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Multiple classifier error probability for Multi-class probleMs

prawdopodobieństwo błędu klasyfikatorów złożonych  
dla probleMów wieloklasowych*

In this paper we consider majority voting of multiple classifiers systems in the case of two-valued decision support for 
many-class problem. Using an explicit representation of the classification error probability for ensemble binomial voting 
and two class problem, we obtain general equation for classification error probability for the case under consideration. 
Thus we are extending theoretical analysis of the given subject initially performed for the two class problem by Hassen and 
Salamon and still used by Kuncheva and other researchers. This allows us to observe important dependence of maximal 
posterior error probability of base classifier allowable for building multiple classifiers from the number of considered 
classes. This indicates the possibility of improving the performance of multiple classifiers for multiclass problems, which 
may have important implications for their future applications in many fields of science and industry, including the pro-
blems of machines diagnostic and systems reliability testing. 
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W niniejszym artykule rozważamy systemy złożonych klasyfikatorów z głosowaniem większościowym dla przypadku pro-
blemów wieloklasowych, wykorzystujące wielowartościowe klasyfikatory bazowe. Stosując bezpośrednią reprezentację 
prawdopodobieństwa błędnej klasyfikacji dla analogicznych systemów w problemach dwuklasowych, otrzymujemy ogól-
ny wzór na prawdopodobieństwo błędu klasyfikacji w przypadku wieloklasowym. Tym samym rozszerzamy teoretyczne 
analizy tego zagadnienia pierwotnie przeprowadzone dla problemów dwuklasowych przez Hansena i Salomona i cia-
gle wykorzystywane przez Kunchevę i innych badaczy. Pozwala nam to zaobserwować istotną zależność maksymalnego 
dopuszczalnego poziomu prawdopodobieństwa błędów klasyfikatorów bazowych od liczby rozważanych przez nie klas. 
Wskazuje to na możliwość poprawy parametrów klasyfikatorów złożonych dla problemów wieloklasowych, co może mieć 
niebagatelne znaczenie dla dalszych ich zastosowań w licznych dziedzinach nauki i przemysłu, z uwzględnieniem zagad-
nień diagnostyki maszyn oraz badania niezawodności systemów.

Słowa kluczowe: klasyfikatory złożone, głosowanie większościowe, problemy wieloklasowe.

1. Introduction
Multiple classifiers systems, also known as ensembles or 

committees, were considered in many papers [5, 10, 13, 21, 23, 
29, 34] and books [6, 8, 12, 18]. Committee approaches that 
learn and retain multiple hypotheses and combine their deci-
sions during classification [3, 7] are frequently regarded as one 
of the major advances in inductive learning in the past decade 
[2, 12, 19, 20, 27]. In the effect, the ensemble methodology has 
been used to improve the predictive performance of single mo-
dels, in many fields such as: finance [22], bioinformatics [32], 
medicine [24], manufacturing [28], geography [4], information 
security [16, 25], information retrieval [10] and recommender 
systems [17]. On this basis many solutions were proposed to 
the problems of machines and electronic systems diagnostic 
[31, 35] as well as testing systems reliability [14, 30]. Solutions 
of this type can be a valuable complement to other, previously 
used approaches [26, 33, 36].

In the present paper we extend theoretical analysis of the 
ensemble classification error probability initially performed for 
the two class problem by Hassen and Salamon [15] and still 
used by Kuncheva and other researchers [18-20, 29]. We con-
sider the general case of multi-class classification problems 
for ensembles using classical majority voting. We will derive 
general formula for multiple classifier error probability for 

number of classes greater than two and for any number of base 
classifiers with mutually equal posterior error probabilities. In 
the process of this we also show, what is often omitted, how 
the well known formula for multiple classifier error probability 
for two-class problems is changing when the number of base 
classifiers is not restricted to odd values. Analysis of the results 
obtained indicate the possibility of using multivalue base clas-
sifiers to improve the performance of ensembles of classifiers, 
even for very difficult classification problems.

