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Modelling Preventive maintenance based on the delay time 
concept in the context of a case study

Modelowanie konserwacji zapobiegawczej w oparciu o pojęcie 
czasu zwłoki w kontekście studium przypadku

Using the delay time concept and associated models, this paper presents a modelling study of optimising the preventive 
maintenance (PM) interval of a production plant within the context of a case study. To establish the relationship between 
the PM interval and expected downtime per unit time, we need the data of both failure times and the number of defects 
identified and removed at PM epochs. However, the available data to us was only the recorded times of failures. To over-
come this problem, we obtained an estimated mean number of the defects identified at the PM epoch by the plant mainte-
nance technicians. Based on these two types of data, we first establish a likelihood function of the observed times to failure 
and then a squared function of the difference between the number of defect identification estimated by the technician and 
the corresponding expected value from the model is mixed with the likelihood function to estimate the unknown model 
parameters. We test by simulation to show the validity of the above parameter estimation method. Once the parameters 
of the model are known, a PM model is proposed to optimize the expected downtime per unit time with respect to the PM 
interval. The modeling process is demonstrated by the case study presented. 

Keywords:	 delay time, Preventive Maintenance (PM), parameter estimation, modelling.

Wykorzystując pojęcie czasu zwłoki oraz modele stowarzyszone, w artykule przedstawiono badania modelowe optymalizacji 
przerwy konserwacyjnej w zakładzie produkcyjnym w oparciu o studium przypadku. Aby ustalić związek pomiędzy przerwą 
konserwacyjną a oczekiwanym czasem przestoju na jednostkę czasu, potrzebne są dane dotyczące zarówno czasów uszkodzeń 
jak i liczby usterek wykrytych i usuniętych w okresach konserwacji zapobiegawczej. Niestety, w badanym przez nas przypadku 
jedynymi dostępnymi danymi były czasy uszkodzeń. Aby obejść ten problem, wykorzystaliśmy szacunkową średnią liczbę uste-
rek wykrytych w okresie konserwacji zapobiegawczej przez obsługę techniczną zakładu. W oparciu o wspomniane dwa typy 
danych, ustaliliśmy, w pierwszej kolejności, funkcję wiarygodności dla obserwowanych czasów do uszkodzenia. Następnie, w 
celu określenia niewiadomych parametrów modelu, funkcję tę połączyliśmy z funkcją najmniejszych kwadratów dla różnicy 
pomiędzy liczbą wykrytych usterek oszacowaną przez pracownika obsługi technicznej a odpowiadającą jej oczekiwaną warto-
ścią wyprowadzoną z modelu. Wiarygodność powyższej metody oceny parametrów sprawdzono za pomocą symulacji. Znając 
wartości  parametrów modelu, zaproponowano model konserwacji zapobiegawczej  pozwalający na optymalizację oczekiwa-
nego czasu przestoju na jednostkę czasu w odniesieniu do przerwy konserwacyjnej. Proces modelowania przedstawiono za 
pomocą studium przypadku. 

Słowa kluczowe:	 czas zwłoki, konserwacja zapobiegawcza, ocena  parametrów, modelowanie.

1. Introduction 

The delay time concept proposed by Christer has been exten-
sively applied to maintenance problems of plant inspection 
practice[9, 13, 16]. The period from the first point at which 
a defect can be identified at a PM inspection to the time when 
a repair is essential is called the delay time, denoted by h. The 
objective of most delay time based studies is to either minimize 
a cost function or a down time function subject to a preventive 
inspection interval [16]. 

A major task in modelling the above inspection practice ba-
sed upon the delay time concept is the estimation of parameters 

which describe (1) λ(u), the rate of occurrence of defects at time 
u, (2) F(h), the cumulative probability function of delay time 
h. (3) the probability of perfect defects identification at PM. In 
general, there are two established methods to estimate model 
parameters, namely the subjective method [2, 11, 12, 17] and 
the objective method, see Akbarov [11], Aven [3], Christer and 
Wang [6, 8], Jones et at [10], Wang [15]. The former is based 
on the subjective data obtained from maintenance engineers’ 
experience. The latter is based on the observed data of recorded 
failure times and the number of defects identified at each PM 
epoch. 
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If the maintenance records of failures and the number of 
defects identified at PM are available and sufficient in quantity 
and quality, the delay time model parameters can be estimated 
by the objective method, generally the classical statistical me-
thod of maximum likelihood. If however, such a data set does 
not exist, or is insufficient in quantity and quality for the purpo-
sed of estimation, the alternative is to use expert judgment for 
obtaining those parameters [6].

