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Mehar’s Method for analyzing the fuzzy reliability  
of piston Manufacturing systeM

Metoda Mehar do analizy rozMytej niezawodności systeMu  
produkcji tłoków

To the best of our knowledge till now there are only two analytical methods for finding the exact solution of fuzzy differen-
tial equations. In this paper, the shortcoming of one of these existing methods is pointed out. To overcome the shortcoming 
of the existing method, a new method, named as Mehar’s method, is proposed for solving fuzzy differential equations. To 
show the advantage of Mehar’s method over existing method the fuzzy Kolmogorov’s differential equations, developed by 
using fuzzy Markov model of piston manufacturing system, are solved by using the existing and Mehar’s method and it is 
shown that the results, obtained by using the existing method, may or may not be fuzzy number while the results, obtained 
by using Mehar’s method, are always fuzzy number.
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Wedle naszej najlepszej wiedzy, do tej pory stworzono jedynie dwie metody analityczne precyzyjnego rozwiązywania roz-
mytych równań różniczkowych. W artykule wskazano wady jednej z istniejących metod oraz zaproponowano nową metodę 
rozwiązywania równań różniczkowych, nazwaną metodą Mehar, w której wady te zostały wyeliminowane. Aby wykazać 
przewagę metody Mehar nad istniejącą metodą, rozwiązano za pomocą obu tych metod rozmyte równania różniczkowe 
Kołmogorowa wyprowadzone przy użyciu rozmytego markowowskiego modelu  systemu produkcji tłoków. Wykazano, że 
wyniki otrzymane z wykorzystaniem istniejącej metody, mogą ale nie muszą być liczbami rozmytymi, natomiast wyniki 
otrzymane przy pomocy metody Mehar zawsze stanowią liczbę rozmytą.

Słowa kluczowe: rozmyte równania różniczkowe, rozmyta niezawodność, trapezoidalna liczba rozmyta.

1. Introduction

Fuzzy differential equations are utilized for the purpose of 
modelling problems in science and engineering. The concept 
of a fuzzy derivative was first introduced by Chang and Zadeh 
[18] it was followed by Dubois and Prade [21], who defined 
and used the extension principle. Buckley and Feuring [14] 
introduced two analytical methods for solving nth order linear 
differential equations with fuzzy initial conditions. Their first 
method of solution was to fuzzify the crisp solution and then 
checked to see if it satisfies the differential equation with fuzzy 
initial conditions and the second method was the reverse of the 
first method, in that they first solved the fuzzy initial value pro-
blem and then checked to see if it defines a fuzzy function.

In the last few years, lot of work has been done by several 
authors in theoretical and applied fields of fuzzy differential 
equations [1-10, 12, 13, 15-17, 19, 20, 22-24, 30-37, 39, 40].

In this paper, the shortcoming of one of these existing 
methods is pointed out. To overcome the shortcoming of the 
existing method, a new method, named as Mehar’s method, is 
proposed for solving fuzzy differential equations. To show the 
advantage of Mehar’s method over existing method the fuzzy 
Kolmogorov’s differential equations, developed by using fuzzy 
Markov model of piston manufacturing system, are solved by 
using the existing and Mehar’s method and it is shown that the 
results, obtained by using the existing method, may or may not 
be fuzzy number while the results, obtained by using Mehar’s 
method, are always fuzzy number.

This paper is organized as follows: In Section 2, some basic 
definitions, arithmetic operations between intervals, arithmetic 

operations between trapezoidal fuzzy numbers and arithmetic 
operations between JMD trapezoidal fuzzy numbers are presen-
ted. In Section 3, the existing method for solving fuzzy diffe-
rential equations is presented. The shortcoming of the existing 
method is discussed in Section 4. In Section 5, a new method, 
named as Mehar’s method, is proposed to find the exact solu-
tion of fuzzy differential equations with the help of JMD re-
presentation of trapezoidal fuzzy numbers. Advantages of the 
proposed method over the existing method is shown in Section 
6. In Section 7, advantages of JMD representation of trapezo-
idal fuzzy numbers over existing representation of trapezoidal 
fuzzy numbers is presented. In Section 8, fuzzy reliability of 
piston manufacturing system is evaluated. The conclusion is 
discussed in Section 9.

2. preliminaries

In this section, some basic definitions, arithmetic opera-
tions between intervals, arithmetic operations between trape-
zoidal fuzzy numbers and arithmetic operations between JMD 
trapezoidal fuzzy numbers are presented.
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2.1. basic definitions 

In this section, some basic definitions are presented [25].

2.1.1. α-cut

In this section, α-cut of a fuzzy number, zero α-cut and equ-
ality of α-cut are presented.

Definition 2.1. An α-cut of a fuzzy number A
~  is defined as 

a crisp set A x x x XAα µ α= { : ( ) , }


≥ ∈ , where α ∈ [0,1].

Definition 2.2. An α-cut Aα = [a, b] is said to be zero α-cut iff 
a = 0 and b = 0.

Definition 2.3. Two α-cuts Aα = [a1,b1] and Bα = [a2,b2] are said 
to be equal i.e., Aα= Bα iff a1= a2 and b1= b2.

2.1.2. Trapezoidal fuzzy number

In this section, definitions of trapezoidal fuzzy number, 
zero trapezoidal fuzzy number and equality of trapezoidal fuz-
zy numbers are presented [25].

Definition 2.4 A fuzzy number ),,,(=
~

dcbaA  is said to be 
a trapezoidal fuzzy number if its membership function is given 
by 
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Definition 2.5 A trapezoidal fuzzy number ),,,(=
~

dcbaA  is 
said to be zero trapezoidal fuzzy number iff a = 0, b = 0, c = 0, 
d = 0.

Definition 2.6 A trapezoidal fuzzy number ),,,(=
~

dcbaA   is 
said to be non-negative trapezoidal fuzzy number iff a ≥ 0.

Definition 2.7 Two trapezoidal fuzzy numbers A
~ =(a1,b1,c1,d1) 

and B~  = (a2,b2,c2,d2) are said to be equal i.e., A
~ = B~  iff a1= a2, 

b1= b2, c1= c2, d1= d2.

2.1.3. JMD representation of trapezoidal fuzzy number

Kumar and Kaur [28] proposed JMD representation of 
trapezoidal fuzzy number and proved that it is better to use 
the proposed representation of trapezoidal fuzzy numbers in-
stead of existing representation of trapezoidal fuzzy numbers 
for finding the fuzzy optimal solution of fuzzy transportation 
problems. In this section, definitions of JMD trapezoidal fuzzy 
number, zero JMD trapezoidal fuzzy number and equality of 
JMD trapezoidal fuzzy numbers are presented.

Definition 2.8. Let (a,b,c,d) be a trapezoidal fuzzy number then 
its JMD representation is (x,α,β,γ)JMD, where x = a, α = b - a ≥ 0, 
β = c - b ≥ 0, γ = d - c ≥ 0.

Definition 2.9. A trapezoidal fuzzy number A
~ =(x,α,β,γ)JMD is 

said to be zero trapezoidal fuzzy number if and only if x = 0, 
α = 0, β = 0, γ = 0. 

Definition 2.10. A trapezoidal fuzzy number  A
~ =(x,α,β,γ)JMD is 

said to be non-negative trapezoidal fuzzy number if and only if 
x ≥ 0. 

Definition 2.11. Two trapezoidal fuzzy numbers A
~ =(x1,α1,β1,γ1)JMD 

and B~ =(x2,α2,β2,γ2)JMD are said to be equal i.e., A
~ = B~  if and only if 

x1= x2, α1= α2, β1= β2, γ1= γ2.

2.2. Arithmetic operations

In this section, arithmetic operations between intervals, tra-
pezoidal fuzzy numbers and JMD trapezoidal fuzzy number are 
presented.

2.2.1. Arithmetic operations between intervals

In this section, some arithmetic operations between inte-
rvals are presented [25].

Let A = [a1, b1], B = [a2, b2] be two intervals then

(i) A + B = [a1+ a2, b1+ b2] 

(ii) A - B = [a1- b2, , b1 - a2] 

(iii) λA = ( , , , ), 0
, , , ), 0

1 1 1 1

1 1 1 1

λ λ λ λ λ
λ λ λ λ λ

x y z w
w z y x

≥
≤{(     

(iv) AB = [a,b], where, a = minimum (a1a2,a1b2,a2b1,b1b2) and b 
= maximum (a1a2,a1b2,a2b1,b1b2)

2.2.2. arithmetic operations between trapezoidal fuzzy 
numbers

In this section, arithmetic operations between trapezoidal 
fuzzy numbers are presented [25].

Let 1
~
A  = (x1,y1,z1,w1) and 2

~
A  = (x2,y2,z2,w2) be two trapezo-

idal fuzzy numbers, then 

(i) 1
~
A  ⊕  2

~
A  = ),,,( 21212121 wwzzyyxx ++++  

(ii) 1
~
A  Ө  2

~
A  = ),,,( 21212121 xwyzzywx −−−−  

(iii) λ 1
~
A  = ( , , , ), 0

, , , ), 0
1 1 1 1

1 1 1 1

λ λ λ λ λ
λ λ λ λ λ

x y z w
w z y x

≥
≤{(     

(iv) 1
~
A  ⊗ 2

~
A    (minimum (x), minimum (y), maximum (y), 

maximum (x)),   
where x =  (x1x2,x1w2,w1x2,w1w2) and y = (y1y2,y1z2,z1y2,z1z2).

2.2.3. Arithmetic operations between JMD trapezoidal 
fuzzy numbers

In this section, arithmetic operations between JMD trapezo-
idal fuzzy numbers are presented [28].