2. Multiple classifier error probability for two-class 
problems

Let D={D1,...DL} be a set of L classifiers such that 
Ω→ℜn

iD : , where Ω={ω1,.., ωC}, assigning class label ωj∈Ω 
to input data vector nℜ∈x . It is assumed that classifiers from 
set D can be successfully used to form ensemble, if their mutu-
al errors are uncorrelated or negatively correlated [1] and when 
for each base classifier Di its posterior error probability i

SP  is 
less than 0.5. In the case of two-class problems (K=2) with use 
of the majority voting the situation is relatively easy and the 
ensemble error probability PE of multiple classifier is then often 
presented to be:
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where L is odd, all classifiers have equal posterior error proba-
bility PS and initial value j0 is the minimal number of classifiers 
giving wrong answer that leads to ensemble decision error.

But it should be remembered, that for many-class problems 
limiting the number of base classifiers L to odd values does 
not eliminate the possibility that base classifiers will draw. In 
such case the solution of random class label selection is often 
used - when no other class gains higher number of votes than 
the proper one but some of other classes tie with it, class label is 
randomly selected from this group, with equal posterior proba-
bilities for each class. With this in mind the factor of ensemble 
error probability connected with ties can’t be neglected. Thus 
looking for the guideline for further analysis of multi-class pro-
blems, we can omit the assumption that L is odd and extended 
the expression (1) to the form:
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and δ(x,y)  is the Kronecker’s delta:

 δ ( , ) :
:x y x y
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The factor ½ before the Kronecker’s delta in (2) is the pro-
bability of wrong random class selection when base classifiers 
draw and the Newton symbol 
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possible ties between base classifiers for two-class problem, 
when L is even.

3. Multiple classifier error probability for multi-
class problems

The first step to find the general equation for multiple clas-
sifier error probability for multiclass problems can be rewri-
ting the expression (2) to the form in which each component 
probability is explicite connected with votes assigned by base 
classifiers to individual classes.. Beacause without loosing the 
generality we can assume that the class with index 1 is the cor-
rect one, thus by simple algebraic transformations we can see 
that right side of (1) can take the form:
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where k1 and k2 represent various numbers of votes that can be 
given by L base classifiers respectively for classes 1 and 2. The 
introduced Kronecker’s delta ensures that only those combina-
tions of votes are taken under consideration, for which the sum 
of votes for all classes equals the number of base classifiers:

 k1 + k2 = L (6)
and H is the Heaviside’s step function used to select factors for 
which k2> k1:

 H x x
x( ) :

:= >
≤{10 0

0  (7)

Finally, by further use of (6) for calculation of L - k2, and 
by introducing that:

 P1 = 1 - PS    and    P2 = PS (8)

are probabilities of voting at the class 1 and 2 respectively, we 
can rewrite (5) in the form:
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Similarly, the right part of the right side of expression (2) 
can be transformed to: 
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Next, because in the case of a tie k1 = k2 = L/2, formula (10) 
can be rewritten as:
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In the result, after combining (5) and (11) and reorganizing, 
the formula for ensemble error probability for two-class pro-
blem (2) can be given by:

P k k L H k k k k L
k k

P PE
k k= + − +











δ δ( , ) ( ) ( , ) !

! !1 2 2 1 1 2
1 2

1 2
1
2

1 2




==
∑∑
k

L

k

L

21 00
 (12)

The expression (12) shows the natural method of determi-
ning the ensemble error probability for multi-class problems 
(K>2) – by adding further summations connected with other 
classes. It is easy to notice, that in such case only the part of 
(12) taken in square brackets require special analysis. The He-
aviside’s function gives information if the proper class received 
fewer votes than the wrong class. Thus for many classes it sho-
uld be replaced by the form:

 H H H k kE i
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which has value 1 if one or more classes received more votes 
form base classifiers than the correct class and zero in other 
cases. The second, right part in square brackets in (12) - the 
Kronecker’s delta - can be identified as an element holding the 
number of classes that tie with the correct one, additionally 
multiplied by the probability of wrong random class selection. 
In the general case (K>2) the number of ties can be represented 
by the formula:
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and due to that the probability of wrong random class selection 
during tie is given by:
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Now it is easy to calculate that the ensemble error probabi-
lity for multi-class problems is given by:
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where the sum of the probabilities of assigning votes for each 
class:
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is a multinomial coefficient PMF of the multinomial probability 
distribution, thus the expression (16) can be written finally as:
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where:
 1 2 1 2( , ,..., , , , ,..., )MF K KP f k k k L P P P=  (20)

is the probability mass function of the multinomial distribution 
for non-negative integers k1, k2,...,kK.

