and ϕ2,

 φ φ φ φ1 2 1 1 2∩ × × → ∧: : ( ) ( )L L Ln x x x   (5)

The operation ∪ can be defined analogously. The subset S 
of the lattice L is called convex iff a, b ∈	S, c ∈	L, and a ≤ c ≤b 
imply that c ∈	S. Since the intersection of any number of convex 
sublattice is a convex sublattice unless void, the definition of 
convex sublattice is generated by a subset [11].

Definition 3[11] Let (L, ≤) be a lattice and S a subset of L, S is 
a convex sublattice of L if and only if

 ∀ ∈( ) ∧ ∨[ ] ⊆a b S a b a b S, ( , )  (6)

 For a, b ∈	L, a ≤ b, the interval [a, b]={x|a ≤ x ≤ b} is an 
important example of a convex sublattice. For a chain C, 
a, b ∈	C, a ≤ b, the half-open intervals: (a, b]={x|a < x ≤ b} and 
[a, b)={x|a ≤ x <b}, and the open interval: (a, b)={x|a < x < b}, 
whenever nonvoid, are examples of convex sublattices.

3. Convex sublattice concept applied in reliability 
theory

Regarding the definition of convex sublattice, some 
interesting results are proposed to show how the convex sublat-
tice concept is related to reliability theory in this section. First, 
two preliminary results, which are proposed by Cappelle and 
Kerre [7], are employed as lemmas. Then, three main theorems 
and one property are addressed with detailed proof. As a result, 
the significance of theoretic concepts applied in practical relia-
bility engineering is addressed.

3.1. Preliminary results 

The lemmas presented in this part are as a foundation of the 
main theoretical results. A typical equivalence class of structure 
functions is addressed in Lemma 1. On the basis of this equiva-
lence class, different subsets result in different observations. 

Lemma 1 [7] Let A be a subset of L1×...×Ln, ϕ and φ two arbi-
trary structure functions from (L1×...×Ln, ≤) to (L, ≤), then

 ϕ φ ϕ φ
θ

∈[ ] ⇔ ∀ ∈( ) =( )
A

Ax x x( ) ( )  (7)

Lemma 2 [7] Let A and B be two subsets of L1×...×Ln and ϕ 
a structure function from (L1×...×Ln, ≤) to (L, ≤), then 

 A B
B A

⊆ ⇒ [ ] ⊆ [ ]φ φ
θ θ

 (8)

Lemma 2 can be intuitively understood from fig.1. That is, 
more observation will result in a smaller number of appropriate 
structure functions that meet with given information. 

Fig.1. Relations between subsets and the relating equivalence class
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3.2. Main theoretical results

All the theorems addressed in this part will provide us with 
several typical convex sublattices of (M(L1×...×Ln,  ),  ), which 
are with significant meaning in engineering application.

Theorem 1 Let A be a subset of L1×...×Ln and ϕ a structure func-
tion from (L1×...×Ln, ≤)  to  (L,≤),  then  φ

θ[ ]( )
A

,  is a convex 

sublattice of (M(L1×...×Ln, L), ).

Proof: Let ϕi and ϕj be two arbitrary elements of φ θ[ ]
A
, it can be 

addressed from Lemma 1 that 

 ∀ ∈( ) = =( )x x x xA i jφ φ φ( ) ( ) ( )  (9)

Thus,
 ∀ ∈( ) ∩ = = ∪( )x x x xA i j i j( )( ) ( ) ( )( )φ φ φ φ φ  (10)

Let φ '  be any element belongs to φ φ φ φi j i j∩ ∪ , , then 

 φ φ φ φ φi j i j∩ ∪     

'  (11)

Hence, 

 ∀ ∈ × ×( ) ∩ ≤ ≤ ∪( )x x x xL Ln i j i j1  ( )( ) ( ) ( )( )'φ φ φ φ φ  (12)

which leads to
 ∀ ∈( ) =( )x x xA φ φ' ( ) ( )   (13)

or equivalently

 ∀ ∈ ∩ ∪ ( ) ∈[ ]( )φ φ φ φ φ φ φ
θ

' ', ( )i j i j
A

x  (14)

Then, we can get 

 ∀ ∈[ ]( ) ∩ ∪  ⊆ [ ]( )φ φ φ φ φ φ φ φ
θ θi j i j i j

A A
, ,  (15)

Taking Definition 3 into account, the theorem is deduced.
φ

θ[ ]( )
A

,  is a convex sublattice of (M(L1×...×Ln, L), ) 

based on the equivalence relation θA. The lattices which are pre-
sented in the following two theorems are on the basis of equiva-
lence class φ

θ[ ]
A
.