Let A x JMD1 1 1 1 1= ( , , , )α β γ  and A x JMD2 2 2 2 2= ( , , , )α β γ  be two 
JMD trapezoidal fuzzy numbers, then 

(i) 1
~
A ⊕ 2

~
A  = ( , , , )1 2 1 2 1 2 1 2x x JMD+ + + +α α β β γ γ  

(ii) 1
~
A Ө 2

~
A  = ( , , , )1 2 2 2 2 1 2 1 2 2 1x x JMD− − − − + + +α β γ α γ β β α γ

(iii) λA1=
( , , , ) , 0

, , , )
1 1 1 1

1 1 1 1 1 1 1

λ λα λβ λγ λ
λ λα λβ λγ λγ λβ λα

x
x

JMD

JM

≥
+ + + − − −( DD , 0.    λ ≤{
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(iv) 1
~
A ⊗ 2

~
A    (minimum (x), minimum (y) −  minimum 

(x), maximum (y) −  minimum (y), maximum (x) −  maximum 
(y)),   where 

x = ( , , ,1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1 2 1x x x x x x x x x x x x+ + + + + +α β γ α β γ

x x x x x x x1 2 1 2 1 2 1 2 2 1 1 2 1 2 1 2 2 1 1 2 1 2 1+ + + + + + + + + + +α β γ α α α α β α γ β β α β β β γ 22 2 1 1 2 1 2 1 2 )+ + + +x γ γ α γ β γ γ

x x x x x x x1 2 1 2 1 2 1 2 2 1 1 2 1 2 1 2 2 1 1 2 1 2 1+ + + + + + + + + + +α β γ α α α α β α γ β β α β β β γ 22 2 1 1 2 1 2 1 2 )+ + + +x γ γ α γ β γ γ

and 
y x x x x x x x x x x x= ( , ,1 2 1 2 2 1 1 2 1 2 1 2 1 2 2 1 1 2 1 2 1 2+ + + + + + + + +α α α α α β α α α α β xx x1 2 2 1 1 2α α α α+ + +

y x x x x x x x x x x x= ( , ,1 2 1 2 2 1 1 2 1 2 1 2 1 2 2 1 1 2 1 2 1 2+ + + + + + + + +α α α α α β α α α α β xx x1 2 2 1 1 2α α α α+ + +

x x x x x x x2 1 1 2 1 2 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2, )β β α α β α α α α β β β α β β+ + + + + + + + +

x x x x x x x2 1 1 2 1 2 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2, )β β α α β α α α α β β β α β β+ + + + + + + + +

Remark 2.1. Let ),,,(=
~

11111 wzyxA  be a JMD trapezoidal fuz-
zy number and ),,,(=

~
22222 wzyxA  be a non-negative JMD 

trapezoidal fuzzy number, then
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Remark 2.2. Let A x JMD1 1 1 1 1= ( , , , )α β γ  be a JMD trapezoidal 

fuzzy number and A x JMD2 2 2 2 2= ( , , , )α β γ  be a non-negative 
JMD trapezoidal fuzzy number, then
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3. Existing method

Buckley and Feuring [14] introduced two analytical me-
thods for solving fuzzy initial value problem for nth order linear 
differential equations. In this section, one of these existing me-
thods for solving fuzzy differential equations is presented.

The solution of fuzzy initial value problem for nth order fuz-
zy linear differential equation

           a y a y a y a y g x yn
n

n
n( )

1
( 1)

1
(1)

0 0... = ( ), (0) = ,⊕ ⊕ ⊕ ⊕−
− γ    y y n

n
(1)

1
( 1)

1(0) = ,..., (0) =γ γ−
−

 
          a y a y a y a y g x yn

n
n

n( )
1

( 1)
1

(1)
0 0... = ( ), (0) = ,⊕ ⊕ ⊕ ⊕−

− γ    y y n
n

(1)
1

( 1)
1(0) = ,..., (0) =γ γ−
−  (1) 

where, 


y d y
dx

i
i

i
( ) =  for i = n,n-1,...,1, na~  is a non zero trapezo-

idal fuzzy number and 0121
~,~,...,~,~ aaaa nn −−  are any type of tra-

pezoidal fuzzy numbers, can be obtained by using the following 
steps of the existing method:

Step 1: Find the α-cut [ ( , ), ( , )](1) (2)a x a xn nα α ,

[ ( , ), ( , )],...,1(1) 1(2)a x a xn n− −α α  
[ ( , ), ( , )],[ ( , ), ( , )]1(1) 1(2) 0(1) 0(2)a x a x a x a xα α α α ,
[ ( , ), ( , )]1

( )
2
( )y x y xn nα α , [ ( , ), ( , )]1

( 1)
2
( 1)y x y xn n− −α α ,...,

[ ( , ), ( , )]1
(1)

2
(1)y x y xα α , [ ( , ), ( , )]1 2y x y xα α

and [ (0, ), (0, )],[ (0, ), (0, )],...,0(1) 0(2) 1(1) 1(2)γ α γ α γ α γ α

[ (0, ), (0, )]1(1) 1(2)γ α γ αn n− − corresponding to fuzzy parameters 

        a a a a a y y y yn n n
n n, , ,..., , , , ,..., ,1 2 1 0

( ) ( 1) (1)
− −

−  and   γ γ γ0 1 1, ,..., n−  re-

spectively.

Step 2: Convert the fuzzy initial value problem for nth order 
fuzzy linear differential equation (1), into the following nth or-
der differential equation:
[ ( , ), ( , )][ ( , ), ( , )] [ ( ,(1) (2) 1

( )
2
( )

1(1)a x a x y x y x a xn n
n n

nα α α α + − αα α), ( , )]1(2)a xn−

[ ( , ), ( , )]1
( 1)

2
( 1)y x y xn n− −α α + ... +

+ [ ( , ), ( , )][ ( , ), ( , )]1(1) 1(2) 1
(1)

2
(1)a x a x y x y xα α α α + 

+ [ ( , ), ( , )]0(1) 0(2)a x a xα α [ ( , ), ( , )]1 2y x y xα α = [ ( ), ( )]g x g x , 
[ (0, ), (0, )] =1 2y yα α [ (0, ), (0, )]0(1) 0(2)γ α γ α , 
[ (0, ), (0, )] =1

(1)
2
(1)y yα α [ (0, ), (0, )]1(1) 1(2)γ α γ α ..., 

[ (0, ), (0, )] = [ (0, ), (0, )]1
( 1)

2
( 1)

1(1) 1(2)y yn n
n n

− −
− −α α γ α γ α.

Step 3: Convert the nth order differential equation, obtained 
from Step 2, into the following ordinary differential equations

b y b y b y b y g xn
n

n
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1
( 1)

1
(1)

0... = ( )+ + + +−
−

y y y n
1 0(1) 1
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( 1)(0, ) = (0, ), (0, ) = (0, ),..., (0, ) =α γ α α γ α α− γγ αn−1(2) (0, )
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)(i
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i
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i
i

i
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iα α α α α (( , ), ( , ) ( , ))(2) 2
( )x a x y xi
iα α α

and 
)(i

i yc  = maximum ( ( , ) ( , ), ( , ) ( , ), ( , )(1) 1
( )

(1) 2
( )

(2) 1
( )a x y x a x y x a x yi

i
i

i
i

iα α α α α (( , ), ( , ) ( , ))(2) 2
( )x a x y xi
iα α α

( ( , ) ( , ), ( , ) ( , ), ( , )(1) 1
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(1) 2
( )

(2) 1
( )a x y x a x y x a x yi

i
i

i
i
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( )x a x y xi
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for i = n,n-1,...,1,0.
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Step 4: Solve the ordinary differential equations, obtained from 
Step 3, to find the values of y1(x0, α) and y2(x0, α) corresponding 
to x = x0, where x0 is any real number.

Step 5: Check that [y1(x0,α),y2(x0,α)] defines the α-cut of a fuz-
zy number or not i.e., for the values of y1(x0,α) and y2(x0,α), the 
following conditions are satisfied or not. 
(i) y1(x0,α) a monotonically increasing function for α∈[0,1] 
(ii) y2(x0,α) a monotonically decreasing function for α∈[0,1] 
(iii) y1(x0,1)= y2(x0,1) 

Case 1: If [y1(x0,α) y2(x0,α)] defines the α-cut of a fuzzy number 
then the fuzzy solution )(~

0xy  of fuzzy differential equation (1) 
exist and [y1(x0,α), y2(x0,α)] represents the α-cut corresponding 
to fuzzy solution )(~

0xy .

Case 2: If [y1(x0,α) y2(x0,α)] does not define the α-cut of a fuzzy 
number then the fuzzy solution )(~

0xy  of fuzzy differential equ-
ation (1) does not exist.

4. Shortcoming of existing method in real life 
problems

Several authors have proposed different methods for ana-
lyzing the fuzzy reliability of industrial systems. One of the 
existing method for analyzing the fuzzy reliability is by using 
the fuzzy Markov model [11, 26, 27, 29, 38], in which fuzzy 
Kolomogorov’s differential equations are developed with the 
help of fuzzy Markov model and the fuzzy reliability is evalu-
ated by solving the obtained fuzzy Kolomogorov’s differential 
equations.

In this section, the set of fuzzy Kolomogorov’s differential 
equations, obtained by using fuzzy Markov model of a piston 
manufacturing system, is solved by using one of the analytical 
methods [14] and it is shown that the obtained solution may or 
may not be a fuzzy number. Due to which the solution of fuzzy 
differential equations, obtained by using the existing method, 

can not be used to analyze the fuzzy reliability of piston manu-
facturing system.

4.1. Fuzzy Markov modeling of piston manufacturing 
system

Piston manufacturing system consists of two sub-systems 
namely R1 and R2 , which are connected in series. Further the 
sub-system R1 consists of six sub-systems namely A,B,C,D,E 
and F and similarly, six sub-systems namely G,H,I,J,K and L 
constitute the sub-system R2. Markov models for the sub-sys-
tems R1 and R2 are shown in Figure 1 and Figure 2 respectively.

The operations that are performed on these machines or 
sub-systems are as follows: 
1. Sub-system A (Fixture Seat Machine): This machine is 

used to clamp the piston.
2. Sub-system B (Rough Grooving and Turning Machine): 

On this machine, rough grooves are made on piston. Tur-
ning operation is performed on this machine i.e., to bring 
the dia of piston to proper size.

3. Sub-system C (Rough Pin Hole Boring Machine): Pin 
hole boring operation is performed using this machine i.e., 
proper size is given to holes.

4. Sub-system D (Oil Hole Drilling Machine): On this ma-
chine, one hole is made on the piston to supply the oil. The 
oil is used to move piston in cylinder smoothly.

5. Sub-system E (Finishing Grooving Machine): On this 
machine, the finishing is given to rough grooves which are 
prepared using sub-system B.