In many cases, there are some objective data available, but 
those data are insufficient to estimate by merely the objective 
data, so more recent development in delay time modelling has 
established that these parameters can also be estimated using 
limited PM data and selective repair at PM [5, 7]. Wang and 
Jia [14] presented an empirical Bayesian based approach to es-
timate the delay time model parameters using both subjective 
and objective data. This approach starts with subjective data 
first, and then updates the estimates when objective data beco-
me available.

In this paper, because of the operating practice of PM and 
data constraints of the case we studied, we present an estimation 
procedure which is different from previous delay time models 
of complex plant. Here historic data exist for failure time points 
and PM times, but the interval of PMs is not equal, and no re-
cords exist for the number of the defects identified and removed 
at PM. However, we obtained latter a  subjective estimate of 
the mean number of the defects identified and removed at PM 
from the factory technicians who maintained the plant. In this 
case a mixture of both objective data of failures and subjective 
PM data will be utilized in order to estimate model parameters. 
A mixed likelihood function with a least squared function (take 
the negative) is proposed and maximized to obtain the estima-
ted values of the model parameters. Simulated data based upon 
imperfect inspections are generated to test whether the above 
mixed likelihood method can recover the underlying model pa-
rameters within a required accuracy. Finally an inspection mo-
del as a function of the PM interval is proposed and an optimal 
PM interval is obtained for the plant concerned. The modelling 
objective is to minimize the total downtime per unit time in 
terms of the PM interval.

The paper is organized as follows. Section 1 presents a ba-
sic introduction to the problem and a  brief literature review. 
Section 2 outlines the modeling assumptions and notation, the 
modeling developments, and the test of this developed model 
using simulation. Section 3 proposes a downtime model. Sec-
tion 4 presents a numerical example and section 5 concludes 
the paper. 

2. The statistical model for model parameter esti-
mation

2.1.	 Assumptions

 Based upon the observation of the plant maintenance prac-
tice and referring to the published delay time papers [9, 13, 16], 

the following modeling assumptions are proposed to characteri-
ze the operation of the plant over the period of data collection.

Defects arise according to a Homogeneous Poisson Pro-1)	
cess (HPP).
Defects are assumed to arise independently of each 2)	
other.
The delay time3)	  h of a random defect is independent of its 
time origin and has a )( ., a and , )(  ., •• Fcdffpdf , 
common to all defects.
Inspections carried out at a  PM are assumed to be 4)	
imperfect in the sense that a  defect present will be 
identified with a known probability. 
All identified defects are rectified by repairs or replace-5)	
ments during the PM period. 
Failures are identified immediately, and repairs or repla-6)	
cements are made as soon as possible.

2.2.	 Notation and likelihood formulation

We shall adopt the following notation:

λ 	 The rate of occurrence of defects.
v(t)	 The rate of occurrence of failures at time t.
r 	 The probability of detecting a defect at PM, if it is 

present.
h 	 delay time of a random defect with pdf f(*) and 

cdf F(*).
Ti 	 The time of the ith PM from new.
t(i-1)j 	 The time of the jth failure occurring in (Ti-1, Ti), 

j=1,2,…,ki-1, and 1( 1) ii kt
−−  is the time of the last 

failure in (Ti-1, Ti).
Δt	 A small time interval sufficiently small that only 

one failure event at most can arise within it.
ni	 The number of the defects identified at the ith PM.
ENf(Ti-1,Ti) 	 The expected number of the failures over the 

inspection interval (Ti-1,Ti).
ENp(Ti) 	 The expected number of the defects identified and 

rectified at Ti.
Consider all observations in (Ti-1,Ti), namely the number 

of the defects identified at Ti , and the failure times in (Ti-1,Ti), 
i=1,2, … ,n, and T0=0, see Fig. 1. The likelihood function is 
the product of the probabilities of these observations arising. 
At Ti, we need to formulate the probability of the number of the 
defects identified and rectified. Also, for each failure time in 
(Ti-1,Ti), we need to formulate the probability of a failure arising 
at times t(i-1)j j=1,2,…,ki-1, and of having no other failures betwe-
en recorded consecutive failure times. Therefore, the likelihood 
function L is given by:

-1

( 1) ( 1)( 1) ( 1)
1 1

( defects identified at ) (a failure at time ) (no further failure between and )
ikn

i i i j i j i - j
i j

L p n T p t p t t− − −
= =

   =     
∏ ∏ ·	

	         ·
-1

( 1) ( 1)( 1) ( 1)
1 1

( defects identified at ) (a failure at time ) (no further failure between and )
ikn

i i i j i j i - j
i j

L p n T p t p t t− − −
= =

   =     
∏ ∏ 	 (1)

Fig. 1.	 The failure process in (Ti-1, Ti) due to a defect arising at u in (Tm-1, Tm)
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The log likelihood function is given by:
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In equation (2), the term P (no further failure between t(i-1)j and 
t(i-1)(j+1) ) is necessary because of the use of an HPP for the de-
fect arrival so that the interval between failures has to be mod-
eled. Equation (2) assumes that the necessary objective data are 
available from both PMs and failures.