Theorem 2 Let A be a subset of L1×...×Ln, ϕ a structure function 
from (L1×...×Ln, ≤)  to  (L, ≤)  and MaA (MiA) denote the upper 
(lower) bound set of φ

θ[ ]
A
within M, then (MaA, ≤) ((MiA, ≤)) is 

a complete sublattice of (M(L1×...×Ln, L), ).

Proof: Only the proof of upper bound set MaA a complete sub-
lattice of (M(L1×...×Ln, L), ) is given here. The results about 
the lower bound set MiA can be proved analogously.

Let (ϕi|i ∈	I) be a non-empty family in MaA, then

 ∀ ∈( ) ∀ ∈( ) ≥( )i I A ix x xφ φ( ) ( )  (16)

Thus,

∀ ∈( ) ≥( )∈
x x xA

i I iinf ( ) ( )φ φ  and ∀ ∈( ) ≥







∈
x x xA

i I
isup ( ) ( )φ φ   (17)

Since both ∀ ∈( ) ≥( )∈
x x xA

i I iinf ( ) ( )φ φ and ∀ ∈( ) ≥







∈
x x xA

i I
isup ( ) ( )φ φ are belonged to MaA,  

(MaA, ≤) is a complete sublattice of (M(L1×...×Ln, L), ).

Theorem 3 Let A be a subset of L1×...×Ln, ϕ a structure function 
from (L1×...×Ln, ≤)  to  (L, ≤)  and MaA (MiA) denote the upper 

(lower) bound set of φ
θ[ ]

A
within M, then (MaA, ≤)((MiA, ≤))

is a convex sublattice of (M(L1×...×Ln, L), ).

Proof: As is proved in theorem 2, only the proof of upper bound 
set MaA a convex sublattice of (M(L1×...×Ln, L), ) is addressed 
here.

According to Definition 3, we must prove that

 ∀ ∈( ) ∩ ∪  ⊆( )φ φ φ φ φ φi j a i j i j aM A M A, ,  (18)

Since for any structure function φ φ
θm

A
∈[ ] , 

 ∀ ∈( ) =( )x x xA mφ φ( ) ( )  (19)

Furthermore, for any ϕi, ϕj ∈	MaA and any x∈L1×...×Ln , 

 φ φ φ φi m j m( ) ( ), ( ) ( )x x x x≥ ≥  (20)

Hence,

∀ ∈ × ×( ) ∩ ≥ ∪ ≥( )x x x x xL Ln i j m i j m1  ( )( ) ( ), ( )( ) ( )φ φ φ φ φ φ  (21)

which leads to that for any φ φ φ φ φ' ,∈ ∩ ∪ i j i j  ,

 ∀ ∈ × ×( ) ≥( )x x xL Ln m1   'φ φ( ) ( )   (22)

It is obvious that φ '  is an upper bound of φ
θ[ ]

A
, that is  

φ '∈	MaA .
Thus, it can be obtained that (1) holds from the selection of φ ' .
It turns out that (MaA, ≤)((MiA, ≤)) is a convex sublattice 

of (M(L1×...×Ln, L), ), and complete sublattice at the mean-
time. That is to say, the upper (lower) bound set of φ

θ[ ]
A
within 

M exists and can be figured out. Adding subset B of L1×...×Ln, 
more interesting results can be figured out in the following.

Corollary 1 Let A and B be two subsets of L1×...×Ln (A⊆B) and 
ϕ a structure function from (L1×...×Ln, ≤) to (L, ≤), then the up-
per (lower) bound set of φ θ[ ]

B
 within φ θ[ ]

A
 is a convex sublat-

tice of φ
θ[ ]( )

A
, .

Proof: Immediate from Theorem 3 and Lemma 2.