4. Simulations and i discussion of results

Formula (19) derived in previous section was at first ve-
rified experimentally with the use of statistical simulations of 
the system with multiple base classifiers. Due to the high com-
putational cost of such simulations, we considered only cases 
of classes numbers K from 2 to 10, numbers of base classifiers 
from 1 to 100 and selected values of base classifiers classifica-
tion error probabilities PS (0; 0,1; 0,3; 0,5; 0,7; 0,9 i 1). During 
simulations for each set of parameters 106 votings were perfor-
med where answers of individual base classifiers were genera-
ted randomly with use of standard random generator included 
in Borland Object Pascal System library.

Obtained results have shown high consistency between out-
comes of conducted simulations and values of formula (19). 
For all considered values of parameters the difference between 
results of simulations and calculated error probabilities was not 
greater than 2,7% of computed values (average 0,043%). Addi-
tionally, for the case of two class problems both methods have 
given results consistent also with values of expression (2).

On the above basis, we observed how the multiple classi-
fier error probability changes with increasing number of classes 
under consideration (see fig.1). For typical example of L = 21 
and PS = 0,3 for two classes the error probability is PE ≈ 0,0264, 
but for three and five classes it amounts just to 0,00202 and 
0,000126. This is the result of growing number of classes other 
than the correct one - missed votes are dispersed over all K - 1 
wrong classes. In the effect the average cumulative number of 
votes for individual wrong class decreases with increase of K, 
which do not apply to the correct class.

It is also very interesting that for number of classes K gre-
ater than 2, the upper limit of base classifier posterior error pro-
bability, that allows successfull building of multiple classifier is 
greater than 0.5 (compare fig. 2a and fig. 2b). Due to practical 
difficulties in creating large sets of base classifiers with a low 
errors probabilities and also with a high degree of lack of corre-
lation between errors committed by them, observed result sug-
gests the possibility of easier ensembles of classifiers building 
for complex multiclass problems by admission to the conside-
rations also base classifiers that commit errors more frequently 
than in the half the cases.

For example - when the number of classes K = 5 and the 
number of base classifiers L = 21, error probability of base 

Fig. 1. Multiple classifier error probability PE as a function of the error 
probability PS of seven base classifiers (L=7), with negatively 
correlated mutual errors,for different numbers of classes K

a)

b)

Fig. 2. Multiple classifier error probability PE as a function of the er-
ror probability PS for different numbers L of base classifiers, 
with negatively correlated mutual errors, for five a) and two 
b) classes
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classifiers PS = 0,6 results in an error probability of a multiple 
classifier PE ≈ 0,146, what is the better value than randomly gu-
essing. In addition, by increasing the number of base classifiers 
to 100, the above probability of multiple classicier error can be 
reduced to just 0,000815. However, it should be remembered 
that presented results were obtained under the assumption that 
the underlying mutual errors of base classifiers are fully uncor-
related or negatively correlated, which is difficult to achieve 
in practice. Partial correlation of errors can cause changes in 
individual values of the above probabilities, however, should 
not affect the basic properties of the results.

5. Summary and future work 

In this work the formula for multiple classifier error pro-
bability for multi-class problems was formally presented. Its 
detailed derivation was based on the widely known analogous 
formula for two-class problems, which was additionally exten-
ded for even numbers of base classifiers.

Simulations during analysis of obtained formula indicate 
that increasing the number of considered classes lowers en-

semble error probability. But what is more interesting, under 
assumption that mutual errors of base classifiers are uncorre-
lated or negatively correlated, the upper limit of base classifier 
posterior error probability PS that allows successfull building 
of multiple classifier is increasing with considered number of 
classes.

As a consequence, the transition from the schema of bival-
ued to multivalued hypotheses, facilitates the creation of large 
collections of diverse base classifiers, and thus - even finer en-
sembles of classifiers. This could be of great importance for 
further applications of such methods in many fields of science 
and industry - including the issues of machines maintenance 
and diagnostics and systems reliability testing.

In future works we will investigate how the partial corre-
lation between errors of multivalued base classifiers modifies 
error probabilities of multiple classifiers for numbers of classes 
greater than 2. We will also try to find computationally efficient 
expressions for estimation of derived formula for number of 
classes above 100.
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