To compute the above likelihood function, firstly, we consider 
the probability of a failure in (t, t+Δt), namly P(t, t+Δt|u),see Fig. 
2, where， Tn-1< t ≤Tn, Ti-1< u ≤Ti.
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 So the rate of occurrence of failures, v(t), is derived be-
low:
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where, Tn-1< t ≤Tn. For The derivation of Equation (4), see Chri-
ster and Wang [6]. So the expected number of failures over the 
inspection interval (Tn-1,Tn) is as follows:
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Using equation (4), we obtain the probability of a  failure 
arising in time interval (t(i-1)j, t(i-1)j+Δt) , for sufficiently small 
Δt, 

	 P(a failure in (t(i-1)j, t(i-1)j+Δt))=v(t(i-1)j) Δt 	 (6)

Since the failure process is NHPP, it is straightforward 
that:
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If failure durations are negligible, the logged probability of 
no further failure between recorded failures within (Ti-1,Ti) is 
simply given by 

	 ( )1
( 1)

( 1)( 1) ( 1) ( 1) 1
( 1)( 1) ( 1)

1
log (no further failure in ( , )) ( ) ( ) ( )

i
ii j i

i j i k i i

k Tt T
i j i j t t T

j
p t t v t dt v t dt v t dt

−
−

− − − − −
− − −

=

= − − =∫ ∫∑ ∑ ∫

	 ( )1
( 1)

( 1)( 1) ( 1) ( 1) 1
( 1)( 1) ( 1)

1
log (no further failure in ( , )) ( ) ( ) ( )

i
ii j i

i j i k i i

k Tt T
i j i j t t T

j
p t t v t dt v t dt v t dt

−
−

− − − − −
− − −

=

= − − =∫ ∫∑ ∑ ∫ 	 (8)

 From equation (3), we obtain the expected number of the 
defects found at Tn, namely ENp(Tn), given by Christer et al. 
[6]. 
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Because the number of defects identified at PMs follows 
a Poisson distribution with the mean defined by equation (9), 
[6], the probability of nn defects identified at Tn is
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Dividing equation (6) by Δt and taking the log of equation 
(10). The log likelihood function for the problem described be-
comes:
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In this case, PM inspection data are not available, so the first 
part of the right hand side of equation (11) cannot be computed, 
but the estimated mean number of the defects identified and 
rectified at PMs are provided by the maintenance technicians. 
So we used the likelihood of the failure events (the second part 
of the right hand side of equation (11)) and a least square func-
tion and the function, Z, to be maximized is given by:

1

1

2
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1 1
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i
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where ESp(T) denotes the subjective estimate of the mean num-
ber of the defects identified and rectified given T where T is the 
average PM interval length. This equation has not been used 
before in delay time based models. Maximizing equation (12), 
we may obtain the estimated parameters of the model, namely 
λ ,r and those in f(h) from actual failure records and subjective 
PM data.

2.3.	 The assessment of the model

2.3.1.	 The simulation test

We have run a simulation experiment to test the validity and 
feasibility of equation (12). The failure processes with imper-
fect inspection of r=0.2, 0.5 and 0.8 are simulated respectively. 

Fig. 2 The failure process of a defect arising in (Ti-1, Ti )
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We then averaged the observed number of the defects identified 
at PM to be used as an assumed estimate from the technicians. 
Table 1 shows that fitted parameter values, in which the rate of 
occurrence of faults is λ=1.1528 and the scale parameter of the 
exponential delay time α=0.0288, and the inspection interval is 
7 days. The full data likelihood is also run to compare with that 
from equation (11). From table 1 it can be seen that the estima-
tes from using equation (12) are not far from the true parameter 
values and validate our approach. Though they are not as good 
as the estimate using the full data, but the method is a  good 
approximate way for model parameter estimates. 