6. Sub-system F (Finish Profile Turning Machine): Oval 
shape is given to piston using this machine.

7. Sub-system G (Finish Pin Hole Boring Machine): On this 
machine, finishing is given to the pin hole portion which is 
prepared using sub-system C.
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Figure 1: Fuzzy Markov model of sub-system 1R  Fig. 1. Fuzzy Markov model of sub-system R1
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8. Sub-system H (Finish Crown and Cavity Machine): On 
this machine, finishing operation is performed on the crown 
of piston.

9. Sub-system I (Valve Milling Machine): On this machine, 
valve recess is made on the piston.

10. Sub-system J (Chamfering or Radius Machine): This 
machine rounds off the corners of the piston, so that it can 
run smoothly in the cylinder.

11. Sub-system K (Circlip Grooving Machine): On this ma-
chine, circlip grooves are made on the piston.

12. Sub-system L (Piston Cleaning Machine): This machine 
is used to clean the inside and outside portion of the pi-
ston.

4.2. Notation

In this section, notation that is used to analyze the fuzzy 
reliability of piston manufacturing system are presented:

1. A,B,C,D,E,F and G,H,I,J,K,L denote good conditions of 
sub-systems of R1 and R2 respectively.

2. The symbols a,b,c,d,e,f,g,h,i,j,k and l represent the failed 
state of the sub-systems A,B,C,D,E,F,G,H,I,J,K and L re-
spectively.

3. EC ,  and G  indicate that the sub-systems C,E and G are 
working in reduced state.

4. χi  (i=1 to 8) represents the fuzzy failure rates of the re-
levant sub-systems, when the transition is from A to a, B 
to b, D to d, F to f, C to C , E to E , C  to c and E  to e 
respectively.

5. βi  (i=1 to 8) represents the fuzzy repair rates of the rele-
vant sub-systems, when the transition is from a to A, b to B, 
d to D, f to F, C  to C, E  to E, c to C and e to E respective-
ly.

6. ηi (i=1 to 7) represents the fuzzy failure rates of the rele-
vant sub-systems, when the transition is from H to h, I to i, 
J to j, K to k, L to l, G to G  and G  to g respectively.

7. µi  (i=1 to 7) represents the fuzzy repair rates of the rele-
vant sub-systems, when the transition is from h to H, i to I, 
j to J, k to K, l to L, G  to G and g to G respectively.

8. P t j nj ( ), = 1,2,..., represents the fuzzy probability that 
the system is in state Sj at time t, where n is number of sta-
tes. P t j nj'( ), = 1,2,...,   represents derivative of )(~ tPj  with 
respect to t.

9. )(~
1 tR  and )(~

2 tR  denote the fuzzy reliability of the sub-
systems R1 and R2 respectively.

10. )(~ tR  represents the fuzzy reliability of the whole system.

 4.3. assumptions

In this section, the assumptions that are used for analyzing 
the fuzzy reliability of piston manufacturing system are pre-
sented:
(i) Fuzzy failure rates and fuzzy repair rates are independent 

with each other and their unit is per hour.
(ii) There are no simultaneous failures among the sub-sys-

tems.
(iii) Sub-systems C,E and G fails through reduced states only.

4.4. Data

On the basis of the perception of the experts, the appropria-
te failure rates and repair rates for the different sub-systems of 
R1 and R2, represented by trapezoidal fuzzy numbers, are shown 
in table 1 and table 2 respectively.

4.5. Fuzzy Kolmogorov’s differential equations for the 
sub-systems R1 and R2

In this section, fuzzy Kolmogorov’s differential equations 
are developed by using the Markov model for the sub-systems 
R1 and R2.

Fuzzy Kolmogorov’s differential equations for the sub-sys-
tem R1 associated with the Markov model (Figure 1) are:
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Figure 2: Fuzzy Markov model of sub-system 2R  Fig. 2. Fuzzy Markov model of sub-system R2
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          P t P t P t P t P t P t1
(1)

1 1 1 5 2 6 3 7 4 8( ) ( ) = ( ) ( ) ( ) (⊕ ⊕ ⊕ ⊕λ β β β β )) ( ) ( ) ( ) ( )5 2 6 3 7 17 8 18⊕ ⊕ ⊕ ⊕       β β β βP t P t P t P t
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(1)
1 1 1 5 2 6 3 7 4 8( ) ( ) = ( ) ( ) ( ) (⊕ ⊕ ⊕ ⊕λ β β β β )) ( ) ( ) ( ) ( )5 2 6 3 7 17 8 18⊕ ⊕ ⊕ ⊕       β β β βP t P t P t P t

          P t P t P t P t P t P2
(1)

2 2 1 9 2 10 3 11 4 1( ) ( ) = ( ) ( ) ( )⊕ ⊕ ⊕ ⊕λ β β β β 22 8 20 5 1( ) ( ) ( )t P t P t⊕ ⊕ 



β χ
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(1)
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β χ

          P t P t P t P t P t P3
(1)

3 3 1 13 2 14 3 15 4( ) ( ) = ( ) ( ) ( )⊕ ⊕ ⊕ ⊕λ β β β β 116 7 19 6 1( ) ( ) ( )t P t P t⊕ ⊕ 



β χ
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χ χ

  



P t P t P t ii i i i4
(1)

4 1( ) ( ) = ( ), = 1,2,3,4+ +⊕ β χ

  



P t P t P t ii i i i8
(1)

8 2( ) ( ) = ( ), = 1,2,3,4+ +⊕ β χ  (S1)
  



P t P t P t ii i i i12
(1)

12 3( ) ( ) = ( ), = 1,2,3,4+ +⊕ β χ

  



P t P t P t17
(1)

7 17 7 2( ) ( ) = ( )⊕ β χ

  



P t P t P t18
(1)

8 18 8 3( ) ( ) = ( )⊕ β χ

  



P t P t P t19
(1)

7 19 7 4( ) ( ) = ( )⊕ β χ

  



P t P t P t20
(1)

8 20 8 4( ) ( ) = ( )⊕ β χ

  



P t P t P t ii i i i20
(1)

20 4( ) ( ) = ( ), = 1,2,3,4+ +⊕ β χ

where, 





P t dP
dti

i(1) ( ) =  for i=1 to 24



     λ χ χ χ χ χ χ1 1 2 3 4 5 6= ⊕ ⊕ ⊕ ⊕ ⊕



     

λ χ χ χ χ χ χ β2 1 2 3 4 6 7 5= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕



     

λ χ χ χ χ χ χ β3 1 2 3 4 5 8 6= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕



     λ χ χ χ χ χ χ4 1 2 3 4 7 8= ⊕ ⊕ ⊕ ⊕ ⊕

with fuzzy initial conditions (0)~
1P =(0.94,0.945,0.955,0.96), 

(0)~
2P =(0.006,0.0065,0.0075,0.008),
(0)~

3P =(0.004,0.0045,0.0055,0.006),
(0)~

4P =(0.002,0.0025,0.0035,0.004) and (0)~
jP =(0,0,0,0), j=4 

to 24. (C1)
Fuzzy Kolmogorov’s differential equations for the sub-sys-

tem R2 associated with the Markov model (Figure 2) are:
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µ η









P t P t P t ii i i i2
(1)

2 1( ) ( ) = ( ), = 1,2,3,4,5+ +⊕ µ η  (S2)









P t P t P t ii i i i7
(1)

7 2( ) ( ) = ( ), = 1,2,3,4,5+ +⊕ µ η









P t P t P t13
(1)

7 13 7 2( ) ( ) = ( )⊕ µ η

where,





P t dP
dti

i(1) ( ) =  for i=1 to 13



     δ η η η η η η1 1 2 3 4 5 6= ⊕ ⊕ ⊕ ⊕ ⊕



      δ η η η η η η µ2 1 2 3 4 5 7 6= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

with fuzzy initial conditions (0)~
1P =(0.95,0.955,0.965,0.97), 

(0)~
2P =(0.004,0.0045,0.0055,0.006) and (0)~

jP =(0,0,0,0), j=3 
to 13.  (C2)

4.6. Solution of fuzzy Kolmogorov’s differential equ-
ations of sub-system R1 and R2

The solution of fuzzy Kolmogorov’s differential equations 
of sub-system R1 and R2, developed in Section 4.5, are obtained 
by using the existing method [14], discussed in Section 3, for 

Fuzzy failure rate Fuzzy repair rate
χ

1=(0.00105,0.00126,0.00154,0.00175) β 1=(1.026,1.0584,1.1016,1.134)

χ
2=(0.00045,0.00054,0.00066,0.00075) β 2=(0.04085,0.04214,0.04386,0.04515)

χ
3=(0.000675,0.00081,0.00099,0.001125) β 3=(0.475,0.49,0.51,0.525)

χ
4=(0.000675,0.00081,0.00099,0.001125) β 4=(0.2717,0.28028,0.29172,0.3003)

χ
5=(0.0156,0.01872,0.02288,0.026) β 5=(0.1463,0.15092,0.15702,0.1617)

χ
6=(0.0156,0.01872,0.02288,0.026) β 6=(0.2375,0.245,0.255,0.2625)

χ
7=(0.000675,0.00081,0.00099,0.001125) β 7=(0.05605,0.05782,0.06018,0.06195)

χ
8=(0.002925,0.00351,0.00429,0.004875) β 8=(0.08265,0.08526,0.08874,0.09135)

Tab. 1. Fuzzy failure rates and fuzzy repair rates for the different sub-systems of R1

Fuzzy failure rate Fuzzy repair rate
η 1=(0.00105,0.00126,0.00154,0.00175) µ 1=(0.3135,0.3234,0.3366,0.3465)

η 2=(0.00023,0.00027,0.00033,0.00038) µ 2=(0.475,0.49,0.51,0.525)

η 3=(0.00008,0.00009,0.00011,0.00013) µ 3=(0.6365,0.6566,0.6834,0.7035)

η 4=(0.00023,0.00027,0.00033,0.00038) µ 4=(0.03325,0.0343,0.0357,0.03675)

η 5=(0.00008,0.00009,0.00011,0.00013) µ 5=(2.8785,2.9694,3.0906,3.1815)

η 6=(0.0156,0.01872,0.02288,0.026) µ 6=(0.2109,0.21756,0.22644,0.2331)

η 7=(0.003,0.0036,0.0044,0.005) µ 7=(0.11875,0.1225,0.1275,0.13125)

Tab. 2. Fuzzy failure rates and fuzzy repair rates for the different sub-systems of R2
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α = 0, 0.2, 0.4, 0.6, 0.8, 1 at t = 360 hours and the solution is 
shown in table 3 and table 4 respectively.