Property 1 Let A be a subset of L1×...×Ln, ϕ a structure function 
from (L1×...×Ln, ≤)  to  (L, ≤)  and  MaA(MiA) denote the upper 
(lower) bound set of φ θ[ ]

A
within M, then (i) the maximum and 

minimum of (MaA, ≤) is the supremum of (M, ≤) and  φ
θ[ ] ≤( )

A
, , 

respectively; (ii) the maximum and minimum of (MiA, ≤) is the 
infimum of (M, ≤) and  φ

θ[ ] ≤( )
A

, , respectively.

Proof: There are two parts in statement (i):
The maximum of 1) (MaA, ≤)is the supremum of (M, ≤);
The minimum of 2) (MaA, ≤)is the supremum of φ

θ[ ] ≤( )
A

,

Let φ denote the supremum of (M, ≤).  According  to  
φ

θ[ ]
A
 ⊆	M , it can be immediately obtained that φ is an upper 

bound of φ
θ[ ] ≤( )

A
, , that is φ ∈	MaA. For ∀ ∈η M Aa , η is an up-

per bound of φ
θ[ ] ≤( )

A
,  within (M, ≤), then η ∈	(M, ≤). Based on 

the denotation of φ, φ(x) ≥	η(x) holds for ∀ ∈ × ×  x L Ln1  . 
Thus, φ is an upper bound of (MaA, ≤). It can be deduced that φ 
is the maximum of (MaA, ≤).
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The other statements can be addressed in a similar way.

Corollary 2 Let A and B be two subsets of L1×...×Ln (A ⊆	B), ϕ 
a structure function from(L1×...×Ln, ≤)  to (L, ≤) and MaB(MiB)
denote the upper (lower) bound set of φ

θ[ ]
B

within φ θ[ ]
A
, then 

(i) maximum and minimum of (MaB, ≤) is the supremum of 
φ

θ[ ] ≤( )
A

,  and φ
θ[ ] ≤( )

B
, , respectively; (ii) maximum and mini-

mum of (MiB, ≤) is the infimum of φ
θ[ ] ≤( )

B
,  and φ

θ[ ] ≤( )
A

, , 

respectively.

Proof: Immediate from Property 1 and Lemma 2.
In the preceding paragraphs, main theoretical results have 

been addressed, together with the boundary of bound set. It will 
be shown how to apply these results of convex sublattices to 
actual problems.

3.3. Explanations and discussions

In real life situations, it is necessary to estimate structure 
functions. How can we narrow the scope of appropriate structu-
re functions from a set of observation? Mathematically, consid-
ering a subset A of L1×...×Ln, set Aϕ={(x,y)|x∈A} is called an 
observation set of ϕ in which ϕ(x)=y. Thus, an ordered couple 
(x,y) is called an observation, which is an element of Aϕ [5]. As 
a matter of fact, it is rarely possible to investigate all the obse-
rvations. Suppose that system state space is presented as a lim-
ited amount of elements of L1×...×Ln, denoted by A, thus the set 
of observation Aϕ is determined. Additionally, given the obser-
vation Aϕ, φ

θ[ ]
A
 represents the equivalence class of structure 

functions which satisfy Equation (7). Hence, the bounds of set 
φ

θ[ ]
A
can be figured out. Based on the determined observations, 

engineers are always fond of the structure functions superior to 
any in φ θ[ ]

A
. In fact, for any x∈A, x denotes the state vector of 

n subsystems (components) and different structure function 
corresponds to a different system structure. As for the same 
state vector of n subsystems (components), for instance, parallel 
and series system may lead to different results of system state. 
This system structure can be represented by the structure 
function. Undoubtedly, people are willing to find structure for 
system which can be under better state based on the same 
subsystem (component) state. This is why it is essential to study 
the upper bound set of φ

θ[ ]
A
. According to the order relation 

within the set of all the structure functions, those are superior to 
any in φ θ[ ]

A
should be superior to any element of the upper bo-

und set of φ θ[ ]
A
.

