PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Metoda Mehar do analizy rozmytej niezawodności systemu produkcji tłoków

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Mehar's method for analyzing the fuzzy reliability of piston manufacturing system
Języki publikacji
EN
Abstrakty
EN
To the best of our knowledge till now there are only two analytical methods for finding the exact solution of fuzzy differential equations. In this paper, the shortcoming of one of these existing methods is pointed out. To overcome the shortcoming of the existing method, a new method, named as Mehar's method, is proposed for solving fuzzy differential equations. To show the advantage of Mehar's method over existing method the fuzzy Kolmogorov's differential equations, developed by using fuzzy Markov model of piston manufacturing system, are solved by using the existing and Mehar's method and it is shown that the results, obtained by using the existing method, may or may not be fuzzy number while the results, obtained by using Mehar's method, are always fuzzy number.
PL
Wedle naszej najlepszej wiedzy, do tej pory stworzono jedynie dwie metody analityczne precyzyjnego rozwiązywania rozmytych równań różniczkowych. W artykule wskazano wady jednej z istniejących metod oraz zaproponowano nową metodę rozwiązywania równań różniczkowych, nazwaną metodą Mehar, w której wady te zostały wyeliminowane. Aby wykazać przewagę metody Mehar nad istniejącą metodą, rozwiązano za pomocą obu tych metod rozmyte równania różniczkowe Kołmogorowa wyprowadzone przy użyciu rozmytego markowowskiego modelu systemu produkcji tłoków. Wykazano, że wyniki otrzymane z wykorzystaniem istniejącej metody, mogą ale nie muszą być liczbami rozmytymi, natomiast wyniki otrzymane przy pomocy metody Mehar zawsze stanowią liczbę rozmytą.
Rocznik
Tom
Strony
26--39
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
autor
autor
Bibliografia
  • 1. Abbasbandy S, Allahviranloo T. Numerical solutions of fuzzy differential equations by taylor method. Computational Methods in Applied Mathematics 2002; 2: 113-124.
  • 2. Abbasbandy S, Allahviranloo T. Numerical solution of fuzzy differential equation. Mathematical and Computational Applications 2002; 7: 41-52.
  • 3. Abbasbandy S, Allahviranloo T. Numerical solution of fuzzy differential equation by Runge-Kutta method. Nonlinear Studies 2004; 11: 117-129.
  • 4. Abbasbandy S, Allahviranloo T, Lopez-Pouso O, Nieto J J. Numerical methods for fuzzy differential inclusions. Computer and Mathematics with Applications 2004; 48: 1633-1641.
  • 5. Abbasbandy S, Nieto J J, Alavi M. Tuning of reachable set in one dimensional fuzzy differential equations. Chaos, Solitons and Fractals 2005; 26: 1337-1341.
  • 6. Allahviranloo T, Ahmady N, Ahmady A. Numerical solution of fuzzy differential equations by predictor-corrector method. Information Sciences 2007; 177: 1633-1647.
  • 7. Allahviranloo T, Ahmady v, Ahmady N. Nth order fuzzy linear differential equations, Information Sciences 2008; 178: 1309-1324.
  • 8. Bede B. Note on numerical solutions of fuzzy differential equations by predictor-corrector method, Information Sciences 2008; 178: 1917-1922.
  • 9. Bede B, Gal S G. Generalizations of the differentiability of fuzzy number valued functions with applications to fuzzy differential equation. Fuzzy Sets and Systems 2005; 151: 581-599.
  • 10. Bede B, Rudas I J, Bencsik A L. First order linear fuzzy differential equations under generalized differentiability. Information Sciences 2007; 177: 1648-1662.
  • 11. Binh P T T, Khoa T Q D. Application of fuzzy markov in calculating reliability of power systems. IEEE PES Transmission and Distribution Conference and Exposition Latin America, Venezuela 2006; 1-4.
  • 12. Buckley J J, Feuring T. Introduction to fuzzy partial differential equations. Fuzzy Sets and Systems 1999; 105: 241-248.
  • 13. Buckley J J, Feuring T. Fuzzy differential equations. Fuzzy Sets and Systems 2000; 110: 43-54.
  • 14. Buckley J J, Feuring T. Fuzzy initial value problem for N th-order fuzzy linear differential equations. Fuzzy Sets and Systems 2001; 121: 247-255.
  • 15. Buckley J J, Feuring T, HayashiY. Linear system of first order ordinary differential equations: fuzzy initial conditions. Soft Computing 2002; 6: 415-421.