It is obvious from the results, shown in Table 3 and Table 4, 
that [ ( , ), ( , )]1 2p t p tj jα α   does not define the α - cut of a fuzzy 
number )(~ tp j  for j = 1. So, the solution obtained by using the 
existing method [14] cannot be used to analyze the fuzzy relia-
bility of piston manufacturing system.

Remark 4.1. In Section 4.6, it is shown that the solution ob-
tained by using the existing method [14] can not be used to 
analyze the fuzzy reliability of piston manufacturing system. 
Similarly, several real life problems may be found for which the 
results of the existing method may or may not be valid.

5. Mehar’s method with JMD representation of 
trapezoidal fuzzy numbers

To overcome the shortcoming of the existing method, di-
scussed in Section 4, a new method, named as Mehar’s method, 
is proposed to find the exact solution of fuzzy differential equ-
ations with the help of JMD representation of trapezoidal fuzzy 
numbers.

The solution of fuzzy initial value problem for nth order fuz-
zy linear differential equation (1), where na~  is a non zero JMD 

trapezoidal fuzzy number and 0121
~,~,...,~,~ aaaa nn −−  are JMD tra-

pezoidal fuzzy numbers, can be obtained by using the following 
steps of Mehar’s method:

Step 1: Convert all the parameters of fuzzy differential equ-
ations, represented by trapezoidal fuzzy number (a,b,c,d), into 
JMD trapezoidal fuzzy number (x,α,β,γ)JMD, where α = b - a ≥ 0, 
β = c - b ≥ 0, γ = d - c ≥ 0. Assuming a an n n n n JMD= ( , , , ) ,(1) (1) (2) (3)β β β

 
 a a a an n n n n JMD n n− − − − − − −1 1(1) 1(1) 1(2) 1(3) 2 2(1)= ( , , , ) , = ( ,β β β ββ β βn n n JMD− − −2(1) 2(2) 2(3), , ) ,...,

  a a a an n n n n JMD n n− − − − − − −1 1(1) 1(1) 1(2) 1(3) 2 2(1)= ( , , , ) , = ( ,β β β ββ β βn n n JMD− − −2(1) 2(2) 2(3), , ) ,...,

 a a a aJMD1 1(1) 1(1) 1(2) 1(3) 0 0(1) 0(1) 0(2) 0= ( , , , ) , = ( , , ,β β β β β β ((3)
( )

1
( )

1
( )

2
( )

3
( )) , = ( , , , ) ,JMD

n n n n n
JMDy y α α α

  a a a aJMD1 1(1) 1(1) 1(2) 1(3) 0 0(1) 0(1) 0(2) 0= ( , , , ) , = ( , , ,β β β β β β ((3)
( )

1
( )

1
( )

2
( )

3
( )) , = ( , , , ) ,JMD

n n n n n
JMDy y α α α

 y y y yn n n n n
JMD

( 1)
1
( 1)

1
( 1)

2
( 1)

3
( 1) (1)

1= ( , , , ) ,..., (− − − − − =α α α ((1)
1
(1)

2
(1)

3
(1)

1 1 2 3, , ) , = ( , , , )α α α α α α, JMD JMDy y

  y y y yn n n n n
JMD

( 1)
1
( 1)

1
( 1)

2
( 1)

3
( 1) (1)

1= ( , , , ) ,..., (− − − − − =α α α ((1)
1
(1)

2
(1)

3
(1)

1 1 2 3, , ) , = ( , , , )α α α α α α, JMD JMDy y

and 
 γ γ ζ ζ ζ γ γ ζ ζ ζ0 0(1) 0(1) 0(2) 0(3) 1 1(1) 1(1) 1(2) 1= ( , , , ) , = ( , , ,JMD ((3) ) ,...,JMD

γ γ ζ ζ ζn n n n n JMD− − − − −1 1(1) 1(1) 1(2) 1(3)= ( , , , )

 )(~ tp j  for α = 0 )(~ tp j  for α = 0.2 )(~ tp j  for α = 0.4 )(~ tp j  for α = 0.6 )(~ tp j  for α = 0.8 )(~ tp j  for α = 1

 j
p j1(t,α) p j2(t,α) p j1(t,α) p j2(t,α) p j1(t,α) p j2(t,α) p j1(t,α) p j2(t,α)  p j1(t,α) p j2(t,α) p j1(t,α) p j2(t,α)

1 0.525421 0.396102 0.515146 0.401844 0.504872 0.407586 0.494597 0.413328 0.484323 0.419071 0.474049 0.424813
2 0.055996 0.065514 0.05667 0.065057 0.057344 0.064601 0.058018 0.064144 0.058692 0.063687 0.059366 0.063231
3 0.032869 0.036752 0.033158 0.036576 0.033447 0.036401 0.033737 0.036226 0.034026 0.036051 0.034316 0.035876
4 0.306812 0.424067 0.315888 0.419049 0.324964 0.414032 0.33404 0.409015 0.343116 0.403998 0.352192 0.398981
5 0.000537 0.000611 0.000542 0.000607 0.000547 0.000604 0.000553 0.000601 0.000558 0.000597 0.000564 0.000594
6 0.005867 0.006627 0.005923 0.006592 0.00598 0.006557 0.006036 0.006522 0.006093 0.006487 0.00615 0.006453
7 0.000747 0.000849 0.000754 0.000844 0.000761 0.000839 0.000769 0.000834 0.000776 0.000829 0.000784 0.000825
8 0.001307 0.001485 0.00132 0.001476 0.001333 0.001468 0.001346 0.001459 0.001359 0.001451 0.001372 0.001443
9 0.000057 0.000101 0.000059 0.000098 0.000062 0.000095 0.000065 0.000093 0.000068 0.000091 0.000071 0.000088

10 0.000623 0.001093 0.000651 0.001065 0.000681 0.001038 0.000709 0.001011 0.000738 0.000984 0.000767 0.000957
11 0.000079 0.00014 0.000082 0.000136 0.000086 0.000133 0.00009 0.000129 0.000094 0.000126 0.000098 0.000122
12 0.000139 0.000245 0.000145 0.000238 0.000151 0.000232 0.000158 0.000226 0.000164 0.00022 0.000171 0.000214
13 0.000033 0.000056 0.000034 0.000054 0.000036 0.000053 0.000037 0.000052 0.000039 0.000051 0.000041 0.00005
14 0.000366 0.000614 0.000381 0.0006 0.000397 0.000586 0.000412 0.000572 0.000428 0.000558 0.000444 0.000544
15 0.000046 0.000078 0.000048 0.000076 0.00005 0.000074 0.000052 0.000072 0.000054 0.000071 0.000056 0.000069
16 0.000081 0.000137 0.000084 0.000134 0.000088 0.000131 0.000091 0.000127 0.000095 0.000124 0.000099 0.000121
17 0.000679 0.001193 0.00071 0.001163 0.000741 0.001133 0.000773 0.001103 0.000804 0.001073 0.000836 0.001044
18 0.00117 0.001967 0.00122 0.001921 0.00127 0.001876 0.00132 0.001831 0.00137 0.001786 0.00142 0.001741
19 0.003628 0.007661 0.003876 0.007431 0.004125 0.007201 0.004373 0.006972 0.004622 0.006742 0.004871 0.006513
20 0.010731 0.022557 0.01146 0.021884 0.01219 0.021211 0.012919 0.020538 0.013649 0.019865 0.014379 0.019193
21 0.000313 0.000654 0.000334 0.000634 0.000355 0.000615 0.000376 0.000595 0.000397 0.000576 0.000419 0.000557
22 0.003293 0.006991 0.00352 0.00678 0.003748 0.006569 0.003975 0.006358 0.004203 0.006147 0.004431 0.005936
23 0.000435 0.000908 0.000464 0.000881 0.000493 0.000853 0.000522 0.000826 0.000551 0.000799 0.000581 0.000772
24 0.000759 0.001587 0.00081 0.00154 0.000861 0.001493 0.000912 0.001446 0.000963 0.001399 0.001015 0.001352

Tab. 3. Solution of fuzzy Kolmogorov’s differential equations for sub-system R1 obtained by using the existing method [14]

 )(~ tp j  for α = 0 )(~ tp j  for α =  0.2 )(~ tp j  for α =  0.4 )(~ tp j  for α =  0.6 )(~ tp j  for α =  0.8 )(~ tp j  for α =  1

j
p j1(t,α) p j2(t,α)  p j1(t,α) p j2(t,α) p j1(t,α) p j2(t,α) p j1(t,α) p j2(t,α) p j1(t,α) p j2(t,α) p j1(t,α) p j2(t,α)

1 0.87807  0.862585  0.876803 0.86353 0.875536 0.864525 0.87427  0.86552  0.873003  0.866515 0.871737  0.867511 
 2  0.064038  0.094192  0.065987  0.092551  0.067937  0.09091  0.069887  0.08927  0.071837  0.087629  0.073787  0.085989 
 3  0.002941  0.004356  0.003032  0.004278  0.003123  0.004201  0.003214  0.004123  0.003305  0.004046  0.003396  0.003969 
 4  0.000425  0.000624  0.000436  0.000611  0.000447  0.000598  0.000458  0.000586  0.000469  0.000573  0.00048  0.000561 
 5  0.00011  0.000159  0.000111  0.000155  0.000113  0.000151  0.000115  0.000147  0.000117  0.000143  0.000119  0.000139 
 6  0.006073  0.008919  0.00623  0.008739  0.006388  0.008559  0.006546  0.008379  0.006704  0.008199  0.006862  0.008019 
 7  0.000024  0.000035  0.000024  0.000034  0.000024  0.000033  0.000025  0.000032  0.000025  0.000031  0.000026  0.000031 
 8  0.000228  0.000475  0.000229  0.000459  0.000243  0.000442  0.000257  0.000425  0.000272  0.000409  0.000287  0.000393 
 9  0.000031  0.000068  0.000033  0.000065  0.000035  0.000062  0.000037 0.00006  0.000039  0.000057  0.000041  0.000055 
 0  0.000008  0.000017  0.000008  0.000016  0.000009  0.000015  0.000009  0.000014  0.00001  0.000013  0.00001  0.000013 
11  0.000442  0.000973  0.000469  0.000937  0.000497  0.000901  0.000525  0.000865  0.000553  0.000829  0.000581  0.000794 
12  0.000001  0.000004  0.000001  0.000003  0.000001  0.000003  0.000002  0.000003  0.000002  0.000003  0.000002  0.000003 
13  0.001617  0.003588  0.001727  0.003463  0.001837  0.003339  0.001947  0.003215  0.002057  0.003091  0.002168  0.002967 