2.3.2.	 Choice of possible candidates for model

 Before fitting a model to the data, the functional form of 
the delay time distribution must be specified. The best choice of 
the distribution from a family of distributions for h is chosen, 
using the criterion of minimum Akaike information criterion 
(AIC) [4]. Possible candidates for F(.) are 1) Exponential distri-
bution F(x)=1-e-ax; 2) Mix delta-exponential distribution F(x)=1
-(1-p)e-ax; and 3) Weibull distribution . Expo-
nential distribution is usually selected first. If there is any defect 
with zero delay time, model (2) is preferred, where p is the pro-
portion of defects with zero delay time and a is the scale para-
meter of the exponential distribution. This mixed distribution 
can be used for Weibull as well.

3. Downtime model

The relationship between the PM frequency and the total 
downtime is established as shown below, [16]:

	 . ( )
( ) f f pd EN T d

ED T
T

+
= 	 (13)

where: ED(T) - the total expected downtime per unit time over 
an infinite horizon with PM interval T, df  - the average down-
time per failure, ENf (T) - the expected number of failures over 
PM interval T, dp - the average downtime per PM, where since 
we assume that the plant is already operated very long to be in 
a steady state so, ENf(Tn-1,Tn) = ENf(T)  for sufficient large n. 

4. Case study

This case study involves an important machine in Harbin 
Turbine Co Ltd. The machine is called the NC Gantry-type 
Milling Machine which is an advanced numerical controlled 
machine which is key plant item within the company with 
over 80% of products being processed on it at some stages 
of their production. This machine is operated 22 hours a day 
(three shifts), 7 days a week, excluding public holidays. At the 
time of the study, in order to reduce the downtime, preventive 
maintenance was performed 4 times per year, namely on Spring 
Festival, 1st May, 1st October and New Year. The company’s 
objective is to reduce the downtime caused both by failures and 
PM activities, and thereby increase the availability of the plant. 
The key issue of concern is: How long the PM interval should 
be the best for the machine?

4.1.	 Data collection and Analysis of failure data

Through collecting records for this milling machine over 
a period of two years, we obtain some valuable information in-
cluding the time of failures, causes of failures, or the failure 
mode, the length of the downtime for each failure and repair 
actions to the failures. 

Based on the failure data, the following analysis is carried 
out, 1) Frequency analysis of failure modes; 2) Analysis of the 
causes of failures.

The number of failures occurred in different subsystem of 
NC Gantry-type Milling Machine is shown in table 2. From 
table 2, the number of failures occurred over past two years 
total to 77. 

The frequency of failure modes for different main compo-
nents with each subsystem of the machine is shown in Figures 
3, 4 and 5 respectively. 

 The main failure modes are shown in table 3. It can be seen 
that the downtime due to the main shaft electric motor in the 
electric system, totaling 817 hours, accounts for 27 percent total 
downtime. Next is the brake controller of girder, its downtime 
reaches 611 hours and accounts for 20 percent total downtime. 
Others failure modes influencing the availability include the 
cooler system and attachments for the cutting tool.

r PM 
cycle

Sample 
data

Use failure data and 
actual PM data

Use failure data and 
mean PM data

r r

r=0.2

10 58 1.1530 0.0245 0.1340 0.9780 0.0555 0.3000

50 372 1.1040 0.0330 0.2040 1.0480 0.0560 0.3000

100 792 1.1600 0.0270 0.1920 1.2090 0.0410 0.3000

r=0.5

10 69 1.1110 0.0235 0.4020 1.0830 0.0415 0.6000

50 381 1.1040 0.0340 0.4860 1.1040 0.0455 0.6000

100 798 1.1460 0.0350 0.6000 1.2370 0.0320 0.6000

r=0.8

10 74 1.0970 0.0295 0.7019 1.0620 0.0440 0.8999

50 391 1.1180 0.0425 0.8999 1.0690 0.0450 0.8999

100 805 1.1530 0.0355 0.8959 1.0480 0.0400 0.8999

Table 1 Estimation result for an exponential delay-time distribution via various r values

True parameter values are λ=1.1528, α=0.0288, an d the PM period is 7days.

Subsystems Failures 
number Percentage

Mechanical system 12 15.6
Hydraulic system 23 29.9

Electric system 42 55.5
Total 77 100

Table 2.	 Failures number of different subsystems of NC 
Gantry-type Milling Machine and its percentage
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Discussion with the company maintenance technicians re-
vealed that the main reasons for the failures are as follows: 1) 
Inadequate maintenance lead to the frequently failure occur-
rence of the main shaft electric motor, the cooler system and the 
main pump station as well. 2) Poor design for the attachments 
for the cutting tool resulted in its frequent failure occurrence. 
3) Too much time waiting for the repair parts lead to the long 
downtime of the failure of the brake controller of girder. Some 
advices are proposed as follows: 1) Enhancing the preventive 
maintenance activity, e.g. determining an optimal PM interval 
is expected to reduce the failure number occurred for the main 
shaft electric motor, the cooler system and the main pump sta-
tion. 2) Redesigning the attachments for the cutting tools, will 
help to reduce the failure downtime resulting from the bad sys-
tem design. 3) Enhancing the supply chain management and 
avoiding the long waiting for repair parts, will increase greatly 
the availability of the system. In this paper we pay attention to 
first item. 