It can be proven from Theorem 2 that both the supremum and 
the infimum of the upper bound set of φ θ[ ]

A
exist. It is indicated 

in Theorem 3 that any structure function situated between the 
supremum and the infimum is an upper bound of φ θ[ ]

A
. Further-

more, the lower and upper bound of MaA can be substituted and 
transformed through Property 1, which will result in useful 
bounds. Given a data of subsystem (component) state, good 
structure function is capable of leading to a good system state. 
Engineers are able to compare the characteristics between the 
examining structure function and those within φ θ[ ]

A
. Comparison 

of the examining structure function and those within φ
θ[ ]

A
 is 

directly converted to the comparison of the examining structure 
function and the infimum of the upper bound of φ θ[ ]

A
 or the su-

premum of the lower bound of φ θ[ ]
A
. Consider a structure func-

tion ϕ from ([0,1]2, ≤) to ([0,1], ≤),  φ : , , : ,0 1 0 1
2

2
1 2

1 2[ ] → [ ] ( ) +x x x x


φ : , , : ,0 1 0 1
2

2
1 2

1 2[ ] → [ ] ( ) +x x x x
 , Let A be the set of 0 0 1

2
1
2

1 1, , , , ,( ) 





 ( )








, it can be 

figured out that φ1(x1,x2)=min(x1,x2) and φ2(x1,x2)=max(x1,x2) is the 
supremum of the lower bound of φ

θ[ ]
A
 and the infimum of the 

upper bound of φ
θ[ ]

A
, respectively. Thus, given the examining 

structure function φ(x1,x2)= x1⋅x2, it is easy to find out that both φ1 
and φ2 are superior to φ. Therefore, comparison of the examining 
structure function and those within φ θ[ ]

A
 is given.

4. Numerical example

In this section, the numerical example in Ref. [4] is used to 
illustrate the results in Section 3. 

Consider a structure function ϕ from ([0,1]2, ≤) to ([0,1], ≤),

 φ : , , : ,0 1 0 1
2

2
1 2

1 2[ ] → [ ] ( ) +x x x x


 (23)

It is easy to know the value of ϕ in some specific points, 
such as,

 φ φ φ
1
5

4
5

1
2

1
4

3
4

1
2

1
3

2
3

1
2

, , , ,





 =







 =







 =    and   (24)

For the sake of simplicity, set 0 0 1
4

3
4

1
3

2
3

1 1, , , , , , ,( ) 












 ( )








 

is denoted by A and set 0 0 1
5

4
5

1
4

3
4

1
3

2
3

1 1, , , , , , , , ,( ) 



















 ( )








 is 

denoted by B. It is indicated that φ θ[ ]
A
and φ

θ[ ]
B
 are presented as 

closed intervals denoted by [l(A, ϕ),u(A, ϕ)] and [l(B, ϕ),u(B, ϕ)], 
respectively [7]. The denotations in the intervals are expressed as 
follows, 
   l A

A
, ( ) sup ( )φ φ( ) =

∈[ ]
x y

y 0,x 
,   u A

A
, ( ) inf ( )φ φ( ) =

∈[ ]
x y

y x,1 
 (25)

   l B
B

, ( ) sup ( )φ φ( ) =
∈[ ]

x y
y 0,x 

,   u B
B

, ( ) inf ( )φ φ( ) =
∈[ ]

x y
y x,1 

 (26)

Hence, the following expressions are obtained after some 
calculations:

l A x x

x x

, : , , : ,

;

φ( ) [ ] → [ ] ( )
= =

0 1 0 1

1 1
1
2

2
1 2

1 2



          

   ;       1
4

3
4

1
3

2
3

  \ 1,x x1 2 1 1 1 1, , , , ,( )∈ 




× 










× 







11

          elsewhere

( ){ }






0 ;

l A x x

x x

, : , , : ,

;

φ( ) [ ] → [ ] ( )
= =

0 1 0 1

1 1
1
2

2
1 2

1 2



          

   ;       1
4

3
4

1
3

2
3

  \ 1,x x1 2 1 1 1 1, , , , ,( )∈ 




× 










× 







11

          elsewhere

( ){ }






0 ;

 (27)

u A x x

x x

, : , , : ,

;

φ( ) [ ] → [ ] ( )
= =

0 1 0 1

0 0
1
2

2
1 2

1 2



          