Tab. 4. Solution of fuzzy Kolmogorov’s differential equations for sub-system R2 obtained by using the existing method [14]
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Step 2: Using Definition 2.11 and Section 2.2.3, the fuzzy dif-
ferential equation, obtained from Step 1, is converted into the 
following four crisp linear differential equations
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Step 3. Solve the ordinary differential equations (2) to (5), ob-
tained from Step 2, to find the values of y1, α1, α2, and α3.
Step 4. Put the values of y1, α1, α2, and α3 in y y JMD= ( , , , )1 1 2 3α α α  
to find the solution of fuzzy differential equation (1).
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Tab. 5. Solution of fuzzy Kolmogorov’s differential equations for sub-system R1 obtained by using Mehar’s method

 )(~ tp j for t=60 )(~ tp j for t=120 )(~ tp j for t=180 )(~ tp j for t=240 )(~ tp j for t=300 )(~ tp j  for t=360

j ( ( ), ( ),1 2p t p tj j
p t p tj j3 4( ), ( ))

( ( ), ( ),1 2p t p tj j
p t p tj j3 4( ), ( ))

( ( ), ( ),1 2p t p tj j
p t p tj j3 4( ), ( ))

( ( ), ( ),1 2p t p tj j
p t p tj j3 4( ), ( ))

( ( ), ( ),1 2p t p tj j
p t p tj j3 4( ), ( ))

( ( ), ( ),1 2p t p tj j
p t p tj j3 4( ), ( ))

 1  (0.720279,0.724095, 
 0.731181,0.734988) 

 (0.652165,0.655343, 
 0.66104,0.664203) 

 (0.603616,0.606389, 
 0.611232,0.613988) 

 (0.568691,0.571173, 
 0.5754,0.577863) 

(0.543538,0.54602, 
 0.550247,0.55271) 

 (0.525421,0.527484,
 0.530833,0.532877) 

2  (0.071153,0.072092, 
 0.074107,0.075045) 

 (0.065846,0.066938, 
 0.069151,0.070288) 

 (0.062073,0.063193, 
 0.065337,0.066453) 

 (0.059359,0.060453, 
 0.06345,0.063539) 

(0.057404,0.058498, 
 0.060495,0.061584) 

 (0.055996,0.056988,
 0.058685,0.059671) 

3  (0.044381,0.045198, 
 0.046916,0.047741) 

 (0.040352,0.041218, 
 0.042925,0.043805) 

 (0.037486,0.038314, 
 0.039853,0.040364) 

 (0.035423,0.036189, 
 0.037551,0.038333) 

(0.033938,0.034704, 
0.036066,0.036848) 

 (0.032869,0.033514,
 0.034591,0.03525) 

4  (0.096162,0.096893, 
 0.098549,0.099281) 

 (0.169323,0.172501, 
 0.174963,0.175998) 

 (0.221951,0.223285, 
 0.22648,0.227818) 

 (0.259851,0.261463, 
 0.265271,0.266889) 

(0.287149,0.28731, 
 0.291118,0.292736) 

 (0.306812,0.308887,
 0.313591,0.315675) 

5  (0.000738,0.000761, 
 0.000807,0.00083) 

 (0.000688,0.00069, 
 0.000729,0.00075) 

 (0.000618,0.000637, 
 0.00067,0.000689) 

 (0.000582,0.000599, 
 0.000627,0.000643) 

 (0.000556,0.000573, 
0.000601,0.000617) 

(0.000537,0.000551,
0.000573,0.000586) 

6  (0.007563,0.007585, 
 0.007641,0.007663) 

 (0.007414,0.007452, 
 0.007546,0.007584) 

 (0.006856,0.006907, 
 0.007028,0.007079) 

 (0.006417,0.006478, 
 0.006618,0.006679) 

(0.006097,0.006158, 
 0.006298,0.006359) 

 (0.005867,0.005941,
 0.006103,0.006177) 

7  (0.001027,0.001049, 
 0.0011,0.001122) 

 (0.000929,0.000956, 
 0.00101,0.001037) 

 (0.000859,0.000885, 
 0.000933,0.000959) 

 (0.000809,0.000833, 
 0.000875,0.000899) 

(0.000773,0.000797, 
 0.000839,0.000863) 

 (0.000747,0.000768,
 0.000801,0.000821) 

8  (0.001802,0.001829, 
 0.001915,0.001942) 

 (0.001629,0.001667, 
 0.001813,0.00185) 

 (0.001505,0.001546, 
 0.001737,0.001778) 

 (0.001417,0.001458, 
 0.001684,0.001725) 

(0.001353,0.001394, 
 0.00162,0.001661) 

 (0.001307,0.001344,
 0.001616,0.001652) 

9  (0.000072,0.000076, 
 0.000087,0.000091) 

 (0.000067,0.000073, 
 0.000086,0.000092) 

(0.000063,0.00007, 
 0.000084,0.000091) 

 (0.000061,0.000068, 
 0.000081,0.000088) 

(0.000058,0.000065, 
 0.000078,0.000085) 

 (0.000057,0.000063,
 0.000074,0.00008) 

10  (0.000719,0.000722, 
 0.000733,0.000736) 

(0.00074,0.000749, 
 0.000773,0.000781) 

 (0.000699,0.000713, 
 0.00075,0.000764) 

 (0.000665,0.000683, 
 0.00073,0.000748) 

(0.000641,0.000659, 
 0.000706,0.000724) 

 (0.000623,0.000649,
 0.000711,0.000737) 

11  (0.000101,0.000105, 
 0.000115,0.000119) 

(0.000093,0.0001, 
 0.000116,0.000123) 

 (0.000088,0.000096, 
 0.000114,0.000122) 

 (0.000084,0.000093, 
 0.000111,0.00012) 

(0.000081,0.00009, 
 0.000108,0.000117) 

 (0.000079,0.000088,
 0.000104,0.000109) 

12  (0.000177,0.000181, 
 0.000197,0.000201) 

 (0.000164,0.000173, 
 0.000211,0.00022) 

 (0.000154,0.000166, 
 0.000224,0.000236) 

 (0.000147,0.000161, 
 0.000237,0.000251) 

(0.000142,0.000156, 
 0.000232,0.000246) 

 (0.000139,0.000154,
 0.000257,0.000272) 

13  (0.000045,0.000049, 
 0.000058,0.000062) 

 (0.000041,0.000046, 
 0.000057,0.000062) 

 (0.000038,0.000043, 
 0.000053,0.000058) 

 (0.000036,0.000041, 
 0.00005,0.000055) 

(0.000034,0.000039, 
 0.000048,0.000053) 

 (0.000033,0.000037,
 0.000044,0.000048) 

14 (0.000457,0.00046, 
 0.00047,0.000473) 

 (0.000457,0.000464, 
 0.000485,0.000492) 

 (0.000425,0.000436, 
 0.000466,0.000477) 

 (0.000399,0.000413, 
 0.00045,0.000465) 

(0.00038,0.000394, 
 0.000431,0.000446) 

 (0.000366,0.000385,
 0.00043,0.00045) 

15  (0.000063,0.000066, 
 0.000075,0.000078) 

 (0.000057,0.000063, 
 0.000076,0.000082) 

(0.000053,0.00006, 
 0.000074,0.000081) 

(0.00005,0.000057, 
 0.00007,0.000077) 

(0.000048,0.000055, 
 0.000068,0.000075) 

 (0.000046,0.000052,
 0.000062,0.000068) 

16  (0.000111,0.000115, 
 0.00013,0.000134) 

 (0.000101,0.000109, 
 0.000141,0.000149) 

 (0.000093,0.000103, 
 0.00015,0.00016) 

 (0.000088,0.000099, 
 0.000158,0.000169) 

(0.000084,0.000095, 
 0.000154,0.000167) 

 (0.000081,0.000092,
 0.000168,0.000179) 

17 (0.000835,0.00084, 
 0.000856,0.000861) 

 (0.000809,0.000822, 
 0.000857,0.00087) 

(0.00076,0.00078, 
 0.000833,0.000853) 

 (0.000723,0.000749, 
 0.000816,0.000842) 

(0.000697,0.000705, 
 0.000772,0.000798) 

 (0.000679,0.000715,
 0.0008,0.000836) 

18  (0.001591,0.001613, 
 0.001675,0.001697) 

(0.001453,0.0015, 
 0.001624,0.001671) 

 (0.001345,0.001412, 
 0.001581,0.001649) 

(0.001266,0.00135, 
 0.001548,0.001633) 

(0.001211,0.001295, 
 0.001493,0.001578) 

(0.00117,0.001273,
 0.001495,0.0016) 

19  (0.000835,0.000839, 
 0.000852,0.000865) 

 (0.001794,0.001804, 
 0.001836,0.001846) 

 (0.002496,0.002514, 
 0.00257,0.002589) 

 (0.003002,0.00303, 
 0.003114,0.003142) 

(0.003366,0.003394, 
 0.003478,0.003506) 

 (0.003628,0.003678,
 0.003822,0.003872) 

20  (0.002753,0.002772, 
 0.002827,0.002846) 

(0.00552,0.00597, 
 0.00729,0.00774) 

 (0.007515,0.007592, 
 0.007819,0.007896) 

 (0.008951,0.009065, 
 0.009398,0.009512) 

(0.009986,0.0101, 
 0.010433,0.010547) 

 (0.010731,0.010927,
 0.011477,0.011673) 

21  (0.000096,0.000099, 
 0.000107,0.00011) 

 (0.000172,0.000177, 
 0.00019,0.000195) 

 (0.000226,0.000233, 
 0.000251,0.000258) 