4.2.	 The calculation of interval of PM

Now we focus on the determination of the optimal interval 
of PM for the whole system since a PM is usually scheduled 
for the whole system. The available data is as follows: the time 
of each failure happened, the length of downtime per failure. 
However, we have not had the number of the defects identi-
fied and identified at PM. According the experience of the chief 
technician who has been responsible for the maintenance of this 
machine for years, the estimate of the number of defects identi-
fied at PM is about 3-5, so we take its mean value, namely 4.

Using equation (12), the fitted values of parameters are 
shown in Table 4. From Table 4, the mixed exponential distri-
bution is selected as having the lowest AIC value. 

Using the mixed exponential delay time, from equation (5), 
we have [5]:
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Fig. 5. Frequency analysis of mechanical system failures over two years

Failure mode Downtime (hr) Percent %

Main shaft electric motor 817 27
Brake controller of girder 611 20

Cooler system 220 7
Attachments for cutting tool 215 7

Main pump station 150 5
Control system 149 5

Others 881 29
Total downtime 3043 100

Table 3.	 Main failure modes influencing NC Gantry-type Milling Machi-
ne’s downtime

Table 4.	 Models and fitted values of parameters from the real data

Models F(x)=1-e-ax F (x)=1-(1-p)e-ax

0.1283 0.1233 0.1294
(scale parameter) 0.0321 0.0301 0.0341
(shape parameter) - - 0.8844

p̂ - 0.10 -

r 0.8521 0.8411 0.8023
Maximum log-likelihood -73.3779 -72.2862 -73.1773

AIC 152.7558 152.5724 154.3546

p is the proportion of zero delay time. λ is the rate of occurrence of faults. 
AIC=-2*logmaxlikelihood+2*(number of parameters)

Fig. 3 Frequency analysis of electric system failures over two years Fig.4 Frequency analysis of hydraulic system failures over two years
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From tables 2 and 3, we obtain df =3043/77=39.5195 hours, 
and dp=22 hours from the PM schedule. Substituting equation 
(14) into equation (13), we obtain the model output shown in 
Figure 3. From Figure 3, it can be seen that the optimal PM in-
terval should be around 19 days. Since the expected downtime 
per unit time, when T=14 days, T=30 days, is increased less 
5% than that when T=19 days, the suitable PM interval range is 
from 2 weeks to a month.

If the interval of PM is changed to 19 days, the expect-
ed downtime per day for this machine is 2.9340 hours, and 
the observed average downtime when T=3 months is 3043/

(2*340)=4.4750 hours per day. So with the optimal PM inter-
val, the expected downtime of this machine will be reduced to 
（4.4750-2.9340）hour/day×340 days/year＝524 hours/year. 
Since the average loss for this machine is 500 RMB/hour, so the 
decision made by the above optimal model will help the com-
pany to save at least 262,000 RMB per year. When T=90 days, 
the output of the model is 3.8907 hours per day, so it is not far 
from 4.4750 hours per day from the data.

If improving the skills of maintenance technicians and 
strengthening the management of maintenance activity, the in-
spection time could be reduced to dp=11 hours, then the optimal 
inspection interval is 12 days from equation (13), and the expec-
ted downtime per day is 2.2981 hour per day, so the expected 
gain will be the (4.4750-2.2981）hour/day×340 days/year 
×500yuan/hour=370,000 RMB.

5. Conclusion

 In this paper, we propose a model to determine the optimal 
PM interval. The model is based upon the delay-time concept. 
A mixed likelihood and lease squared method based upon ac-
tual failures and the subjectively estimated PM data has been 
used to obtain the estimated values of the model parameters. 
A  PM inspection model has then been used to find the opti-
mal PM inspection interval which minimizes the total expect-
ed downtime per day caused by failures and PMs. The model 
shows that if the machine can be checked up every 19 days, the 
expected downtime is minimized. Of course, some important 
factors such as production schedule, maintenance manpower, 
and spare parts should also be considered together before mak-
ing the final decision of the PM inspection interval.

Fig. 6.	 Expected downtime (hour) per day against PM cycle length 
(day)
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