   ;       1
4

3
4

1
3

2
3

  \ 0,x x1 2 0 0 0 0, , , , ,( )∈ 




× 










× 







00

          elsewhere

( ){ }






1 ;

u A x x

x x

, : , , : ,

;

φ( ) [ ] → [ ] ( )
= =

0 1 0 1

0 0
1
2

2
1 2

1 2



          

   ;       1
4

3
4

1
3

2
3

  \ 0,x x1 2 0 0 0 0, , , , ,( )∈ 




× 










× 







00

          elsewhere

( ){ }






1 ;

 (28)
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l B x x

x x

, : , , : ,

;

φ( ) [ ] → [ ] ( )

= =

0 1 0 1

1 1
1
22

1 2

1 2



          

   ;       1
5

4
5

1
4

3
4

     

x x1 2 1 1 1 1, , , , ,( )∈ 




× 










× 







                       1
3

2
3

  \ 1,1

  

, ,1 1

0






× 





( ){ }


         elsewhere;














l B x x

x x

, : , , : ,

;

φ( ) [ ] → [ ] ( )

= =

0 1 0 1

1 1
1
22

1 2

1 2



          

   ;       1
5

4
5

1
4

3
4

     

x x1 2 1 1 1 1, , , , ,( )∈ 




× 










× 







                       1
3

2
3

  \ 1,1

  

, ,1 1

0






× 





( ){ }


         elsewhere;














 (29)

u B x x

x x

, : , , : ,

;

φ( ) [ ] → [ ] ( )

= =

0 1 0 1

0 0
1
22

1 2

1 2



          

   ;       1
5

4
5

1
4

3
4

     

x x1 2 0 0 0 0, , , , ,( )∈ 




× 










× 







                       1
3

2
3

  \ 0,0

  

0 0

1

, ,




× 





( ){ }
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Fig.2 comparison of the domains regarding A and B

The virtual and hatched part in Fig.2 states the domain rela-
ted to A and B, respectively, in the calculation of boundary 
structure functions. From this figure, it can be found out that 
l A l B, ,φ φ( ) ( )

 and u A u B, ,φ φ( ) ( ) . Thus, it is obvious that 
φ φ

θ θ[ ] ⊂ [ ]
B A

, which can be obtained from A ⊂	B and Lemma 2.

Furthermore, it is easily deduced that if MaB (MiB) (the up-
per (lower) bound set of φ

θ[ ]
B

within φ θ[ ]
A
) is the closed inter-

val [u(B, ϕ),u(A, ϕ)] ([l(A, ϕ),l(B, ϕ)]), then the following state-
ments can be seen in this numerical example:

The maximum of 1) (MaB, ≤) is the supremum of φ
θ[ ] ≤( )

A
, ;

The minimum of 2) (MaB, ≤) is the supremum of φ
θ[ ] ≤( )

B
, ;

The maximum of 3) (MiB, ≤) is the infimum of φ
θ[ ] ≤( )

B
, ;

The minimum of 4) (MiB, ≤) is the infimum of φ
θ[ ] ≤( )

A
, .

These results meet with the theoretical results in the previo-
us sections. It is stated in a practical point of view that lower 
and upper bound of the bound set can be substituted and trans-
formed, which will lead to some useful reliability bounds.

4. Conclusion

Based on the notion of congruence relationship, a convex 
sublattice on the complete lattice of structure functions is pre-
sented in this paper. It is indicated that the relationship between 
lattices of equivalence classes and set of all the structure func-
tions gives a better comprehension in system reliability, from 
both theoretical and practical point of view. The upper bound 
set of equivalence class regarding congruence relation presen-
ted in this paper has been shown to be a vital notion in engine-
ering applications. Finally, theoretic properties are testified in 
the numerical example.

**********
This research is partially supported by the National Natural Science Foundation of China under the contract number 51075061, 

and the Research Fund for the Doctoral Program of Higher Education of China (New Faculty) under the contract number 
20100185120029.