 (0.000265,0.000274, 
 0.000297,0.000306) 

(0.000293,0.000302, 
 0.000325,0.000334) 

 (0.000313,0.000325,
 0.000354,0.000366) 

 22  (0.000672,0.000675, 
 0.000683,0.000686) 

 (0.001549,0.001556, 
 0.001578,0.001585) 

 (0.002214,0.002227, 
 0.002266,0.002279) 

 (0.002696,0.002945, 
 0.003004,0.003023) 

(0.003043,0.003062, 
 0.003121,0.00314) 

 (0.003293,0.003328,
 0.003432,0.003467) 

 23  (0.000132,0.000135, 
 0.000143,0.000146) 

 (0.000237,0.000243, 
 0.000259,0.000265) 

 (0.000313,0.000321, 
 0.000344,0.000352) 

 (0.000367,0.000378, 
 0.000407,0.000418) 

(0.000406,0.000417, 
 0.000446,0.000457) 

 (0.000435,0.000451,
 0.00049,0.000506) 

 24  (0.000225,0.000228, 
 0.000241,0.000244) 

 (0.000411,0.000418, 
 0.000448,0.000455) 

 (0.000544,0.000556, 
 0.000617,0.000629) 

 (0.000641,0.000657, 
 0.000751,0.000767) 

(0.000709,0.000725, 
 0.000819,0.000835) 

 (0.000759,0.000784,
 0.000952,0.000977) 

6. Advantages of Mehar’s method

The main advantages of Mehar’s method over existing me-
thod [14] is that on solving the fuzzy differential equations by 
using the existing method, the obtained results may or may not 
define the α-cut of a fuzzy number while on solving the fuzzy 
differential equations by using Mehar’s method, the obtained 
solution are always fuzzy number.

In this section, to show the advantages of Mehar’s method 
over existing method, the fuzzy Kolmogorov’s differential equ-
ations for the sub-systems R1 and R2, developed in Section 4.5, 
for which by using the existing method the obtained results are 
not appropriate, are solved by using Mehar’s method, proposed 
in Section 5 and the obtained results, after converting the ob-
tained JMD trapezoidal fuzzy number (x,α,β,γ)JMD into existing 
representation of trapezoidal fuzzy number (a,b,c,d), are shown 
in table 5 and table 6 respectively.

It is obvious from table 5 and table 6, that 
( ( ), ( ), ( ), ( ))1 2 3 4p t p t p t p tj j j j  defines a trapezoidal fuzzy num-
ber )(~ tp j  for j = 1 to 24 and j = 1 to 13 respectively.

7. Advantages of JMD representation of trapezo-
idal fuzzy numbers over existing representation 
of trapezoidal fuzzy numbers

Kumar and Kaur [28] shown that it is better to use the pro-
posed representation of trapezoidal fuzzy numbers instead of 
existing representation of trapezoidal fuzzy numbers for finding 
the fuzzy optimal solution of fuzzy transportation problems. In 
this section, it is shown that it is also better to use JMD re-
presentation of trapezoidal fuzzy numbers for solving fuzzy 
differential equations as compared to existing representation of 
trapezoidal fuzzy numbers.

To show the advantage of JMD representation of trapezo-
idal fuzzy numbers over existing representation of trapezoidal 
fuzzy numbers, the fuzzy Kolomorgov’s differential equations, 
for the sub-systems R1 and R2 developed in Section 4.5, are so-
lved by using Mehar’s method with existing representation of 
trapezoidal fuzzy numbers and the obtained results are shown 
in table 7 and table 8 respectively.

It is obvious from table 7 and table 8, that 
( ( ), ( ), ( ), ( ))1 2 3 4p t p t p t p tj j j j  does not define a trapezoidal fuz-
zy number for j = 1.
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)(~ tp j for t =60 )(~ tp j for t=120 )(~ tp j for t=180 )(~ tp j for t=240 )(~ tp j for t=300 )(~ tp j  for t=360

j ( ( ), ( ),1 2p t p tj j
p t p tj j3 4( ), ( ))

( ( ), ( ),1 2p t p tj j
p t p tj j3 4( ), ( ))

( ( ), ( ),1 2p t p tj j
p t p tj j3 4( ), ( ))

( ( ), ( ),1 2p t p tj j
p t p tj j3 4( ), ( ))

( ( ), ( ),1 2p t p tj j
p t p tj j3 4( ), ( ))

( ( ), ( ),1 2p t p tj j
p t p tj j3 4( ), ( ))

1  (0.878882,0.883263, 
 0.891744,0.896118)

(0.878179,0.882218, 
 0.890005,0.894036) 

(0.878084,0.889381, 
 0.889381,0.893216) 

(0.878072,0.881804, 
 0.889083,0.892803) 

(0.878071,0.881734, 
 0.888916,0.892565) 

 (0.87807,0.881689,
 0.888812,0.892416)

2  (0.064096,0.065113, 
 0.067364,0.06838)

(0.064046,0.065329, 
 0.068091,0.069372) 

(0.064039,0.065457, 
 0.068421,0.069835) 

(0.064038,0.065522, 
 0.068559,0.070038) 

(0.064038,0.065554, 
 0.068611,0.070121) 

(0.064038,0.065567,
 0.068624,0.070146)

3 (0.002943,0.002986, 
 0.00309,0.003133) 

(0.002941,0.003004, 
 0.003145,0.003208) 

(0.002941,0.003013, 
 0.003164,0.003236) 

 (0.002941,0.003016, 
 0.003169,0.003244) 

(0.002941,0.003018, 
 0.003171,0.003247) 

(0.002941,0.003018,
 0.00317,0.003246)

4 (0.000425,0.000432, 
 0.00045,0.000459)

(0.000425,0.000434, 
 0.000456,0.000467) 

(0.000425,0.000435, 
 0.000457,0.000469) 

(0.000425,0.000435, 
 0.000457,0.000469) 

(0.000425,0.000434, 
 0.000455,0.000467) 

(0.000425,0.000434,
 0.000455,0.000467)

5 (0.00011,0.000111, 
 0.000116,0.000119) 

(0.00011,0.000111, 
 0.000116,0.000119) 

(0.00011,0.000111, 
 0.000116,0.000119) 

(0.00011,0.000111, 
 0.000116,0.000119) 

(0.00011,0.000111, 
 0.000116,0.000119) 

(0.00011,0.000111,
 0.000116,0.000119)

6  (0.005269,0.00528, 
 0.005311,0.005324)

(0.005966,0.005985, 
 0.006041,0.006065) 

(0.006059,0.006086, 
 0.006164,0.006198) 

 (0.006071,0.006105, 
 0.006202,0.006206) 

(0.006073,0.006114, 
 0.006228,0.006279) 

(0.006073,0.00612,
 0.00625,0.006309)

7 (0.000024,0.000025, 
 0.000026,0.000027) 

(0.000024,0.0000244,
 0.0000254,0.000026) 

(0.000024,0.0000244,
0.0000245,0.0000253)

(0.000024,0.0000244,
0.0000254,0.0000262)

(0.000024,0.0000244,
 0.0000254,0.000026) 

(0.000024,0.0000243,
 0.000025,0.000026)

8  (0.000214,0.000221, 
 0.000242,0.000249) 

(0.000214,0.000229, 
 0.000268,0.000283) 

(0.000214,0.000235, 
 0.000286,0.000307) 

(0.000214,0.000239, 
 0.000297,0.000322) 

(0.000214,0.000242, 
 0.000303,0.000331) 

 (0.000214,0.000244,
 0.000307,0.000337)

9  (0.000031,0.000032, 
 0.000035,0.000036) 

 (0.000031,0.000033, 
 0.000039,0.000042) 

(0.000031,0.000034, 
 0.000042,0.000045) 

(0.000031,0.000034, 
 0.000042,0.000046) 

(0.000031,0.000034, 
 0.000043,0.000047) 

(0.000031,0.000034,
 0.000043,0.000047)

10  (0.000008,0.0000082, 
0.0000093,0.0000098)

(0.000008,0.0000085,
 0.00001,0.000011) 

(0.000008,0.0000086,
0.0000106,0.0000116)

(0.000008,0.0000086,
0.0000106,0.0000116)

(0.000008,0.000009, 
 0.000011,0.000012) 

(0.000008,0.000009,
 0.00003,0.000032)

11  (0.000373,0.000374, 
 0.000379,0.000381) 

(0.000433,0.000437, 
 0.000451,0.000456) 

(0.000441,0.000448, 
 0.000471,0.00048) 

 (0.000442,0.000452, 
 0.000483,0.000495) 

(0.000442,0.000455, 
 0.000494,0.00051) 

(0.000442,0.000457,
 0.000503,0.000522)

12  (0.000001,0.0000021,
0.0000024,0.0000026)

 (0.000001,0.0000011,
0.0000015,0.0000017)

(0.000001,0.0000011,
0.0000015,0.0000018)

(0.000001,0.0000011,
0.0000016,0.0000019)

(0.000001,0.0000011,
0.0000016,0.0000019)

(0.000001,0.0000011,
0.0000016,0.0000019)

13 (0.001617,0.001642, 
 0.001714,0.001739) 

(0.001618,0.001676, 
 0.001835,0.001951) 

 (0.001617,0.001707, 
 0.001944,0.002034) 

(0.001617,0.001736, 
 0.002037,0.002155) 

(0.001617,0.00176, 
 0.002109,0.002252) 

(0.001617,0.00178,
 0.002165,0.002328)

Tab. 6. Solution of fuzzy Kolmogorov’s differential equations for sub-system R2 obtained by using Mehar’s method

Tab. 7. Solution of fuzzy Kolmogorov’s differential equations for sub-system R1 obtained by using Mehar’s method with existing representation of trape-
zoidal fuzzy numbers

)(~ tp j for t=60 )(~ tp j for t=120 )(~ tp j for t=180 )(~ tp j for t=240 )(~ tp j for t=300 )(~ tp j  for t=360

j
( ( ), ( ),1 2p t p tj j
p t p tj j3 4( ), ( ))

( ( ), ( ),1 2p t p tj j
p t p tj j3 4( ), ( ))

( ( ), ( ),1 2p t p tj j
p t p tj j3 4( ), ( ))

( ( ), ( ),1 2p t p tj j
p t p tj j3 4( ), ( ))