  • 16. Chalco-Cano Y, Roman-Flores H. On the new solution of fuzzy differential equations. Chaos Solitons Fractals 2008; 38: 112-119.
  • 17. Chalco-Cano Y, Roman-Flores H. Comparison between some approaches to solve fuzzy differential equations. Fuzzy Sets and Systems 2009; 160: 1517-1527.
  • 18. Chang S L, Zadeh L A. On fuzzy mapping and control. IEEE Transactions on Systems, Man and Cybernetics 1972; 2: 30-34.
  • 19. Cho Y J, Lan H Y. The existence of solutions for the non linear first order fuzzy differential equations with discontinuous conditions. Dynamics Continuous Discrete Inpulsive Systems Series A: Mathematical Analysis 2007; 14: 873-884.
  • 20. Diamond P. Brief note on the variation of constants formula for fuzzy differential equations. Fuzzy Sets and Systems 2002; 129: 65-71.
  • 21. Dubois D, Prade H. Towards fuzzy differential calculus: Part 3, differentiation. Fuzzy Sets and Systems 1982; 8: 225-233.
  • 22. Georgiou D N, Nieto J J, Rodriguez-Lopez R. Initial value problems for higher order fuzzy differential equations. Nonlinear Analysis 2005; 63: 587-600.
  • 23. Gnana Bhaskar T, Lakshmikantham V, Devi V. Revisiting fuzzy differential equations. Nonlinear Analysis 2004; 58: 351-358.
  • 24. Kaleva O. A note on fuzzy differential equations. Nonlinear Analysis 2006; 64: 895-900.
  • 25. Kaufmann A, Gupta M M. Introduction to Fuzzy Arithmetics: Theory and Applications. Van Nostrand Reinhold, New York 1985.
  • 26. Kleiner Y, Sadiq R, Rajani B. Modelling the deterioration of buried infrastructure as a fuzzy Markov process. Journal of Water Supply Research and Technology 2006; 55: 67-80.
  • 27. Kumar A, Singh J, Kumar P. Fuzzy reliability and fuzzy availability of the serial process in butter oil processesing plant. Journal of Mathematics and Statistics 2009; 5: 65-71.
  • 28. Kumar A, Kaur A. Methods for solving unblanced fuzzy transportation problems. Operational Research-An International Journal. DOI 10.1007/s 12351-010-0101-3.
  • 29. Liu Y, Huang H Z. Reliability assessment for fuzzy multi-state systems. International Journal of Systems Science 2010; 41: 365-379.
  • 30. Misukoshi M, Barros L C, Chalco-Cano Y, Romбn-Flores H, Bassanezi R C. Fuzzy differential equations and the extension principle. Information Sciences 2007; 177: 3627-3635.
  • 31. Nieto J. A boundary value problem for second order fuzzy differential equations. Nonlinear Analysis 2010; 72: 3583-3593.
  • 32. Nieto J J, Rodriguez-lopez R. Bounded solutions for fuzzy differential and integral equations. Chaos, Solitons and Fractals 2006; 27: 1376-1386.
  • 33. Nieto J J, Rodriguez-Lуpez R, Franco D. Linear first-order fuzzy differential equation, Internat Journal of Uncertainty. Fuzziness and Knowledge-Based Systems 2006; 14: 687-709.
  • 34. Oregan D, Lakshmikantham V, Nieto J J. Initial and boundary value problems for fuzzy differential equations. Nonlinear Analysis 2003; 54: 405-415.
  • 35. Pederson S, Sambandham M. The Runge-Kutta method for hybrid fuzzy differential equations. Nonlinear Analysis: Hybrid Systems 2008; 2: 626-634.
  • 36. Rodriguez-Lуpez R. Comparison results for fuzzy differential equations. Information Sciences 2008; 178: 1756-1779.
  • 37. Rodriguez-Lуpez R. Monotone method fuzzy differential equations. Fuzzy Sets and Systems 2008; 159: 2047-2076.
  • 38. Uprety I, Zaheeruddin. Fuzzy reliability of gracefully degradable computing systems. Proceedings of International Conference on Methods and Models on Computer Science 2009; 1-4.
  • 39. Xiaoping X, Yongqiang F. On the structure of solutions for fuzzy initial value problem. Fuzzy Sets and Systems 2006; 157: 212-229.
  • 40. Xu J, Liao Z, Hu Z. A class of linear differential dynamical systems with fuzzy initial condition. Fuzzy Sets and Systems 2007; 158: 2339-2358.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT1-0039-0047
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.