**********

5. References

Adduri P R, Penmetsa R C. System reliability analysis for mixed uncertain variables. Structural Safety 2009; 31(5): 375-382.1. 
Cappelle B, Kerre E E. Computer assisted reliability analysis: an application of possibilistic reliability theory to a subsystem of 2. 
a nuclear power plant. Fuzzy Sets and Systems 1995; 74: 103-113.
Cappelle B. Multistate structure functions and possibility theory: an alternative approach to reliability. Kerre E E, ed. Introduction 3. 
to the Basic Principle of Fuzzy Set Theory and Some of its Applications, Gent: Communication and Cognition, 1991: 252-293.
Cappelle B, Kerre E E. On a Possibilistic Approach to Reliability Theory. In: Proceeding 2nd Int. Symposium on Uncertainty 4. 
Modeling and Analysis (ISUMA 93). Maryland M. D., 1993: 415-418.
Cappelle B, Kerre E E. An algorithm to compute possibilistic reliability. In: ISUMA-NAFIPS, 1995: 350-354.5. 
Cappelle B. Structure functions and reliability mappings, a lattice theoretic approach to reliability. Doctoral Dissertation, 6. 
University Gent, 1994.
Cappelle B, Kerre E E. Issues in possibilistic reliability theory. Reliability and Safety Analyses under Fuzziness 1994; 4: 61-80.7. 
Delmotte F, Borne P. Modeling of reliability with possibility theory. IEEE Transactions on Systems, Man, and Cybernetics Part 8. 
A: Systems and Humans 1998; 28(1): 78-88.
Dubois D, Prade H. Possibility theory, probability theory and multiple-valued logics: A clarification. Annals of Mathematics and 9. 
Artificial Intelligence 2001; 32: 35–66.
Dubois D, Prade H. Possibility theory and its applications a retrospective and prospective view. The IEEE International Conference 10. 
on Fuzzy Systems, 2003: 3-11.



SCIENCE ANd TECHNOLOGY

61MaiNtENaNcE aNd rEliability Nr 3/2011

yu panG, M. sc. 
prof. hong-zhong huanG, ph.d.
prof. liping he, ph.d.
zhonglai wanG, ph.d.
ning-Cong xiao, M. sc.
School of Mechanical, Electronic, and Industrial Engineering
University of Electronic Science and Technology of China
Chengdu, Sichuan, 611731, P. R. China
E-mail: hzhuang@uestc.edu.cn

Gratzer G. General Lattice Theory, Birkhauser Verlag, Basel, 1978.11. 
He L P, Huang H Z, Du L, Zhang X D, Miao Q. A review of possibilistic approaches to reliability analysis and optimization in 12. 
engineering design. Lecture Notes in Computer Science 4553, 2007; Part IV: 1075-1084.
Huang H-Z, Zhang X. Design optimization with discrete and continuous variables of aleatory and epistemic uncertainties. Journal 13. 
of Mechanical Design, Transactions of the ASME, 2009, 131: 031006-1-031006-8.
Li A J, Wu Y, Lai K K, Liu K. Reliability estimation and prediction of multi-state components and coherent systems. Reliability 14. 
Engineering and System Safety 2005; 88(1): 93-98.
Lisnianski A, Levitin G. Multi-state system reliability assessment, optimization and applications. Series on Quality Reliability 15. 
and Engineering Statistics, Vol.6, Singapore: World Scientific, 2003.
Montero J, Cappelle B, Kerre E E. The usefulness of complete lattices in reliability theory. Reliability and Safety Analyses under 16. 
Fuzziness 1994; 4: 95-110.
Mourelatos Z P, Zhou J. Reliability estimation and design with insufficient data based on possibility theory. Collection of Technical 17. 
Papers - 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference 2004; 5: 3147-3162.
Singer D. A fuzzy set approach to fault tree and reliability analysis. Fuzzy Sets and Systems 1990; 34: 145-155.18. 
Wang Z L, Huang H-Z, Du X. Optimal design accounting for reliability, maintenance, and warranty. Journal of Mechanical 19. 
Design, Transactions of the ASME, 2010, 132: 011007.1-011007.8.
Wang Z L, Huang H-Z, Du L. Reliability analysis on competitive failure processes under fuzzy degradation data. Applied Soft 20. 
Computing, 2011, 11: 2964-2973.
Zuo M J, Huang J S, Kuo W. Multi-state k-out-of-n systems. Pham H, ed. Handbook of Reliability Engineering. London: Springer-21. 
Verlag, 2003: 3-17. 