( ( ), ( ),1 2p t p tj j
p t p tj j3 4( ), ( ))

( ( ), ( ),1 2p t p tj j
p t p tj j3 4( ), ( ))

 1  (0.720279,0.681444, 
 0.635114,0.600719) 

 (0.652165,0.600728, 
 0.541703,0.501324) 

 (0.603616,0.547756, 
 0.487123,0.448286) 

 (0.568691,0.512688, 
 0.454965,0.41975) 

(0.543538,0.48945, 
 0.436,0.404381) 

 (0.525421,0.474049,
 0.424813,0.396102)

2  (0.071153,0.077829, 
 0.084789,0.088344) 

 (0.065846,0.070633, 
 0.075201,0.077243) 

 (0.062073,0.065921, 
 0.069611,0.071331) 

 (0.059359,0.062802, 
 0.066318,0.06815) 

 (0.057404,0.060736, 
 0.064376,0.066437) 

 (0.055996,0.059366,
 0.063231,0.065514)

3  (0.044381,0.048441, 
 0.052512,0.054488) 

 (0.040352,0.042938, 
 0.045117,0.045866) 

 (0.037486,0.039332, 
 0.040802,0.041272) 

 (0.035423,0.036946, 
 0.038259,0.038801) 

 (0.033938,0.035364, 
 0.036761,0.037469) 

 (0.032869,0.034316,
 0.035876,0.036752)

4  (0.096162,0.125721, 
 0.166747,0.196529) 

 (0.169323,0.213389, 
 0.26945,0.306637) 

 (0.221951,0.271397, 
 0.329903,0.365802) 

 (0.259851,0.309835, 
 0.365552,0.397663) 

 (0.287149,0.335309, 
 0.386578,0.414824) 

 (0.306812,0.352192,
 0.398981,0.424067)

5  (0.000738,0.000813, 
 0.00089,0.00093) 

 (0.000688,0.000716, 
 0.000758,0.000775) 

 (0.000618,0.000652, 
 0.000681,0.000692) 

 (0.000582,0.000611, 
 0.000636,0.000648) 

 (0.000556,0.000583, 
 0.000609,0.000624) 

 (0.000537,0.000564,
 0.000594,0.000611)

6  (0.007563,0.008481, 
 0.009508,0.010101) 

 (0.007414,0.008024, 
 0.008591,0.008833) 

 (0.006856,0.007273, 
 0.007621,0.007747) 

 (0.006417,0.006741, 
 0.007021,0.007136) 

 (0.006097,0.006385, 
 0.006663,0.006805) 

(0.005867,0.00615,
 0.006453,0.006627)

 7  (0.001027,0.001132, 
 0.001241,0.001296) 

 (0.000929,0.000996, 
 0.001056,0.001079) 

 (0.000859,0.000907, 
 0.000948,0.000963) 

 (0.000809,0.000849, 
 0.000884,0.000901) 

(0.000773,0.00081, 
 0.000847,0.000867) 

 (0.000747,0.000784,
 0.000825,0.000849)

 8  (0.001802,0.001987, 
 0.002179,0.002279) 

 (0.001629,0.001747, 
 0.001852,0.001893) 

 (0.001505,0.001591, 
 0.001661,0.001687) 

 (0.001417,0.001486, 
 0.001548,0.001576) 

 (0.001353,0.001417, 
 0.001482,0.001517) 

 (0.001307,0.001372,
 0.001443,0.001485)

 9  (0.000072,0.000092, 
 0.000118,0.000136) 

 (0.000067,0.000084, 
 0.000105,0.000119) 

 (0.000063,0.000078, 
 0.000097,0.00011) 

 (0.000061,0.000074, 
 0.000092,0.000105) 

 (0.000058,0.000072, 
 0.00009,0.000102) 

 (0.000057,0.000071,
 0.000088,0.000101)

 10  (0.000719,0.000932, 
 0.001221,0.001426) 

(0.00074,0.000931, 
 0.001173,0.001335) 

 (0.000699,0.000867, 
 0.001077,0.001218) 

 (0.000665,0.000819, 
 0.001015,0.00115) 

 (0.000641,0.000788, 
 0.000979,0.001113) 

 (0.000623,0.000767,
 0.000957,0.001093)

 11  (0.000101,0.000129, 
 0.0001651,0.00019) 

 (0.000093,0.000117, 
 0.000146,0.000166) 

 (0.000088,0.000109, 
 0.000135,0.000153) 

 (0.000084,0.000103, 
 0.000128,0.000146) 

(0.000081,0.0001, 
 0.000125,0.000142) 

 (0.000079,0.000098,
 0.000122,0.00014)

 12  (0.000177,0.000226, 
 0.00029,0.000334) 

 (0.000164,0.000205, 
 0.000256,0.000291) 

 (0.000154,0.000191, 
 0.000237,0.000268) 

 (0.000147,0.000181, 
 0.000225,0.000255) 

 (0.000142,0.000175, 
 0.000218,0.000249) 

 (0.000139,0.000171,
 0.000214,0.000245)

 13  (0.000045,0.000057, 
 0.000073,0.000084) 

 (0.000041,0.000051, 
 0.000063,0.000071) 

 (0.000038,0.000046, 
 0.000057,0.000063) 

 (0.000036,0.000044, 
 0.000053,0.000059) 

 (0.000034,0.000042, 
 0.000051,0.000057) 

 (0.000033,0.000041,
 0.00005,0.000056)

 14  (0.000457,0.000592, 
 0.000772,0.000901) 

 (0.000457,0.000571, 
 0.000712,0.000804) 

 (0.000425,0.000521, 
 0.000636,0.000711) 

 (0.000399,0.000485, 
 0.000589,0.000658) 

(0.00038,0.000461, 
 0.000561,0.00063) 

 (0.000366,0.000444,
 0.000544,0.000614)

 15  (0.000063,0.00008, 
 0.000102,0.000117) 

 (0.000057,0.000071, 
 0.000087,0.000098) 

 (0.000053,0.000065, 
 0.000079,0.000088) 

(0.00005,0.000061, 
 0.000074,0.000083) 

 (0.000048,0.000058, 
 0.000071,0.00008) 

 (0.000046,0.000056,
 0.000069,0.000078)

 16  (0.000111,0.000141, 
 0.00018,0.000206) 

 (0.000101,0.000124, 
 0.000154,0.000173) 

 (0.000093,0.000114, 
 0.000139,0.000155) 

 (0.000088,0.000107, 
 0.00013,0.000145) 

 (0.000084,0.000102, 
 0.000124,0.000141) 

 (0.000081,0.000099,
 0.000121,0.000137)

 17  (0.000835,0.001076, 
 0.001398,0.001626) 

 (0.000809,0.001014, 
 0.001274,0.001447) 

(0.00076,0.000941, 
 0.001167,0.00132) 

 (0.000723,0.000891, 
 0.001104,0.001251) 

 (0.000697,0.000858, 
 0.001066,0.001213) 

 (0.000679,0.000836,
 0.001044,0.001193)

 18  (0.001591,0.002036, 
 0.002617,0.003017) 

 (0.001453,0.001806, 
 0.002237,0.002515) 

 (0.001345,0.001644, 
 0.002005,0.002238) 

 (0.001266,0.001537, 
 0.001869,0.00209) 

 (0.001211,0.001467, 
 0.001788,0.00201) 

(0.00117,0.00142,
 0.001741,0.001967)

 19  (0.000835,0.001296, 
 0.002071,0.002741) 

 (0.001794,0.002665, 
 0.004017,0.005103) 

 (0.002496,0.003587, 
 0.005182,0.006392) 

 (0.003002,0.004198, 
 0.005869,0.007086) 

 (0.003366,0.004603, 
 0.006274,0.007461) 

 (0.003628,0.004871,
 0.006513,0.007661)

 20  (0.002753,0.004246, 
 0.006735,0.008871) 

(0.00552,0.008165, 
0.012241,0.015492) 

 (0.007515,0.010762, 
 0.015486,0.019052) 

(0.008951,0.012483, 
 0.017399,0.020969) 

(0.009986,0.013623, 
 0.018527,0.022001) 

 (0.010731,0.014379,
 0.019193,0.022557)

 21  (0.000096,0.000147, 
 0.00023,0.000299) 

(0.000172,0.000252, 
 0.000375,0.000471) 

 (0.000226,0.000322, 
 0.00046,0.000563) 

(0.000265,0.000368, 
 0.00051,0.000613) 

(0.000293,0.000398, 
 0.00054,0.000639) 

 (0.000313,0.000419,
 0.000557,0.000654)

 22  (0.000672,0.001047, 
 0.001684,0.00224) 

 (0.001549,0.002312, 
 0.003506,0.004472) 

 (0.002214,0.003194, 
 0.004636,0.005737) 

(0.002696,0.003782, 
 0.005307,0.006422) 

 (0.003043,0.004172, 
 0.005703,0.006792) 

 (0.003293,0.004431,
 0.005936,0.006991)

 23  (0.000132,0.000201, 
 0.000315,0.000411) 

(0.000237,0.000348, 
 0.000518,0.000651) 

 (0.000313,0.000445, 
 0.000637,0.000781) 

(0.000367,0.000510, 
 0.000707,0.000851) 

(0.000406,0.000553, 
 0.000749,0.000888) 

 (0.000435,0.000581,
 0.000773,0.000908)

 24  (0.000225,0.000344, 
 0.000539,0.000704) 

(0.000411,0.000604, 
 0.000898,0.001131) 

 (0.000544,0.000776, 
 0.00111,0.001361) 

(0.000641,0.000889, 
 0.001235,0.001484) 

(0.000709,0.000965, 
 0.001308,0.001551) 

 (0.000759,0.001015,
 0.001352,0.001587)
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8. Fuzzy reliability evaluation of piston manufac-
turing system

In Section 4.6, it is shown that the results of fuzzy Kolmo-
gorov’s differential equations, obtained by using the existing 
method, may or may not define the α -cut of a fuzzy number. 
Also, the results of fuzzy Kolmogorov’s differential equations, 
obtained by using Mehar’s method with existing representation 
of trapezoidal fuzzy number, shown in Table 7 and Table 8, 
may or may not be a fuzzy number. Due to which, the obtained 
results may not be used to analyze the fuzzy reliability of piston 
manufacturing system. But in Table 5 and Table 6, it is shown 
that if the same fuzzy Kolmogorov’s differential equations are 
solved by using Mehar’s method then the obtained results are 
fuzzy numbers. In this section, the results of fuzzy Kolmogoro-
v’s differential equations, shown in Table 5 and 6, obtained by 
using Mehar’s method, are used to analyze the fuzzy reliability 
of piston manufacturing system.

Using the fuzzy probabilities for the sub-systems R1 and R2, 
shown in Table 5 and Table 6, the corresponding fuzzy reliabi-

lities =)(~
1 tR  )(~

4

1=

tpi
i
∑ , =)(~

2 tR  )(~
2

1=

tpi
i
∑  and 

)(~)(~=)(~
21 tRtRtR ⊗  i.e., ( ( ), ( ), ( ), ( ))11 12 13 14R t R t R t R t ,

( ( ), ( ), ( ), ( ))21 22 23 24R t R t R t R t  and

)(~ tp j for t=60 )(~ tp j for t =120 )(~ tp j for t =180 )(~ tp j for t =240 )(~ tp j for t =300 )(~ tp j  for t=360

j ( ( ), ( ),1 2p t p tj j
p t p tj j3 4( ), ( ))

( ( ), ( ),1 2p t p tj j
p t p tj j3 4( ), ( ))

( ( ), ( ),1 2p t p tj j
p t p tj j3 4( ), ( ))

( ( ), ( ),1 2p t p tj j
p t p tj j3 4( ), ( ))

( ( ), ( ),1 2p t p tj j
p t p tj j3 4( ), ( ))

( ( ), ( ),1 2p t p tj j
p t p tj j3 4( ), ( ))

1  (0.878882,0.872595, 
 0.868478,0.863537) 

(0.878178,0.871845, 
 0.867666,0.862687) 

(0.878084,0.871751, 
 0.867573,0.862596) 

(0.878072,0.871739, 
 0.867563,0.862586) 

 (0.878071,0.871737, 
 0.867561,0.862585) 

 (0.87807,0.871737,
 0.867561,0.862585)

2 (0.064096,0.073858, 
 0.086077,0.094293) 

(0.064046,0.073796, 
 0.085999,0.094203) 

 (0.064039,0.073788, 
 0.085991,0.094193) 

(0.064038,0.073788, 
 0.085989,0.094192) 

(0.064038,0.073787, 
 0.085989,0.094192) 

(0.064038,0.073787,
 0.085989,0.094192)

 3  (0.002943,0.0034, 
 0.003973,0.004361) 

 (0.002941,0.003396, 
 0.003969,0.004357) 

 (0.002941,0.003396, 
 0.003969,0.004356) 

 (0.002941,0.003396, 
 0.003969,0.004356) 

 (0.002941,0.003396, 
 0.003969,0.004356) 

 (0.002941,0.003396,
 0.003969,0.004356)

 4  (0.000425,0.000481, 
 0.000562,0.000625) 

 (0.000425,0.00048, 
 0.000561,0.000624) 

 (0.000425,0.00048, 
 0.000561,0.000624) 

 (0.000425,0.00048, 
 0.000561,0.000624) 

 (0.000425,0.00048, 
 0.000561,0.000624) 

 (0.000425,0.00048,
 0.000561,0.000624)

 5  (0.00011,0.000119, 
 0.000139,0.000159) 

 (0.00011,0.000119, 
 0.000139,0.000159) 

 (0.00011,0.000119, 
 0.000139,0.000159) 

 (0.00011,0.000119, 
 0.000139,0.000159) 

 (0.00011,0.000119, 
 0.000139,0.000159) 

 (0.00011,0.000119,
 0.000139,0.000159)

 6  (0.005369,0.006013, 
 0.007112,0.007977) 

 (0.005966,0.006755, 
 0.007915,0.008817) 

 (0.006059,0.006848, 
 0.008007,0.008908) 

 (0.006071,0.00686, 
 0.008018,0.008918) 

 (0.006073,0.006861, 
 0.008019,0.008919) 

 (0.006073,0.006862,
 0.008019,0.008919)

 7  (0.000024,0.000026, 
 0.000031,0.000035) 

 (0.000024,0.000026, 
 0.000031,0.000035) 

 (0.000024,0.000026, 
 0.000031,0.000035) 

 (0.000024,0.000026, 
 0.000031,0.000035) 

 (0.000024,0.000026, 
 0.000031,0.000035) 

 (0.000024,0.000026,
 0.000031,0.000035)

 8  (0.000214,0.000287, 
 0.000393,0.000476) 

 (0.000214,0.000287, 
 0.000393,0.000475) 

 (0.000214,0.000287, 
 0.000393,0.000475) 

 (0.000214,0.000287, 
 0.000393,0.000475) 

 (0.000214,0.000287, 
 0.000393,0.000475) 

 (0.000214,0.000287,
 0.000393,0.000475)

 9  (0.000031,0.000041, 
 0.000055,0.000068) 

 (0.000031,0.000041, 
 0.000055,0.000068) 

 (0.000031,0.000041, 
 0.000055,0.000068) 

 (0.000031,0.000041, 
 0.000055,0.000068) 

 (0.000031,0.000041, 
 0.000055,0.000068) 

 (0.000031,0.000041,
 0.000055,0.000068)

 10  (0.000008,0.00001, 
 0.000013,0.000017) 

 (0.000008,0.00001, 
 0.000013,0.000017) 

 (0.000008,0.00001, 
 0.000013,0.000017) 

 (0.000008,0.00001, 
 0.000013,0.000017) 

 (0.000008,0.00001, 
 0.000013,0.000017) 

 (0.000008,0.00001,
 0.000013,0.000017)

 11  (0.000373,0.000496, 
 0.000689,0.000852) 

 (0.000433,0.00057, 
 0.000782,0.000961) 

 (0.000441,0.000579, 
 0.000793,0.000972) 

 (0.000442,0.000581, 
 0.000794,0.000973) 

 (0.000442,0.000581, 
 0.000794,0.000973) 

 (0.000442,0.000581,
 0.000794,0.000973)

 12  (0.000001,0.000002, 
 0.000003,0.000004) 

 (0.000001,0.000002, 
 0.000003,0.000004) 

 (0.000001,0.000002, 
 0.000003,0.000004) 

 (0.000001,0.000002, 
 0.000003,0.000004) 

 (0.000001,0.000002, 
 0.000003,0.000004) 

 (0.000001,0.000002,
 0.000003,0.000004)

 13  (0.001617,0.002168, 
 0.002969,0.003591) 

 (0.001618,0.002168, 
 0.002967,0.003588) 

 (0.001617,0.002168, 
 0.002967,0.003588) 

 (0.001617,0.002168, 
 0.002967,0.003588) 

 (0.001617,0.002168, 
 0.002967,0.003588) 

 (0.001617,0.002168,
 0.002967,0.003588)

Tab. 8. Solution of fuzzy Kolmogorov’s differential equations for sub-system R2 obtained by using Mehar’s method with existing representation of trape-
zoidal fuzzy numbers

( ( ), ( ), ( ), ( )) = ( ( ), ( ), ( ), ( )) (1 2 3 4 11 12 13 14R t R t R t R t R t R t R t R t R⊗ 221 22 23 24( ), ( ), ( ), ( ))t R t R t R t
( ( ), ( ), ( ), ( )) = ( ( ), ( ), ( ), ( )) (1 2 3 4 11 12 13 14R t R t R t R t R t R t R t R t R⊗ 221 22 23 24( ), ( ), ( ), ( ))t R t R t R t

of sub-system R1, R2 and the whole system are computed re-
spectively and are shown in Table 9. The variation in reliability 
of sub-system R1, R2 and the whole system corresponding to 
variation in time is shown in Figure 3 to Figure 5 respectively.

9. Conclusion

The shortcoming of an existing method for finding the 
exact solution of fuzzy differential equations is pointed out and 
to overcome the shortcoming a new method, named as Mehar’s 
method, for solving fuzzy differential equations is proposed. 
Also, it is shown that the solution of fuzzy Kolomorgov’s dif-
ferential equations, obtained by using the existing method, may 
or may not be fuzzy number. So, the existing method can not 
be used to analyze the fuzzy reliability of piston manufacturing 
system, while the solution of fuzzy Kolomorgov’s differential 
equations, obtained by using Mehar’s method, are always fuzzy 
number. So, it is better to use Mehar’s method for solving fuzzy 
differential equations as compared to existing method.

Fuzzy Reliability
→ )(~

1 tR )(~
2 tR )(~ tR

Time (t) ↓ ( ( ), ( ), ( ), ( ))11 12 13 14R t R t R t R t ( ( ), ( ), ( ), ( ))21 22 23 24R t R t R t R t ( ( ), ( ), ( ), ( ))1 2 3 4R t R t R t R t
60 (0.931975,0.938278,0.950753,0.957055) (0.942978,0.948376,0.959108,0.964498) (0.878831,0.88984,0.911874,0.923077) 

120  (0.927686,0.936,0.948079,0.954246) (0.942224,0.947547,0.958096,0.963408)  (0.874088,0.886903,0.908351,0.919328) 
180  (0.925126,0.931181,0.942902,0.948956) (0.942123,0.947386,0.957802,0.960951)  (0.871582,0.882187,0.903113,0.9119) 
240  (0.923384,0.929278,0.940672,0.946624)  (0.94211,0.947326,0.957642,0.962841)  (0.869929,0.880329,0.900827,0.911448) 
300  (0.922029,0.926532,0.937926,0.943878)  (0.942109,0.947288,0.957527,0.962686)  (0.868651,0.877692,0.898089,0.908658) 
360  (0.921098,0.926873,0.9377,0.943373)  (0.942108,0.947256,0.957436,0.962562)  (0.867773,0.877986,0.897787,0.908055) 

Tab. 9. Fuzzy reliability of sub-system R1, R2 and the whole system obtained by using Mehar’s method
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Fig. 3. Trapezoidal fuzzy number representing fuzzy reliability of sub-system R1
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Fig. 4. Trapezoidal fuzzy number representing fuzzy reliability of sub-system R2
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Fig. 5. Trapezoidal fuzzy number representing fuzzy reliability of whole system
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